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We propose an alternative formulation in which gravitational curvature, galactic ro-
tation, and frame-dragging phenomena emerge from gradients in spatial energy density,
rather than relying purely on geometric assumptions. In this framework, both mass and
rotational motion redistribute background energy, leading to structured spatial gradients
that act as sources of spacetime curvature.

The model employs a scalar field ϕ representing normalized energy density. Curvature
arises through a generalized Plummer-type potential:

Φ(r) = − GM

(r2 + r2c )
n− 1

2

,

where the exponent n depends on the galactic mass and captures redistribution dynamics.
The derived velocity profile,

v(r) =

√
GMr2

(r2 + r2c )
n
,

reproduces the observed flatness of galactic rotation curves without invoking dark matter.
In rotating systems, azimuthal distortions in the scalar field naturally generate elec-

tric and magnetic fields consistent with Maxwell’s equations. This provides a classical
mechanism for frame-dragging and jet formation near black holes. The proposed model
thus offers a physical, energy-based complement to general relativity.

1 Introduction

The rotation curves of galaxies have long challenged classical Newtonian predictions.
Observational data consistently show that beyond the visible mass distribution, galactic
rotational velocities tend to remain flat or even rise, whereas Newtonian gravity would
predict a decline. Traditionally, this discrepancy has been attributed to dark matter.

However, an alternative framework proposes that spatial energy gradients and in-
duced electric fields arising from rotating mass distributions can account for the observed
rotational behavior without invoking unseen matter.

To capture these effects, we develop a three-zone model of galactic gravity, with each
zone governed by distinct physical mechanisms:
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Zone I Classical gravity from baryonic mass near the galactic
core

Zone II Intermediate region where spatial energy density gradi-
ents create effective centripetal force

Zone III Outer region dominated by induced electric fields and
Lorentz forces in rotating plasma

In the following sections, we detail the theoretical formulation and physical interpre-
tation of each region.

2 Justification for Three-Zone Partitioning of Galac-

tic Gravity

To rigorously classify the gravitational dynamics of galaxies, we introduce a scalar field
representation ϕ(xµ) that governs curvature through spatial and temporal energy density
gradients. The three-zone structure of our model arises not from arbitrary segmentation
but from distinct behaviors in the scalar field’s derivatives that dominate in different
radial regimes.

2.1 Scalar Field Dynamics and Curvature Source

To explore how scalar field dynamics influence spacetime curvature, we begin with a
normalized scalar field ϕ(xµ) = ρ(xµ)/ρ0, where ρ(xµ) denotes the energy density of
a vacuum-like background field. This field ϕ encodes deviations from uniform energy
distribution and serves as a local proxy for energy-induced curvature.

We postulate the action of the scalar field:

S[ϕ] =

∫
d4x

√
−g

(
−1

2
gµν∂µϕ ∂νϕ− V (ϕ)

)
, (1)

where V (ϕ) is the potential, and gµν is the metric tensor of spacetime.
To derive the field equation, we vary the action with respect to ϕ:

δS =

∫
d4x

√
−g

(
−gµν∂µϕ ∂νδϕ− dV

dϕ
δϕ

)
(2)

=

∫
d4x

√
−g

(
δϕ∇µ∇µϕ− dV

dϕ
δϕ

)
, (3)

where we integrated by parts using:∫ √
−gAµ∇µB = −

∫ √
−gB∇µA

µ,

assuming boundary terms vanish.
The resulting Euler–Lagrange equation becomes:

□gϕ =
dV

dϕ
, with □g ≡

1√
−g

∂µ
(√

−g gµν∂ν
)
, (4)

which is the covariant Klein–Gordon equation in curved spacetime.
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To determine how this field contributes to gravitational curvature, we compute the
energy-momentum tensor:

T (ϕ)
µν = ∂µϕ ∂νϕ− gµν

(
1

2
gαβ∂αϕ ∂βϕ+ V (ϕ)

)
. (5)

Taking the trace T = gµνT
(ϕ)
µν , we calculate:

