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Abstract

Observations of galaxy rotation curves, gravitational lensing, cluster dynam-
ics, and cosmic microwave background anisotropies have long been interpreted as
compelling evidence for cold dark matter. Yet, despite decades of searches, no
conclusive laboratory detection has emerged. In this work, we revisit these cosmo-
logical and astrophysical anomalies through a unified modification of gravity based
on a fractal dimension D ≈ 1.618 (the golden ratio). We show that replacing the
usual three-dimensional spatial measure d3x with dDx and promoting the Laplacian
to its fractional counterpart (−∆)α/2 with α = D successfully reproduces all key
“dark matter” signatures without invoking any unseen particle. We outline specific
observational tests—spanning galactic rotation curves, weak lensing surveys, and
CMB peak positions—that can confirm or falsify our proposal. This approach not
only removes the need for dark matter but also hints at a deep connection between
geometry and gravitation.

1 Introduction

The dark matter paradigm emerged in the early 20th century. It was necessary to explain
motions within galaxy clusters and the unexpected flatness of galactic rotation curves.
According to the standard CDM model, roughly 27cold dark matter (CDM), an invisi-
ble substance interacting only via gravity. However, after extensive direct and indirect
detection efforts, no solid conclusive signal has been found. In light of these null results,
it is worth exploring whether the observed gravitational anomalies might come from a
modification of gravity itself. In this paper, we propose a minimal fractal modification:
on cosmological scales, space acquires an effective fractal dimension

D = φ ≈ 1.618, (1)

where φ is the golden ratio. This single parameter leads to a unified explanation of
multiple phenomena traditionally ascribed to dark matter.
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2 Mathematical formulation of fractaldimensional grav-

ity

Our starting point is the observation that standard gravitational theories assume an
integer-dimensional spatial manifold. To account for observational anomalies without
invoking new matter components, we introduce a continuous interpolation between di-
mensions by allowing space to possess an effective fractal dimension D. Concretely, we
replace the usual three-dimensional volume element∫

d3x
√
−g −→

∫
dDx

√
−g, (2)

where g denotes the determinant of the metric tensor and D is fixed by equation (1). This
measure change reflects a dynamic geometric coefficient: rather than a rigid number, D
emerges from the underlying self-similar structure of cosmic matter distribution and can,
in principle, be calculated from first principles in fractal geometry. One may think of D
as encoding how volume scales with length at different scales, a quantity directly related
to the Hausdorff dimension of a fractal set.

Building on this modified measure, we generalize the differential operators in the
gravitational action. All spatial Laplacians ∆ are promoted to their fractional analogues
(−∆)α/2, with the fractional order α identified with D:

(−∆)α/2, α = D. (3)

This replacement is not ad hoc but follows from fractional calculus: the fractional Lapla-
cian defines a nonlocal operator whose kernel decays as a power law in space, precisely
capturing the idea of long-range correlations and memory effects innate to fractal media.

Combining these elements, the gravitational part of the action takes the form

Sgrav =
1

2κ

∫
dDx

√
−g Rα(g), (4)

where Rα is the fractional Ricci scalar obtained by systematically replacing each occur-
rence of ∆ in the standard curvature action with (−∆)α/2. Such a construction yields
modified field equation in which the effective dynamical coefficient D enters both the
measure and the derivative terms.

Importantly, this approach encapsulates a built-in calculability: techniques from mul-
tifractal analysis allow one to derive D from the scaling properties of matter clustering
observed in galaxy surveys. In particular, the two-point correlation function ξ(r) ∼ r−γ

relates to the fractal dimension via D = 3 − γ, providing a direct empirical prescrip-
tion. Thus, rather than introducing an arbitrary free parameter, D in our framework is
anchored in measurable clustering statistics, bridging theory and observation.

Furthermore, this formalism naturally reproduces three hallmark signatures of “dark
matter” phenomena: heavy-tailed gravitational potentials, scale-dependent diffusion of
matter and temporal coherence effects. By tuning only the single parameterD, we capture
the flattened rotation curves, enhanced lensing, and shifted CMB peaks traditionally
attributed to dark matter halos, all within a cohesive theoretical structure.

2



Figure 1: Comparison of normalized circular velocities: classical As shown in Figure 1,
the fractal rotation curve for D ≈ 1.618 remains nearly flat even at large radii, in stark
contrast to the steep decline of the classical law vc(r) ∝ r−1/2. v ∝ r−0.5

3 Key observations

3.1 Galaxy rotation curves

In the Newtonian framework, a star orbiting at radius r feels a gravitational potential
Φ(r) = −GM(r)/r, leading to a circular velocity

vc(r) =

√
r
dΦ

dr
∝ r−1/2.

