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Abstract

This article explores the motion of an electron
through a finite region of homogeneous magnetic field.
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1 Introduction
As I was relaxing at home, doing nothing, a thought came
into my mind. What would happen if an electron is launched
through a homogeneous magnetic field? Will it be deflected?
And if so, by how much? Where will it end up?

Let’s define the problem in more detail. An electron is
launched with some velocity v⃗ through an homogeneous mag-
netic field B⃗ spanning a region of size L× L.

We have to calculate the exit velocity and exit position
of the electron. From there we can conclude by how much it
was deflected.
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2 Analytical Solution
Let’s first make a drawing of the problem.

B⃗

v⃗

e−

L

L

We’ll make a couple assumptions. Let’s assume that the
electron is initially moving at a constant velocity:

v⃗ = v0ŷ.

Then, let’s also assume that the coordinate origin is at the
electron’s starting position to make our life easier.

The magnetic field B⃗ is homogeneous, but it’s only non-
zero inside the L×L region. Mathematically, we can describe
this as:

B⃗(x, y, z) =

{
Bẑ, if |x| < L

2
and 0 ≤ y < L,

0⃗, otherwise.
(1)

Here we’re making another assumption; we’re assuming that
the electron will never exit the way it came in.

When the electron enters the magnetic field B⃗, and as it
travels through the field, it experiences a Lorentz force. This
can be simply calculated by using the Lorentz force formula:

F⃗ = −e
(
E⃗ + v⃗ × B⃗

)
.
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As we don’t have any electric fields, this reduces to just:

F⃗ = −ev⃗ × B⃗.

Since we’re discussing the situation inside the magnetic field,
the definition for B⃗ (Eq. 1) reduces to B⃗ = Bẑ. Taking the
cross product of v⃗ with B⃗, we obtain:

F⃗ = −ev0Bx̂.

The consequence of this force, as we know from Newton’s
second law, is that the electron experiences an acceleration:

a⃗ =
F⃗

me

,

where me is the mass of the electron. Substituting in the
force, we obtain:

a⃗ = −ev0B

me

x̂.

To obtain the velocity, we integrate the components of ac-
celeration with respect to time:

vx =

∫ t

0

−ev0B

me

dt′,

from which we obtain the speed in the x direction, and in
vector form this has the form:

v⃗l = −
ev0tB

me

x̂,

where v⃗l represents the velocity caused by the Lorentz force
which we’ll call the Lorentz velocity.

The total velocity of the electron inside the magnetic field
is then given by the sum of the Lorentz velocity v⃗l and the
electrons initial velocity v⃗.
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From now on, when we use v⃗, we refer to the total velocity,
and not the initial velocity. The total velocity, as stated
earlier, is:

v⃗ = −ev0tB

me

x̂+ v0ŷ. (2)

To find the electron’s position, we again integrate, but now
the components of total velocity v⃗:

rx =

∫ t

0

−ev0tB

me

dt′

ry =

∫ t

0

v0 dt′.

Which gives us:

rx = −1

2

ev0t
2B

me

ry = v0t,

or in vector notation:

r⃗ = −1

2

ev0t
2B

me

x̂+ v0tŷ. (3)

This is where it gets tricky; we have to use our intuition
again. Depending on the initial conditions, the electron may
be traveling fast enough to not be deflected much. If that’s
the case, we can approximate the exit velocity and exit po-
sition of the electron by saying that the electron exits the
magnetic field when the y component of position is equal to
L; in other words ry = v0t = L.

Substituting this into total velocity v⃗, we can calculate
the exit velocity v⃗′:

v⃗′ = −eLB

me

x̂+ v0ŷ, (4)
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We can find the exit position by doing a mathematical trick.
Since we know that v0t = L, we can define t as:

t =
L

v0
.

If we now substitute this into position r⃗, we can calculate
the exit position r⃗′:

r⃗′ = −1

2

eL2B

v0me

x̂+ Lŷ. (5)

It is important to keep in mind that these solutions only
hold when the electron is traveling fast enough to avoid much
deflection, as can be seen in the following drawing:

B⃗

e−

r⃗′

The electron’s path is parabolic, and the exit position is at
the intersection of the path and the magnetic field boundary.