T = gµν (∂µϕ ∂νϕ)− gµνgµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
(6)

= (∂ϕ)2 − 4

(
1

2
(∂ϕ)2 + V (ϕ)

)
(7)

= −(∂ϕ)2 − 4V (ϕ), (8)

where we used gµν∂µϕ∂νϕ = (∂ϕ)2 and gµνgµν = 4 in 4D spacetime.
From the Einstein field equations R = −8πGT , we obtain:

R = 8πG
(
(∂ϕ)2 + 4V (ϕ)

)
. (9)

This shows that curvature R arises directly from both the field’s gradients and its
potential energy. In the weak-field limit, where spacetime is nearly flat (gµν ≈ ηµν ,√
−g ≈ 1), the d’Alembert operator reduces to:

□ϕ = ∂2
t ϕ− c2∇2ϕ.

We then propose the curvature can be expressed in the simplified form:

R = α

(
□ϕ+

dV

dϕ

)
, (10)

where α ∼ 8πG serves as a proportionality constant. This equation encapsulates the
core principle that scalar field dynamics—through both wave propagation and potential
configuration—act as a source of curvature, offering an alternative to purely matter-based
gravity models.

2.2 Physical Transition Criteria between Zones

We define the three zones based on the dominant term in the scalar field curvature source:

• Zone I (Central Core Region): Dominated by baryonic mass, where static
configurations lead to spherically symmetric energy densities. The curvature arises
from classical Laplacian terms:

R ∼ α∇2ϕ(r), ϕ(r) ∼ exp

(
−Φ(r)

c2

)
.

• Zone II (Gradient-Driven Midregion): Dominated by smooth spatial energy
gradients induced by mass-displacement. Here the gravitational force behaves like
a pressure gradient:

F⃗ ∼ −∇P (r) ∼ −∇
(
ρ(r)c2

)
⇒ R ∼ ∇2ϕ.

The dynamics here explain the flat rotation curves without dark matter.
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• Zone III (Electrodynamic Halo): In outer regions with rotating plasma, cur-
vature contributions from azimuthal asymmetries become important:

ϕ(r, θ) ∼ ϕ0(r) + δϕ(θ), ⇒ R ∼ ∂2ϕ

∂θ2
+ induced E⃗, B⃗.

These lead to Lorentz forces and frame-dragging phenomena.

2.3 Causal Basis for Regional Separation

Each zone corresponds to a distinct physical source term in the scalar curvature formu-
lation:

Zone I: ∇2ϕ(r) ≫ dV

dϕ
, static core gravity (11)

Zone II: ∇ϕ(r) ∼ pressure-induced curvature, gradient-dominated (12)

Zone III:
∂ϕ

∂θ
, rotation-induced electromagnetic curvature (13)

This classification not only aligns with observations of galactic rotation and jet for-
mation, but also preserves consistency with general relativity by interpreting curvature
as the large-scale manifestation of localized scalar field variation.

3 Zone I: Classical Gravitational Regime Near the

Core

In the inner regions of galaxies, gravitational attraction is primarily governed by the
visible baryonic mass. The motion of stars and gas clouds follows Newtonian dynamics,
leading to the well-known relation for circular velocity:

v(r) =

√
GM(r)

r
, (14)

where M(r) is the enclosed mass within radius r, and G is the gravitational constant.
This region corresponds to the central bulge of spiral galaxies, typically spanning a

few kiloparsecs and encompassing the supermassive black hole and densely packed stars.
To quantitatively estimate the enclosed mass at a fixed radius of 2 kpc, we invert the

above formula using observed rotational velocities:

M(r) =
v2(r) · r

G
. (15)

This method yields the effective dynamical mass required to sustain the observed rotation,
assuming Newtonian gravity and spherical symmetry. The resulting values represent
empirical estimates based on published velocity measurements and serve as the foundation
for the core-region modeling.

