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Abstract 

This paper introduces a new method for generating polynomials based on recursive difference 
analysis, termed the Recursive Polynomial Machine (RPM). RPM efficiently derives the exact closed-

form polynomial by recursively analyzing finite differences until stabilization, ensuring minimal 

degree. RPM halts when the sequence reaches a steady difference, ensuring minimal polynomial 
degree. 

1 Introduction 

Given a sequence of values 𝐹(1), 𝐹(2), 𝐹(3), …, we propose a method to construct a polynomial 𝑃(𝑛) 
that generates the sequence. The key observation is that a sequence can be represented by a 
polynomial whose differences, taken recursively, eventually stabilize at a constant value. 

2 General Formula for RPM 

For a sequence that follows a polynomial pattern, the general form for the Recursive Polynomial 
Machine is: 

𝐹(𝑛) = 𝐹(1) + (𝑛 − 1)𝑎 +
(𝑛 − 1)(𝑛 − 2)

2!
𝑏 +

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑐 +⋯ 

Where: 

 𝐹(1) is the first term of the sequence, 

 𝑎 is the first-order difference, calculated as the difference between consecutive terms, i.e. 𝑎 =
Δ1 = 𝐹(2) − 𝐹(1), 

 𝑏 is the second-order difference, calculated as the difference between consecutive first-order 

differences, i.e. 𝑏 = Δ1
2 = Δ2 − Δ1, 

 𝑐 is the third-order difference, and so on for higher-order differences. 

The process of adding terms continues until a steady difference is found. When the difference becomes 
constant (i.e., does not change further), we stop adding higher-order terms, as this indicates that the 

polynomial degree has been reached. This ensures that we find the minimal degree polynomial 
necessary to represent the sequence. 

This general approach can be extended to sequences of any degree, with the order of the differences 
increasing accordingly. 

3 Recursive Polynomial Summation Formula 

An important recursive property of the RPM method emerges when we view the construction of the 
polynomial values using summations over lower-degree difference polynomials. 



Let 𝑓(𝑛) be a polynomial of degree 𝑛. Then, 

𝑓(𝑛) = 𝑓(1) +∑𝑃𝑛−1

𝑛−1

𝑘=1

(𝑘) 

where 𝑃𝑛−1(𝑘) is the polynomial derived from the (𝑛 − 1)th difference layer, evaluated at 𝑘. 

Proof. Using the forward difference operator Δ, we define: 

Δ𝑓(𝑘) = 𝑓(𝑘 + 1) − 𝑓(𝑘) 

Successive applications yield: 

Δ2𝑓(𝑘) = Δ(Δ𝑓(𝑘)) = 𝑓(𝑘 + 2) − 2𝑓(𝑘 + 1) + 𝑓(𝑘) 

and so on. 

For a polynomial of degree 𝑛, the 𝑛th difference Δ𝑛𝑓(𝑘) is constant. Each difference reduces the 
degree of the polynomial by one. 

To compute 𝑓(𝑛) from 𝑓(1), we incrementally add the first differences: 

𝑓(𝑛) = 𝑓(1) +∑ Δ

𝑛−1

𝑘=1

𝑓(𝑘) 

Since Δ𝑓(𝑘) represents a polynomial of degree 𝑛 − 1, we denote it as 𝑃𝑛−1(𝑘). Substituting, we get: 

𝑓(𝑛) = 𝑓(1) +∑𝑃𝑛−1

𝑛−1

𝑘=1

(𝑘) 

 ◻ 

This identity highlights the recursive structure of the RPM method. It allows reconstruction of the 𝑛th 

term of a degree-𝑛 polynomial by summing evaluations of a degree-𝑛 − 1 polynomial derived from 
the finite difference table. This formulation not only demonstrates the symbolic nature of the RPM 
approach but also provides a pathway for recursive polynomial generation. 

4 Summation Formula Derived from RPM 

Given a polynomial sequence generated by the Recursive Polynomial Machine method, we can derive 

the summation formula for the first 𝑛 terms as follows: 

The sum 𝑆(𝑛) of the first 𝑛 terms of a polynomial sequence is: 

𝑆(𝑛) = (𝑛 − 1)𝐹(1) +
(𝑛 − 1)(𝑛 − 2)

2
𝑎 +

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

6
𝑑 +⋯ 

where: 

 𝐹(1) is the first term of the sequence 

 𝑎 = Δ1 = 𝐹(2) − 𝐹(1) is the first-order difference 



 𝑑 = Δ1
2 = Δ2 − Δ1 is the second-order difference 

 Subsequent terms involve higher-order differences until stabilization 

Proof. The formula follows from: 