This is a good approximation, but we can do better.
The Lorentz force is a centripetal force in this situation be-
cause the acceleration and velocity vectors are perpendicu-
lar. Mathematically, this means that the magnitude of the
Lorentz force is equal to the magnitude of the centripetal
force:

ev0B =
mev

2
0

r
,

where r is the gyroradius (or orbit radius).
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The gyroradius r is then given by:

r =
mev0
eB

. (6)

The position of the electron in this circular trajectory can
then be represented as:

r⃗ = r(cos(ωt)x̂+ sin(ωt)ŷ) + r⃗c,

where ω is the angular frequency defined as:

ω =
v0
r

=
eB

me

,

and r⃗c the vector pointing to the center of the circle. In our
case r⃗c = −rx̂, so our position vector can be written as:

r⃗ = r(cos(ωt)− 1)x̂+ r sin(ωt)ŷ. (7)

We can now reason like we did before; the electron may be
traveling fast enough to not be deflected much. From this
we again get ry = L:

r sin(ωt) = L.

Rearranging, and taking the inverse sin, we obtain:

ωt = arcsin

(
L

r

)
.

Substituting this back into Eq. 7, and using the cos(arcsin(x)) =√
1− x2 identity, we obtain the exit position:

r⃗′ =
(√

r2 − L2 − r
)
x̂+ Lŷ, (8)

which should now be fully accurate instead of an approxima-
tion.
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The velocity v⃗ is obtained by differentiating Eq. 7:

v⃗ = −rω sin(ωt)x̂+ rω cos(ωt)ŷ,

but we know that rω = v0, so the velocity is just:

v⃗ = −v0 sin(ωt)x̂+ v0 cos(ωt)ŷ. (9)

To find the exit velocity v⃗′, we substitute the inverse sine
and use the identity cos(arcsin(x)) =

√
1− x2 once again,

and obtain:

v⃗′ = v0

(
−L

r
x̂+

√
1− L2

r2
ŷ

)
. (10)

Now, if the electron is not traveling fast enough, it might be
deflected and exit to the left side of the magnetic field. If
that’s the case, the y component of position never reaches
L, instead, the x component reaches −L

2
; in other words,

rx = −L
2
. From this, we can obtain the following relation:

r(cos(ωt)− 1) = −L

2
,

which can be rearranged as:

cos(ωt) = 1− L

2r
.

We take the inverse cosine:

ωt = arccos

(
1− L

2r

)
.

Now we substitute this into Eq. 7, and use the sin(arccos(x)) =√
1− x2 identity.
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By doing what we said, we obtain the exit position:

r⃗′ = −L

2
x̂+

√
rL− L2

4
ŷ. (11)

To find the exit velocity v⃗′, we substitute the inverse cosine
into Eq. 9 and use the identity sin(arccos(x)) =

√
1− x2

once again, and obtain:

v⃗′ = −v0

√
L

r
− L2

4r2
x̂+ v0

(
1− L

2r

)
ŷ. (12)

These solutions (Eq. 11 and Eq. 12) only hold when the
electron is traveling slower, which causes it to deflect to the
side, as can be seen in the following drawing:

B⃗

e−

r⃗′

There’s also a trivial solution, where the electron exits through
the top left corner. In that case, rx = −L

2
and ry = L, and

the exit position r⃗′ is just:

r⃗′ = −L

2
x̂+ Lŷ.

In that case, both solutions (Eq. 10 and Eq. 12) for the exit
velocity v⃗′ give the same result, so either one is fine to use.
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3 Numerical Solution
In the last section we analytically found three solutions for
the exit position and exit velocity. In this section, we’ll ex-
plore a numerical solution, which we can use to confirm if
our analytical solution is correct.

Algorithm 1 Electron Deflection in Magnetic Field
Input:
L← ? ▷ Size of magnetic field region (m)
B ← ? ▷ Magnetic field strength (T)
v0 ← ? ▷ Initial electron speed (m/s)
∆t← ? ▷ Time step (s)
e← 1.602 · 10−19 ▷ Electron charge (C)
me ← 9.109 · 10−31 ▷ Electron mass (kg)
Initialize:
pos← [0, 0, 0]
vel← [0, v0, 0]
B← [0, 0, B]
trajectory← [ ]
while True do

trajectory.append(pos)
if |pos[0]| ≥ L/2 or pos[1] ≥ L then

break
end if
F← −e · (vel×B) ▷ Lorentz force
a← F/me ▷ Acceleration
vel← vel+ a ·∆t ▷ Update velocity
pos← pos+ vel ·∆t ▷ Update position

end while
Output: pos, vel, trajectory
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The algorithm presented (Alg. 1) employs a numerical method
known as Euler integration. This method provides a linear
approximation of a continuous system, with its accuracy in-
creasing as the time step ∆t decreases. Implementation of
this algorithm can be done in any programming language,
the easiest and widely used being Python.