The gravitational constant used is:

G = 4.302× 10−6 kpc · (km/s)2/M⊙.
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Galaxy-Specific Parameters in Zone I

Using the above formula, we estimate the dynamical mass for three well-studied spiral
galaxies at a radius of 2 kpc. The observed velocities are obtained from high-resolution
rotation curve studies [18–20], and the computed mass values are used as input for the
subsequent theoretical modeling.

Table 1: Dynamically inferred mass and rotational velocities at 2 kpc for three galaxies
in Zone I. Mass values are calculated from observed velocities via Newtonian dynamics.

Galaxy Radius r Estimated M(r) Computed v(r) Observed vobs(r)
(kpc) (M⊙) (km/s) (km/s)

Milky Way 2.0 7.86× 109 130.0 130
M33 2.0 7.44× 108 40.0 40

NGC 3198 2.0 2.98× 109 80.0 80

These mass values are not assumed arbitrarily but are instead derived directly from
observational data. They represent the baseline dynamical mass in the innermost galactic
regions, where classical Newtonian gravity is presumed to be valid. This serves as a crucial
benchmark for comparing the predicted deviations in outer zones (Zones II and III), where
energy density gradients and electromagnetic effects play a more significant role.

4 Zone II: Energy Density Gradient Layer — Core

Concept of Rotational Gravity

This section presents the central theoretical innovation of the proposed framework: that
gradients in spatial energy density are responsible for inducing gravitational curvature
and sustaining galactic rotation in the extended disk region. Departing from purely
geometric interpretations of gravity, we develop a physically causal mechanism whereby
the redistribution of background space energy—displaced by massive bodies—creates an
effective inward force analogous to a pressure gradient.

This concept builds upon the foundational arguments introduced in Sections 1 and
2 and forms the basis for explaining flat galactic rotation curves without invoking dark
matter. Here, we derive a generalized velocity profile arising from energy density gradients
and validate it against observed data for specific galaxies, as detailed previously in Section
8.2. The resulting agreement between theory and observation supports the physical
viability of this energy-based approach to gravity in rotating galactic systems.

4.1 Motivation and Overview

Conventional Newtonian gravity fails to account for the flat rotation curves observed in
spiral galaxies without invoking dark matter. While general relativity interprets gravity
as the curvature of spacetime induced by mass and energy, it remains fundamentally
geometric in nature.

Our approach proposes a physically motivated reinterpretation in which curvature—
and therefore gravitational attraction—emerges not solely from mass but from gradients
in spatial energy density. When a massive object occupies space, it displaces the ambient
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background energy, creating an imbalance. This imbalance forms a spatial energy gradient
that functions similarly to a pressure gradient in fluid dynamics.

Such a gradient acts as an active agent, producing an effective inward force toward
the object. Analogous to how an electric field arises from a charge distribution, this
force field originates from the deformation of the spatial energy medium. It leads to a
gravitational effect that is both causal and local.

Causal Flow of Gravitational Emergence from Energy Redistribution:

⇒ Step 1: Object occupies space
A massive object enters spacetime, displacing ambient energy.

⇒ Step 2: Background energy is expelled

ρ(r) < ρ0 ⇒ ∆ρ(r) < 0

⇒ Step 3: Spatial energy gradient forms

∇ρ(r) ̸= 0 or ∇ϕ ̸= 0 with ϕ =
ρ

ρ0

⇒ Step 4: Inward-directed force emerges (pressure analog)

F⃗ = −∇P ≈ −c2∇ρ(r)

⇒ Step 5: Scalar field generates curvature

R = α

(
□ϕ+

dV

dϕ

)
This energy-based view differs fundamentally from the classical interpretation in which

mass is the sole generator of curvature. Instead, we treat the redistribution of background
energy as the origin of gravitational interaction. The rotational profiles of galaxies—
traditionally explained by invoking dark matter halos—can then be understood as the
natural result of these induced spatial energy gradients.

Moreover, in rotating systems such as spiral galaxies or black holes, azimuthal asym-
metries in the spatial energy field lead to induced electric and magnetic fields. These
effects are consistent with observed phenomena such as frame dragging and relativistic
jets, and are discussed in detail in Zone III.

