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Abstract

Harnessing the superior computational potential of quantum computing, an

Adaptive Quantum Circuit for Dempster’s Rule of Combination (AQC-DRC)

is proposed to facilitate quantum-level belief and plausibility decision-making

based on quantum evidence theory (QET). The AQC-DRC achieves a deter-

ministic realization of DRC, guaranteeing precise fusion outcomes without

information loss, while exponentially reducing the computational complex-

ity of evidence combination and markedly improving fusion efficiency. It is

founded that the quantum basic belief assignment (QBBA) in QET can be

naturally used to express the quantum amplitude encoding. In addition, the

quantum basic probability (QBP) in QET, which forms quantum basic prob-

ability assignment (QBPA), can be naturally used to express the quantum

measurement outcomes for quantum belief level decision-making. Further-

more, the quantum plausibility (QPl) function in QET also can be naturally

used to express the quantum measurement outcomes for quantum plausibility

level decision-making. These findings open up new perspectives and enhance
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the physical interpretation of quantum measurement outcomes.

Keywords: Quantum evidence theory, Adaptive quantum evidence
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1. Introduction

As an effective approach for uncertainty reasoning, Dempster–Shafer evi-

dence theory (DSET) [1, 2] offers a powerful framework for representing and

managing uncertainty through the basic belief assignment (BBA) function.

The Dempster’s rule of combination (DRC), a core component of DSET,

possesses several desirable properties that make it particularly suitable for

multisource information fusion. (1) Commutativity: ensures that the fusion

result remains invariant regardless of the order in which evidence is com-

bined; (2) Associativity: provides the system with flexible capabilities for

structured and sequential fusion; and (3) Consistency: guarantees that, in

the absence of new valid information, the outcome of the evidence combi-

nation remains unchanged. These advantages support flexible integration of

multisource information, enable recursive and incremental computation, and

facilitate the scalability of reasoning systems. However, the computational

complexity of DRC increases exponentially with the number of elements in

the frame of discernment.

The rapid development of quantum computing offers a new research per-

spective for addressing the computational complexity challenges in Demp-

2



ster’s rule of combination of Dempster–Shafer evidence theory [1, 2]. Lever-

aging the principles of quantum parallelism and quantum entanglement,

quantum computing provides the potential to significantly accelerate the

processing of large-scale uncertain information. In particular, it opens up

new possibilities for overcoming the exponential computation complexity is-

sues inherent in classical evidence reasoning frameworks based on DRC, thus

providing an innovative approach to efficient information fusion and decision-

making.

Harnessing the superior computational potential of quantum computing,

an Adaptive Quantum Circuit for Dempster’s Rule of Combination (AQC-

DRC) is proposed to facilitate quantum-level belief and plausibility decision-

making based on quantum evidence theory (QET). The AQC-DRC achieves

a deterministic realization of DRC, guaranteeing precise fusion outcomes

without information loss, while exponentially reducing the computational

complexity of evidence combination and markedly improving fusion efficiency.

In this study, it is founded that the quantum basic belief assignment

(QBBA) in QET [3, 4] can be naturally used to express the quantum ampli-

tude encoding. In addition, the quantum basic probability (QBP) in QET,

which forms quantum basic probability assignment (QBPA), can be naturally

used to express the quantum measurement outcomes for quantum belief level

decision-making. Furthermore, the quantum plausibility (QPl) function in

QET also can be naturally used to express the quantum measurement out-

comes for quantum plausibility level decision-making. These findings open

up new perspectives and enhance the physical interpretation of quantum

measurement outcomes.
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2. Preliminaries

In this section, we review some basic concepts of Dempster-Shafer evi-

dence theory (DSET) [1, 2] and quantum evidence theory (QET) [3, 4].

2.1. DSET: Dempster–Shafer evidence theory [1, 2]

Definition 1 (Frame of discernment). Let Ω be a frame of discernment

(FOD), consisting of a set of mutually exclusive and collectively nonempty

events:

Ω = {h1, h2, ..., hi, ..., hn}. (1)

Let 2Ω be the power set of Ω, denoted as:

2Ω = {∅, {h1}, {h2}, ..., {hn}, {h1, h2}, ..., {h1, h2, ..., hi}, ...,Ω}, (2)

where ∅ is an empty set.

Definition 2 (Hypothesis or proposition). Hj is defined as a hypothesis

or proposition when Hj ⊆ Ω.

Definition 3 (Basic belief assignment). In FOD Ω, a basic belief assign-

ment (BBA) m, also called a mass function, is defined as a mapping:

m : 2Ω → [0, 1], (3)

satisfying

m(∅) = 0 and
∑
Hj⊆Ω

m(Hj) = 1. (4)

Definition 4 (Focal element). Let m be a BBA. ∀Hj ⊆ Ω, if m(Hj) > 0,

Hj is called a focal element in DSET.

4



Definition 5 (Belief function). Let Hj and Hk be two propositions such

that Hj, Hk ⊆ Ω. A belief function Bel, mapping from 2Ω to [0, 1], is defined

by

Bel(Hj) =
∑

Hk⊆Hj

m(Hk). (5)

Definition 6 (Plausibility function). Let Hj and Hk be two propositions

such that Hj, Hk ⊆ Ω. A plausibility function Pl, mapping from 2Ω to [0, 1],

is defined by

Pl(Hj) =
∑

Hk∩Hj ̸=∅

m(Hk) = 1−Bel(H̄j), H̄j = Ω−Hj. (6)

Definition 7 (Dempster’s rule of combination). Let m1 and m2 be two

independent BBAs in FOD Ω with propositions Hk, Hh ⊆ Ω, respectively.