1. The RPM expansion 𝐹(𝑘) = 𝐹(1) + (𝑘 − 1)𝑎 +
(𝑘−1)(𝑘−2)

2
𝑑 +⋯ 

2. Summing from 𝑘 = 1 to 𝑛: ∑ 𝐹𝑛
𝑘=1 (𝑘) 

3. Applying combinatorial identities for falling factorials 

4. Terminating when differences become constant 

 ◻ 

For 𝐹(𝑘) = 𝑘2 with: 

 𝐹(1) = 1 

 𝑎 = 4 − 1 = 3 

 𝑑 = (9 − 4) − (4 − 1) = 2 

The summation becomes: 

𝑆(𝑛) = (𝑛 − 1)(1) +
(𝑛 − 1)(𝑛 − 2)

2
(3) +

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

6
(2)

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
 (after simplification)

 

Key properties of the RPM summation: 

 Exact for polynomial sequences 

 Self-terminating when differences stabilize 

 Coefficients are binomial coefficients with falling factorials 

 Generalizes standard summation formulas 

 

5.Uses On some Function:-  

A. RPM on a Quadratic Function with Non-Integer Inputs 

Let the function be: 

𝐹(𝑥) = 𝑥2 + 𝑥 

We evaluate the function at non-integer values to generate a sequence: 



𝐹(0.3) = 0.32 + 0.3 = 0.39, 

𝐹(1.3) = 1.32 + 1.3 = 2.99, 

𝐹(2.3) = 2.32 + 2.3 = 7.59, 

𝐹(3.3) = 3.32 + 3.3 = 14.19. 

So, the sequence is: 

0.39,  2.99,  7.59,  14.19 

Step 1: First-Order Differences 

Δ1 = 2.99 − 0.39 = 2.6, 

Δ2 = 7.59 − 2.99 = 4.6, 

Δ3 = 14.19 − 7.59 = 6.6. 

Step 2: Second-Order Differences 

Δ1
2 = 4.6 − 2.6 = 2, 

Δ2
2 = 6.6 − 4.6 = 2. 

Since the second-order differences are constant, the sequence follows a quadratic pattern. 

Step 3: Applying RPM 

Using the RPM formula: 

𝐹(𝑛) = 𝐹(0.3) + (𝑛 − 0.3) ⋅ 𝑎 +
(𝑛 − 0.3)(𝑛 − 1.3)

2
⋅ 𝑑 

Where: 

𝐹(0.3) = 0.39, 𝑎 = 2.6, 𝑑 = 2 

Substitute and expand: 

𝐹(𝑛) = 0.39 + 2.6(𝑛 − 0.3) + (𝑛 − 0.3)(𝑛 − 1.3) 

Step 4: Simplification 

Expand the terms: 

2.6(𝑛 − 0.3) = 2.6𝑛 − 0.78 

(𝑛 − 0.3)(𝑛 − 1.3) = 𝑛2 − 1.6𝑛 + 0.39 

Now substitute: 

𝐹(𝑛) = 0.39 + 2.6𝑛 − 0.78 + 𝑛2 − 1.6𝑛 + 0.39 

Combine like terms: 

𝐹(𝑛) = 𝑛2 + (2.6𝑛 − 1.6𝑛) + (0.39 − 0.78 + 0.39) 



𝐹(𝑛) = 𝑛2 + 𝑛 

Conclusion 

Using RPM on the sequence generated by evaluating 𝑥2 + 𝑥 at 𝑥 = 0.3,1.3,2.3,3.3, we successfully 
recovered the original polynomial: 

𝐹(𝑥) = 𝑥2 + 𝑥 

This demonstrates that RPM works not only for integer-domain sequences, but also for sequences 

where the domain increases linearly by a non-integer step. The Numerical Stability Analysis is 
included in section no 6. 

B. Cubic Sequence Example 

Consider the cubic sequence: 

𝐹(1) = 1, 𝐹(2) = 8, 𝐹(3) = 27, 𝐹(4) = 64. 

First, calculate the first-order differences: 

Δ1 = 𝐹(2) − 𝐹(1) = 8 − 1 = 7, 

Δ2 = 𝐹(3) − 𝐹(2) = 27 − 8 = 19, 

Δ3 = 𝐹(4) − 𝐹(3) = 64 − 27 = 37. 

Next, calculate the second-order differences: 

Δ1
2 = Δ2 − Δ1 = 19 − 7 = 12, 

Δ2
2 = Δ3 − Δ2 = 37 − 19 = 18. 

Finally, calculate the third-order difference: 

Δ1
3 = Δ2

2 − Δ1
2 = 18 − 12 = 6. 

Since the third-order differences are constant, we conclude that the sequence is cubic. 