4.2 Derivation of the Rotational Profile from Energy Density

We start with the assumption that the displaced background energy forms a smooth,
spherically symmetric distribution around the central mass. A physically motivated den-
sity profile is:

ρ(r) = ρ0

(
1 +

r2

r2c

)−n

, (16)

where ρ0 is the central energy density, rc is the core radius, and n is an exponent that
controls the steepness of the profile.
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From this, we derive an effective gravitational potential (details in Appendix A):

Φ(r) = − GM

(r2 + r2c )
n−1/2

, (17)

and the corresponding rotational velocity:

v(r) =

√
GMr2

(r2 + r2c )
n
. (18)

This profile:

• Grows linearly at small radii: v(r) ∝ r for r ≪ rc,

• Approaches a constant value asymptotically: v(r) → v0 as r ≫ rc,

• Matches observed galactic rotation curves without requiring a dark matter halo.

4.3 Physical Interpretation via Energy Density Gradient

Instead of thinking in terms of mass-induced acceleration, we interpret the force as arising
from a gradient in pressure-like spatial energy. Using:

P (r) ∼ ρ(r)c2, (19)

the force per unit mass becomes:

F = −1

ρ
∇P ∼ −∇Φeff(r), (20)

which recovers the velocity profile in Eq. 18.

4.4 Analogy: Salt Concentration and Ocean Currents

To build physical intuition, we draw an analogy with salinity gradients in ocean water. A
region of high salt concentration creates a pressure imbalance, inducing inward fluid flow.
Similarly, a central mass displaces background space energy, generating a spatial gradient.
This imbalance results in an effective inward force—akin to gravity—that sustains galactic
rotation.

In this picture, space behaves like a compressible medium whose energy distribution
adapts dynamically to the presence of mass and rotation. The resulting energy gradient
mimics a gravitational field, and the fluid-like response of space replaces the need for
hypothetical dark matter.

4.5 Parameterization and Curvature Suppression

Observational data reveals that different galaxies exhibit slightly different curvature pro-
files. To capture this, we define a mass-dependent exponent:

n(M) =
3− ϵ(M)

2
, with ϵ(M) = ϵ0

(
M

MMW

)α

, (21)
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where ϵ0 ≈ 0.3, α ≈ −0.336, and MMW is the reference mass of the Milky Way.
This form adjusts the curvature exponent n based on the galaxy’s luminous mass and

accounts for the observation that more massive galaxies exhibit flatter energy density
gradients and more extended rotational profiles.

Physical Origin of the Suppression: Scalar Field Interpretation
To give theoretical meaning to this empirical relation, we consider a scalar field ϕ

with Lagrangian:

L = −1

2
∂µϕ ∂

µϕ− V (ϕ),

and a potential of the form:

V (ϕ) = V0

(
1 +

r2

r2c

)−n

.

This potential mirrors the spatial profile of the normalized energy density field ϕ =
ρ(r)/ρ0. Specifically, assuming that the energy density contributes to curvature via an
effective pressure-like term ρ(r)c2, we establish the direct mapping:

V (ϕ) = ρ(r)c2 = ρ0c
2

(
1 +

r2

r2c

)−n

.

Thus, V (ϕ) represents the physical energy stored in the scalar field configuration
and encodes the same radial dependence as the space energy density distribution. This
correspondence ensures that the curvature source term in the field equation:

R = α

(
□ϕ+

dV

dϕ

)
is physically consistent with the interpretation that energy density gradients give rise

to curvature.
Varying the action yields the field equation:

□ϕ = −dV

dϕ
, (22)

which connects to the scalar curvature via:

R = α

(
□ϕ+

dV

dϕ

)
. (23)

In this context, the scalar curvature R emerges from the spatial variation and potential
structure of the scalar field. Since the potential’s shape is mass-dependent, the effective
exponent n becomes a function of galactic mass. This theoretical derivation provides a
physical origin for the empirical formula for n(M).