We integrate by first calculating the Lorentz force F⃗ and
the acceleration a⃗ caused by it:

F⃗ = −ev⃗ × B⃗ =⇒ a⃗ =
F⃗

me

.

Then we treat the acceleration as linear that for a small time
step ∆t so that the equations of motion are just:

v⃗(t+∆t) = v⃗(t) + a⃗∆t

r⃗(t+∆t) = r⃗(t) + v⃗(t+∆t)∆t.

We keep doing this until we exit the magnetic field region.
The exit condition is determined by Eq. 1, and in the algo-
rithm is just simply a check for whether the coordinates of
the electron are outside the L× L region.

Let’s plug in some values for the four input parameters,
L,B, v0 and ∆t. To keep it simple, let’s take the following
parameters for the magnetic field region and the time step:

Parameter Symbol Value
Magnetic field strength B 10−3 T

Region size L 5 · 10−2 m
Time step ∆t 10−11 s

Table 1: Parameters used

so that we can play around with the initial speed.
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v0 (m/s) r⃗n (m) r⃗a (m) ϵx (%) ϵy (%)
Fast electron

108
(
−2.33 · 10−3

5.09 · 10−2

) (
−2.20 · 10−3

5 · 10−2

)
5.9% 1.8%

5 · 107
(
−4.52 · 10−3

5.02 · 10−2

) (
−4.43 · 10−3

5 · 10−2

)
2% 0.4%

2 · 107
(
−1.16 · 10−2

5 · 10−2

) (
−1.16 · 10−2

5 · 10−2

)
0% 0%

1.2 · 107
(
−2.19 · 10−2

5 · 10−2

) (
−2.18 · 10−2

5 · 10−2

)
0.5% 0%

Average errors: 2.8% 1.1%
Slow electron

107
(
−2.51 · 10−2

4.71 · 10−2

) (
−2.50 · 10−2

4.71 · 10−2

)
0.4% 0%

5 · 106
(
−2.50 · 10−2

2.82 · 10−2

) (
−2.50 · 10−2

2.82 · 10−2

)
0.0% 0%

2.5 · 106
(
−2.50 · 10−2

9.27 · 10−3

) (
−2.50 · 10−2

9.26 · 10−3

)
0.0% 0.1%

2.3 · 106
(
−2.50 · 10−2

5.42 · 10−3

) (
−2.50 · 10−2

5.38 · 10−3

)
0.0% 0.7%

Average errors: 0.4% 0.4%

Table 2: Results

We can see that our numerical results (r⃗n) slightly deviate
from the analytical solutions (r⃗a) due to the Euler method’s
linear approximation. We can reduce these errors by doing
one of the following:

• Decrease the time step ∆t (e.g., to 10−12 s),

• Use a higher-order method.
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However, the errors are small enough, and if we plot the elec-
tron trajectory and the numerical and analytical exit posi-
tions, we can see that they’re not that far off:
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4 Summary

For a homogeneous magnetic field B⃗ spanning a region of
size L× L, mathematically defined as:

B⃗(x, y, z) =

Bẑ, if |x| < L

2
and 0 ≤ y < L,

0⃗, otherwise,

an electron entering at the origin with velocity v⃗0 = v0ŷ will
follow a circular trajectory of radius

r =
mev0
eB

.

Depending on its speed, the electron may exit through the
top or the left side of the field region. The corresponding
exit positions and velocities are given below.

Top Exit (ry = L) If the electron exits through the top
edge:

r⃗′ =
(√

r2 − L2 − r
)
x̂+ Lŷ,

v⃗′ = −v0
L

r
x̂+ v0

√
1− L2

r2
ŷ.

Side Exit (rx = −L
2
) If the electron exits through the left

side:

r⃗′ = −L

2
x̂+

√
rL− L2

4
ŷ,

v⃗′ = −v0

√
L

r
− L2

4r2
x̂+ v0

(
1− L

2r

)
ŷ.
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