Now, using the RPM formula for cubic sequences, we have: 

𝐹(𝑛) = 𝐹(1) + (𝑛 − 1) ⋅ 𝑎 +
(𝑛 − 1)(𝑛 − 2)

2
⋅ 𝑑 +

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

6
⋅ 𝑒. 

Where: - 𝐹(1) = 1, - 𝑎 = 7, - 𝑑 = 12, - 𝑒 = 6. 

Thus, the polynomial becomes: 

𝐹(𝑛) = 1 + (𝑛 − 1) ⋅ 7 +
(𝑛 − 1)(𝑛 − 2)

2
⋅ 12 +

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

6
⋅ 6. 

Simplifying: 

𝐹(𝑛) = 1 + 7(𝑛 − 1) + 6(𝑛 − 1)(𝑛 − 2) + (𝑛 − 1)(𝑛 − 2)(𝑛 − 3). 

We now verify the polynomial with the given values: - For 𝑛 = 1: 



𝐹(1) = 1 + 7(1 − 1) + 6(1 − 1)(1 − 2) + (1 − 1)(1 − 2)(1 − 3) = 1. 

- For 𝑛 = 2: 

𝐹(2) = 1 + 7(2 − 1) + 6(2 − 1)(2 − 2) + (2 − 1)(2 − 2)(2 − 3) = 8. 

- For 𝑛 = 3: 

𝐹(3) = 1 + 7(3 − 1) + 6(3 − 1)(3 − 2) + (3 − 1)(3 − 2)(3 − 3) = 27. 

- For 𝑛 = 4: 

𝐹(4) = 1 + 7(4 − 1) + 6(4 − 1)(4 − 2) + (4 − 1)(4 − 2)(4 − 3) = 64. 

Thus, the polynomial correctly reproduces the sequence. 

C. Fibonacci Sequence Approximation Using RPM 

The Fibonacci sequence is defined recursively as: 

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2), with 𝐹(0) = 0, 𝐹(1) = 1. 

Although this sequence is not inherently polynomial, we can use the Recursive Polynomial Machine 
(RPM) to fit a polynomial to a finite number of Fibonacci values. This gives an exact match for the 
selected values, though the pattern does not extend beyond the chosen domain. 

Using the First 6 Fibonacci Numbers 

We use: 

𝐹(0) = 0, 𝐹(1) = 1, 𝐹(2) = 1, 𝐹(3) = 2, 𝐹(4) = 3, 𝐹(5) = 5. 

Step 1: Construct the Difference Table 

𝒏 𝑭(𝒏) 𝚫𝟏 𝚫𝟐 𝚫𝟑 𝚫𝟒 𝚫𝟓 

0 0 1 -1 2 -3 5 

1 1 0 1 -1 2  

2 1 1 0 1   

3 2 1 1    

4 3 2     

5 5      

Step 2: Apply the RPM Formula 

The general RPM form for a degree-5 polynomial is: 

𝐹(𝑛) = 𝐹(0) + 𝑛Δ1(0) +
𝑛(𝑛 − 1)

2
Δ2(0) +

𝑛(𝑛 − 1)(𝑛 − 2)

6
Δ3(0)

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

24
Δ4(0) +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

120
Δ5(0)

 

Where: 

 𝐹(0) = 0 



 Δ1(0) = 1 

 Δ2(0) = −1 

 Δ3(0) = 2 

 Δ4(0) = −3 

 Δ5(0) = 5 

Substituting the values: 

𝐹(𝑛) = 0 + 𝑛 ⋅ 1 +
𝑛(𝑛 − 1)

2
⋅ (−1) +

𝑛(𝑛 − 1)(𝑛 − 2)

6
⋅ 2

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

24
⋅ (−3) +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

120
⋅ 5

 

Simplifying: 

𝐹(𝑛) = 𝑛 −
𝑛(𝑛 − 1)

2
+
𝑛(𝑛 − 1)(𝑛 − 2)

3

−
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

8
+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

24

 

Step 3: Verify Values 

 For 𝑛 = 0: 

𝐹(0) = 0 − 0 + 0 − 0 + 0 = 0 

 For 𝑛 = 1: 

𝐹(1) = 1 − 0 + 0 − 0 + 0 = 1 

 For 𝑛 = 2: 

𝐹(2) = 2 − 1 + 0 − 0 + 0 = 1 

 For 𝑛 = 3: 

𝐹(3) = 3 − 3 + 2 − 0 + 0 = 2 

 For 𝑛 = 4: 

𝐹(4) = 4 − 6 + 8 − 3 + 0 = 3 

 

 For 𝑛 = 5: 

𝐹(5) = 5 − 10 + 20 − 15 + 5 = 5 

Step 4: Final Polynomial Form 

The expanded form is: 



𝐹(𝑛) =
1

24
𝑛5 −

1

4
𝑛4 +

23

24
𝑛3 −

3

4
𝑛2 +

13

12
𝑛 

Remark 

This polynomial exactly matches 𝐹(0) through 𝐹(5) but diverges for 𝑛 ≥ 6, demonstrating that RPM 

provides a local polynomial approximation for non-polynomial sequences. The approximation quality 
degrades rapidly outside the fitted range. 