Interpretation of Parameters:

• ϵ0: A curvature suppression factor. Larger values imply stronger deviation from
Newtonian behavior as mass increases.

• α: A sensitivity index. Its negative value ensures that more massive galaxies expe-
rience greater suppression (shallower energy gradients).
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Thus, the rotational velocity profile reflects not only the total baryonic mass but also
the underlying scalar field dynamics that modulate gravitational curvature. This uni-
fies the energy density model with a field-theoretic foundation, reinforcing the proposed
mechanism without requiring dark matter.

4.6 Validation Against Observational Data

We validate the proposed model using real observational data from three well-studied
spiral galaxies: the Milky Way, M33, and NGC 3198. For each galaxy, we compute the
predicted rotational velocity using the energy gradient framework introduced in the pre-
vious section, incorporating only luminous baryonic mass and no dark matter component.

Galaxy
Radius
(kpc)

Mass
(M⊙)

Core
rc (kpc)

Observed
vobs

(km/s)

Model
vmodel

(km/s)

Exponent
n(M)

Milky Way 8.0 6× 1010 3.5 220 218.0 1.350

M33 7.0 5× 109 2.0 100 103.8 1.154

NGC 3198 10.0 2× 1010 4.0 150 139.0 1.283

Table 2: Comparison of observed and computed rotational velocities. The model uses
only luminous mass and no dark matter. The exponent n(M) adjusts curvature strength
based on galactic mass.

Interpretation: The rotational velocities predicted by the model show strong agree-
ment with observed data, with deviations of less than 10% in all cases. This match is
achieved solely through gradients in spatial energy density, without invoking any form
of non-baryonic dark matter. The slight discrepancies reflect model sensitivity to as-
sumed core radii and mass estimates, which vary across literature sources. Nonetheless,
the results validate the hypothesis that gravitational curvature can emerge from energy
displacement effects.

4.7 Conclusion of Zone II

Zone II presents the core theoretical innovation of this work: a physically motivated,
classical mechanism for gravity that arises from spatial energy density gradients rather
than geometric axioms or exotic matter. By modeling gravity as an emergent force
analogous to a pressure gradient in a compressible medium, the model provides a natural
explanation for the flat rotation curves observed in spiral galaxies.

The derived velocity profile, parameterized by galactic mass through the exponent
n(M), matches observational data across diverse galaxy types. This supports the ro-
bustness of the energy gradient model and its potential to replace dark matter-based
explanations in galactic dynamics.

Furthermore, this mechanism aligns with fundamental physical principles such as en-
ergy conservation, pressure gradients, and fluid analogies. It also establishes a smooth
theoretical transition to electromagnetic effects arising in outer regions, laying the ground-
work for the induced field dynamics described in Zone III.
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5 Rotationally Induced Curvature from Energy Den-

sity Gradients

In rotating gravitational systems such as spiral galaxies or black holes, asymmetries in
the energy density field can induce additional curvature effects. These effects resemble
frame-dragging and gravitomagnetic phenomena predicted by general relativity, but in
our model, they arise from the scalar energy field gradient rather than from geometric
assumptions alone.

5.1 Scalar Field Perturbation from Rotation

We begin by considering a perturbation to the scalar energy field due to rotational motion:

ϕ(r, θ) = ϕ0(r) + ϵf(θ), (24)

where ϕ0(r) is the spherically symmetric component and ϵf(θ) represents the azimuthal
perturbation induced by rotation.

The effective curvature generated by this perturbation is given by:

Reff(θ) = γ · 1

ϕ0(r)
· ∂

2ϕ

∂θ2
, (25)

where γ is a coupling constant relating curvature to the second derivative of the scalar
field.

5.2 Lagrangian Derivation of Rotational Effects

To connect this to physical dynamics, we use a Lagrangian approach that includes an
effective gravitational vector potential A⃗g:

L = −mc2 +
1

2
mv2 − 2m

c
v⃗ · A⃗g. (26)

Assuming A⃗g ∝ ω⃗ × r⃗, the resulting Euler-Lagrange equation yields a Coriolis-type
acceleration:

ma⃗ = mv⃗ × (2Ω⃗). (27)

This demonstrates that the energy field perturbation effectively induces a gravitomagnetic-
like force.