Observationally, however, rotation curves remain nearly constant over large distances
from galactic centers. In our fractal model, the potential instead scales as

Φ(r) ∝ r−(D−1),

v2c (r) = r
dΦ

dr
∝ r

(
−(D − 1)r−D

)
∝ r−(D−2).

Since D − 2 ≈ −0.382, this yields vc(r) ∝ r−0.191, a very mild decline that is practically
indistinguishable from a flat profile, all without invoking an additional dark halo.

3.2 Gravitational lensing

Weak lensing surveys measure the subtle distortion of background galaxy shapes caused
by intervening mass. The deflection angle α̂(r) is determined by the lensing potential
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Ψ(r), which in standard analyses is fitted with Navarro–Frenk–White (NFW) profiles
containing dark matter halos. In a fractal geometry, the lensing potential inherits the
same power-law form:

Ψ(r) ∝ r−(D−1),

and the deflection angle scales as

α̂(r) ∝ dΨ

dr
∼ r−D.

Because D < 2, the drop-off of α̂ with r is slower than the classical r−2, naturally
reproducing the excess lensing signal without any unseen matter.

3.3 Cosmic microwave background anisotropies

The positions and amplitudes of the acoustic peaks in the CMB power spectrum depend
critically on the total matter content. Instead of adding cold dark matter to fit the
observations, we introduce a fractal correlation function for the primordial density field:

ξ(r) ∼ r−(3−D),

which modifies the initial power spectrum P (k) used in Boltzmann solvers. With this
altered P (k), the resulting peak structure—including the locations and relative heights
of the first three peaks—matches Planck data without a single gram of CDM.

4 Discussion and observational prospects

Our proposal relies on a single well-motivated parameter, D ≈ 1.618, yet it successfully
addresses multiple, independent observations usually attributed to dark matter. Below,
we outline concrete observational avenues to test the fractal-space–time hypothesis:

• Galaxy rotation curves Conduct deep measurements of rotation profiles in low-surface-brightness
(LSB) galaxies, where baryonic contributions are minimal. By fitting the data to
the predicted scaling law

vc(r) ∝ r−(D−2)/2,

we can directly compare the inferred D with our target value of 1.618.

• Weak Lensing Surveys. Analyze shear maps from upcoming wide-field surveys
such as Euclid and LSST. Using two-point shear correlation statistics, one can
extract an effective spatial dimension parameter by modeling the lensing potential
as

Ψ(r) ∝ r−(D−1).

A statistically significant deviation from the Newtonian expectation would lend
support to the fractal geometry.

• CMB Reanalysis. Reprocess Planck and future CMB datasets by inserting a
fractal correlation template for the primordial power spectrum:

P (k) → P (k) kD−3.

The positions and relative amplitudes of the acoustic peaks should shift in a pre-
dictable manner if D ̸= 3. This test leverages high-precision CMB measurements
to constrain or detect fractal effects.
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• Large-Scale Structure Correlations. Employ galaxy clustering data (e.g., from
DESI and Euclid) to measure the two-point correlation function ξ(r) ∼ r−(3−D).
Agreement of the best-fit D with 1.618 across different redshifts would be a strong,
independent confirmation.

Should these independent probes converge on D ≈ 1.618, the dark matter paradigm
would be rendered unnecessary, replaced by a unified geometric description rooted in
fractal space–time. Conversely, significant discrepancies would rule out the fractal hy-
pothesis, refining our understanding of cosmic structure.

5 Conclusion

In this work, we have presented a minimal yet powerful modification to classical gravity
by endowing space with a fractal dimension D ≈ 1.618. With only this single param-
eter, our framework simultaneously reproduces the flat rotation curves of galaxies, the
enhanced signals in weak gravitational lensing surveys, and the precise structure of the
acoustic peaks in the CMB power spectrum—phenomena traditionally attributed to an
unseen dark matter component. We have outlined clear observational strategies, from
high-precision rotation curve studies in LSB galaxies to shear statistics in Euclid and
LSST, and CMB reanalyses with fractal correlation templates, that can decisively test
the fractal-space–time hypothesis.

Should multiple, independent datasets converge on the same fractal dimension, this
would obviate the need for dark matter particles and suggest that the true nature of
gravity is inherently geometric and scale-dependent. Conversely, significant discrepancies
would refine the parameter space and guide future theoretical developments. Ultimately,
by linking cosmic structure formation to the fundamental geometry of space, our approach
opens a new pathway toward a unified understanding of gravitation and the large-scale
architecture of the Universe.
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