 

6.Numerical Stability Analysis 

When applying the Recursive Polynomial Machine (RPM) to sequences generated from 

floating-point inputs (e.g., x=0.3,1.3,2.3, …), it is important to consider the effects of 
numerical precision and stability, particularly when using small or irrational step sizes. 

Precision and Floating-Point Errors:- 

In floating-point arithmetic, operations such as subtraction can introduce precision loss—
especially when the operands are nearly equal. Within RPM, this may occur during: 

 Computation of higher-order differences, 

 Expansion and simplification of expressions involving decimal inputs, and 

 Subtraction steps within difference tables. 

 

Nevertheless, RPM maintains numerical stability in most practical scenarios due to the 
following: 

 The difference table only amplifies rounding errors if the input sequence contains substantial 
noise or poorly conditioned values. 

 For standard step sizes (e.g., 0.1, 0.3), double-precision floating-point arithmetic (IEEE 754) 
typically results in negligible error—on the order of O(10−15). 

 When symbolic computation or extended precision is used, the final polynomial (e.g.,𝐹(𝑥) =
𝑥2 + 𝑥,) is recovered exactly, even from decimal-valued sequences. 

 

Example Revisited 

In the previous example with: 

𝐹(𝑥) = 𝑥2 + 𝑥, 𝑥 = 0.3,1.3,2.3,3.3, 

The RPM correctly reconstructed: 

𝐹(𝑛) = 𝑛2 + 𝑛 



Despite working with decimal input points. This illustrates that the method is numerically stable for 
well-behaved polynomial sequences. 

 

 

7.Comparison with Newton’s Method 

The Recursive Polynomial Machine (RPM) offers an alternative to Newton’s method for polynomial 
construction. Below is a comparison of the two approaches: 

 Degree of Polynomial: 

o Newton’s Method: Generates a polynomial of degree 𝑛 − 1 for 𝑛 data points, often 

resulting in high-degree polynomials even for small datasets. This can lead to 
overfitting. 

o RPM: Stops adding higher-order terms once a steady difference is found, ensuring the 
minimal degree polynomial necessary to represent the sequence. 

 Efficiency: 

o Newton’s Method: Requires calculation of divided differences for all data points, 
which can be computationally expensive for large datasets. 

o RPM: Uses a simpler difference calculation and halts when steady differences are 
found, reducing unnecessary computations and improving efficiency. 

 Flexibility: 

o Newton’s Method: Constructs a polynomial incrementally based on all data points, 
but doesn’t provide insight into the minimal degree of the polynomial. 

o RPM: Halts once steady differences are found, adapting to the sequence’s complexity 
and ensuring a minimal-degree polynomial. 

 Overfitting: 

o Newton’s Method: May lead to overfitting, especially for small datasets or when data 
points are spread out. The high-degree polynomial may not generalize well. 

o RPM: Prevents overfitting by constructing a polynomial of minimal degree that fits 
the sequence. 

 Application Scope: 

o Newton’s Method: Commonly used for interpolation, particularly when an exact fit 
for all data points is required. 

o RPM: A general method for generating polynomials from sequences, with a focus on 
minimizing the polynomial degree while fitting the data. 

 Ease of Interpretation: 



o Newton’s Method: The polynomial may become complex and difficult to interpret 
when the degree increases, especially with many data points. 

o RPM: The recursive structure of RPM makes it more interpretable, as each term 
corresponds to a specific difference in the sequence. 

Comparison Conclusion: While both methods aim to construct a polynomial from data points, RPM 

offers the advantage of generating a minimal-degree polynomial that fits the sequence efficiently and 
avoids overfitting. It is a more flexible and interpretable method compared to Newton’s method, 
especially for sequences where a simple polynomial suffices. 

 

 

8.Recommendations 

To ensure maximum numerical accuracy in practical implementations of RPM: 

 Use symbolic computation or high-precision libraries where possible. 

 Avoid inputs with extremely small step differences unless higher precision is used. 

 Round difference values to a tolerable threshold (e.g., 10−10) when checking for steady 

differences. 

9.Conclusion 

RPM remains numerically stable for typical applications, even with non-integer domains. Minor 

floating-point inaccuracies may appear, but the overall symbolic structure of the polynomial can still 
be recovered accurately. 
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