5.3 Field Structure and Maxwell Analogy

Analogous to classical electrodynamics, the induced electric-like field from rotational
asymmetry is:

E⃗eff ∼ ω⃗ × r⃗, ∇× E⃗eff ∼ −∂B⃗eff

∂t
. (28)

This allows the emergence of an effective magnetic-like field B⃗eff, completing the analogy
with frame-dragging.
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5.4 Curvature Scaling and Lense–Thirring Recovery

The frame-dragging curvature scales with angular momentum J as:

Ω⃗frame ∝
γJ

r3
. (29)

The orbit-averaged form for Lense–Thirring precession is recovered as:

Ω̇LT =
2GJ

c2a3(1− e2)3/2
. (30)

This confirms that the proposed scalar curvature gradient model aligns with general
relativistic predictions in weak-field, slow-rotation limits.

5.5 Implications

These derivations show that spatial energy gradients induced by rotation can mimic
classical frame-dragging and gravitomagnetic effects. This supports the broader view
that gravitational curvature can arise from scalar field structure, not merely geometric
postulates.

Recommended Insertion Point: This section logically follows the scalar field formal-
ism in Section 7. Thus, it is best inserted as **Section 8** or as a detailed theoretical
subsection within **Zone III** (e.g., Zone III.2).

6 Rotationally Induced Curvature and Frame-Dragging

Effects

6.1 Conceptual Basis: Rotation and Spatial Energy Gradient

In a rotating system, centrifugal and Coriolis-like effects generate an azimuthally anisotropic
energy gradient. This induces an effective curvature structure resembling the frame-
dragging behavior predicted by general relativity.

6.2 Effective Rotational Curvature from Scalar Field

We introduce a perturbation to the spatial energy scalar field:

ϕ(r, θ) = ϕ0(r) + ϵf(θ),

which leads to rotational curvature:

Reff(θ) = γ · 1

ϕ0(r)
· ∂

2ϕ

∂θ2
.

6.3 Lagrangian Derivation of Frame-Dragging

A classical Lagrangian with an effective gravitational vector potential A⃗g is:

L = −mc2 +
1

2
mv2 − 2m

c
v⃗ · A⃗g.
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Assuming A⃗g ∝ ω⃗ × r⃗, the Euler–Lagrange equation yields:

ma⃗ = mv⃗ × (2Ω⃗),

a gravitomagnetic acceleration analogous to the Coriolis force.

6.4 Field Analogy: Induced Magnetic Structure

The rotational motion induces a circulating scalar-electric field:

E⃗eff ∼ ω⃗ × r⃗, ∇× E⃗eff ∼ −∂B⃗eff

∂t
.

This implies an emergent magnetic-like structure B⃗eff that contributes to curvature through
effective stress-energy coupling.

6.5 Scaling Law for Induced Curvature

The effective curvature scales with angular momentum J as:

h(r) ∝ γ

r4
, Ω⃗frame ∝

γJ

r3
.

6.6 Recovery of Lense–Thirring Precession

Using the orbit-averaged expression:〈
1

r3

〉
=

1

a3(1− e2)3/2
,

we recover the classical precession rate:

Ω̇LT =
2GJ

c2a3(1− e2)3/2
⇒ γ =

2G

c2(1− e2)3/2
.

6.7 Agreement with Observations

The LAGEOS satellite reports:

Ωobs
LT ≈ 30.7milliarcsec/year,

matching both general relativity and the scalar energy-gradient model.

6.8 Interpretation and Implications

This confirms that curvature from rotational asymmetry in scalar energy fields can re-
produce frame-dragging phenomena. The field structure mimics gravitomagnetic effects
and offers a classical interpretation of rotational spacetime deformation, unifying scalar
energy density and inertial precession effects.
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7 Zone III: Induced Electric Field and Electromag-

netic Rotation Beyond the Galactic Disk

Beyond the luminous disk of spiral galaxies lies a vast, low-density region composed
predominantly of ionized or dusty plasma and permeated by large-scale magnetic fields.
In this outermost region—designated as Zone III—gravitational influence is no longer
the primary driver of dynamics. Instead, we propose that residual rotational motion may
be governed by electromagnetic interactions, particularly electric fields induced by the
rotation of the galactic core.

7.1 Electromagnetic Induction in the Galactic Halo

In a conductive astrophysical plasma, the rotation of a central magnetic structure induces
electric fields via Faraday’s law:

∇× E⃗ = −∂B⃗

∂t
. (31)

Assuming quasi-steady rotation and a predominantly axial magnetic field Bz(r), the
induced azimuthal electric field takes the approximate form:

Eθ(r) ≈ −rωBz(r), (32)

where ω is the angular velocity of the rotating galactic core. This induced field acts on
surrounding charged particles, generating a weak Lorentz force that can sustain azimuthal
drift motion in the halo plasma.

7.2 Velocity Profile from Lorentz Force

In such dilute outer regions, gravitational forces become subdominant, and electromag-
netic effects can have non-negligible influence on plasma dynamics. Balancing the Lorentz
force with centripetal requirements in the co-rotating frame, the resulting drift velocity
is:

v(r) =
qeff
meff

B(r) · r, (33)

where:

• v(r) is the azimuthal drift velocity at radius r,

• B(r) is the magnetic field strength,

• qeff/meff ≡ κ is the effective charge-to-mass ratio of the halo plasma, averaged over
particles such as ions, electrons, and charged dust grains.

This model represents a weak but theoretically consistent mechanism for sustaining
rotational motion in a field-dominated regime, complementing the gravitational dynamics
of Zones I and II. Critically, the magnitude of κ determines the resulting drift speed.
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7.3 Physical Plausibility of the Effective Charge-to-Mass Ratio

While free particles such as electrons and protons possess very high charge-to-mass ratios
(∼ 108−1011 C/kg), they quickly neutralize in astrophysical plasmas. More relevant
are charged dust grains, which exhibit much lower and observationally verified κ values.
Studies of interplanetary and planetary ring plasmas (e.g., Saturn, Jupiter) and spacecraft
missions such as Ulysses and Helios have reported charge-to-mass ratios ranging from
10−3 to 10 C/kg for such dust grains and aggregates [21–23].

To estimate the required κ value for a representative halo rotation velocity, we invert
the drift velocity equation:

κrequired =
v

Br
=

2× 104 m/s

(1.67× 10−10 T)(4.63× 1020 m)
≈ 2.6 C/kg. (34)

This required value lies comfortably within the observed range for dusty plasmas, affirm-
ing the physical plausibility of the proposed mechanism.

7.4 Calculation Example: Milky Way

As a concrete illustration, we compute the predicted drift velocity in the Milky Way’s
outer halo using a realistic value of κ = 2.6 C/kg, consistent with interstellar dusty
plasma conditions:

• κ = 2.6 C/kg

• B = 1.67× 10−10 T

• r = 15 kpc = 4.63× 1020 m

Substituting into the drift velocity expression:

v = κBr = (2.6)(1.67× 10−10)(4.63× 1020) ≈ 2.01× 104 m/s = 20.1 km/s. (35)

This predicted velocity aligns well with halo rotation speeds inferred from observations
of RR Lyrae stars, neutral hydrogen clouds, and K-giants, which report values in the range
of 10–30km/s [18, 24, 25]. Thus, electromagnetic drift provides a feasible explanation for
residual rotation in Zone III.

7.5 Interpretation and Observability

Direct detection of drift motion in Zone III remains challenging due to the absence of
luminous tracers. Nonetheless, several observational studies of the Milky Way’s outer
halo have inferred azimuthal motion using RR Lyrae stars, HI gas, and evolved stellar
populations, with reported rotation velocities in the 10–30km/s range and, in some cases,
retrograde motion [18,24,25].

These values match the predicted drift speeds from the electromagnetic model with
realistic κ, suggesting that weak field-induced drift may indeed contribute to halo dy-
namics, especially where gravitational influence is minimal.
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7.6 Application to Rotating Black Holes

The electromagnetic framework proposed for galactic halos also has direct implications for
rotating compact objects such as black holes. In the scalar field model, rotational motion
induces azimuthal anisotropies in the spatial energy field ϕ, particularly in the vicinity
of rapidly spinning masses. These anisotropies give rise to rotationally induced electric
fields, which in turn generate magnetic fields through Maxwell–Faraday induction.

This mechanism implies that:

• Frame dragging alters the spatial energy distribution ϕ,

• Spatial gradients in energy density induce azimuthal electric fields,

• Rotating electric fields naturally generate magnetic fields over time,

These emergent fields provide a physically consistent explanation for why rotating
black holes—such as those observed in M87 and 3C273—are frequently embedded in
magnetized environments, even without externally imposed magnetic fields or charge
currents.

While jet launching is often analyzed through general relativistic magnetohydrody-
namic (GRMHD) simulations, those models typically assume the prior existence of elec-
tromagnetic fields. The scalar field framework presented here offers a causal origin for
such fields, based on energy anisotropy and rotational dynamics.

A detailed derivation and quantitative analysis of this mechanism in the context of
black hole systems is presented in a separate study [16]:

Eunseob Kim, “Electromagnetic Energy Inflow Model for Black Hole Jet
Power: A Maxwell-Based Approach,” Zenodo (2024).
https://doi.org/10.5281/zenodo.15577867

This companion paper outlines how electric and magnetic fields arise near rotating
black holes and derives jet power directly from Maxwell’s equations, consistent with the
scalar field perspective developed in this work.

7.7 Conclusion of Zone III

Zone III completes the three-tiered structure of our model by introducing a field-dominated
regime beyond the galactic disk. Here, gravitational confinement fades, and electromag-
netic interactions—rooted in rotational induction and Lorentz dynamics—emerge as a
viable mechanism for sustaining residual motion in the halo.

The proposed mechanism is physically grounded, requiring only modest charge-to-
mass ratios that have been observed in natural dusty plasma environments. The resulting
drift velocities are consistent with measured halo rotation speeds. This electromagnetic
perspective thus complements the scalar curvature approach developed in Zones I and II,
offering a unified model of galactic dynamics that extends naturally from gravitational
to field-driven regimes—without invoking dark matter.
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8 Conclusion

In this work, we have introduced a physically motivated reinterpretation of gravity and
spacetime curvature—one rooted not purely in geometry, but in spatial energy density
gradients. By postulating that mass and rotation displace background energy, we have
shown that the resulting gradients can be captured by a scalar field ϕ, which acts as a
causal mediator for gravitational effects.

This approach yields a number of compelling insights:

• Gravitational attraction emerges from radial energy displacement, described by
regularized potentials such as the generalized Plummer form.

• Flat galactic rotation curves are reproduced without dark matter, by linking
the velocity profile to energy density gradients and introducing a mass-dependent
curvature suppression parameter.

• Frame dragging and halo rotation are modeled via azimuthally asymmetric en-
ergy flows that induce electromagnetic fields through Maxwellian dynamics, leading
to effective Lorentz forces.

Rather than contradicting general relativity, this scalar field framework extends its
explanatory power by embedding energy distribution directly into the curvature source.
General relativity remains valid at the tensor level, while our model offers an intuitive
scalar-level complement applicable in large-scale and astrophysical environments.

In sum, the energy density gradient perspective bridges gravitational theory with
electromagnetic and plasma physics, offering a unified and testable framework. It invites
further development through simulation, observational cross-checking, and theoretical
refinement—especially in regimes where geometry alone does not suffice to explain the
observed dynamics of space.
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