Dempster’s rule of combination (DRC), represented in the form m1 ⊕m2, is

defined by

m1 ⊕m2(Hj) =


1

1−K

∑
Hk∩Hh=Hj

m1(Hk)m2(Hh), Hj ̸= ∅,

0, Hj = ∅,
(7)

with

K =
∑

Hk∩Hh=∅

m1(Hk)m2(Hh), (8)

where K is the conflict coefficient between m1 and m2.

2.2. QET: Quantum evidence theory [3, 4]

Definition 8 (Quantum frame of discernment). Let |Φ⟩ be a quantum

frame of discernment (QFOD), consisting of a set of mutually exclusive and
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collectively nonempty events, each of which is expressed as an orthonormal

basis |ϕg⟩ in a Hilbert space:

|Φ⟩ = {|ϕ1⟩, ..., |ϕg⟩, ..., |ϕn⟩}. (9)

Let 2|Φ⟩ be the power set of |Φ⟩, denoted as:

2|Φ⟩ = {|∅⟩, {|ϕ1⟩}, {|ϕ2⟩}, ..., {|ϕn⟩}, {|ϕ1ϕ2⟩}, ..., {|ϕ1ϕ2...ϕg⟩}, ..., |Φ⟩},

(10)

which can be simply represented as:

2|Φ⟩ = {|∅⟩, |ϕ1⟩, |ϕ2⟩, ..., |ϕn⟩, |ϕ12⟩, ..., |ϕ12...g⟩, ..., |ϕ12...n⟩}, (11)

where ∅ is an empty set.

Definition 9 (Quantum hypothesis or proposition). |ψj⟩ is defined as

a quantum hypothesis or proposition when |ψj⟩ ⊆ |Φ⟩.

Definition 10 (Quantum basic belief assignment). A quantum basic

belief assignment (QBBA) QM in QFOD |Φ⟩, also referred to as a quantum

mass function (QMF), is defined as a mapping:

QM : 2|Φ⟩ → C, (12)

satisfying

QM(|∅⟩) = 0,

QM(|ψj⟩) = φ(|ψj⟩)eiθ(|ψj⟩), |ψj⟩ ⊆ |Φ⟩,∑
|ψj⟩⊆|Φ⟩

|QM(|ψj⟩)|2 = 1,

(13)

in which i =
√
−1; φ(|ψj⟩) ∈ [0, 1] represents the modulus of QM(|ψj⟩);

θ(|ψj⟩) denotes a phase term of QM(|ψj⟩); and |QM(|ψj⟩)|2 = φ2(|ψj⟩) de-

notes the modulus squared of QM(|ψj⟩).
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Definition 11 (Quantum basic belief amplitude). In QET, QM(|ψj⟩)

(|ψj⟩ ⊆ |Φ⟩) is called a quantum basic belief amplitude (QBBAm).

Definition 12 (Quantum focal element). Let QM be a QBBA. ∀|ψj⟩ ⊆

|Φ⟩, if |QM(|ψj⟩)| or φ(|ψj⟩) > 0, |ψj⟩ is called a quantum focal element in

QET.

Definition 13 (Quantum basic probability assignment). The quantum

basic probability assignment (QBPA) of QM, is defined as:

M : 2|Φ⟩ → [0, 1], (14)

and satisfies:

M(|∅⟩) = 0,

M(|ψj⟩) = |QM(|ψj⟩)|2, |ψj⟩ ⊆ |Φ⟩,∑
|ψj⟩⊆|Φ⟩

M(|ψj⟩) = 1,

(15)

where |QM(|ψj⟩)|2 = QM(|ψj⟩)Q̂M(|ψj⟩) = φ2(|ψj⟩) = x2j + y2j , in which

Q̂M(|ψj⟩) is the complex conjugate of QM(|ψj⟩), e.g., Q̂M(|ψj⟩) = xj − yji.

Definition 14 (Quantum basic probability). In QET, M(|ψj⟩) (|ψj⟩ ⊆

|Φ⟩) is called quantum basic probability (QBP), which represents the degree

of belief or support to |ψj⟩.

Definition 15 (Quantum belief function). Let QM be a QBBA with

proposition |ψj⟩ ⊆ |Φ⟩. A quantum belief function QBel in QET, mapping

from 2|Φ⟩ to [0, 1], is defined by:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (16)
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According to Eq. (15), Eq. (16) can also be represented as:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

φ2(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

M(|ψp⟩), |ψj⟩ ⊆ |Φ⟩. (17)

Therefore, when M = m, Eq. (17) becomes:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩, (18)

which is consistent with the classical Bel in DSET.

Definition 16 (Quantum plausibility function). Let QM be a QBBA

with proposition |ψj⟩ ⊆ |Φ⟩. A quantum plausibility (QPl) function in QET,

mapping from 2|Φ⟩ to [0, 1], is defined by:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (19)

According to Eq. (15), Eq. (19) can also be represented as:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

φ2(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

M(|ψp⟩), |ψj⟩ ⊆ |Φ⟩. (20)

Therefore, when M = m, Eq. (20) becomes:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩, (21)

which is consistent with the classical Pl in DSET.

3. AQC-DRC: Adaptive Quantum Circuit for Dempster’s Rule of

Combination

The AQC-DRC consists of the following three components: 1) quantum

amplitude encoding for BBA, 2) construction of the adaptive quantum circuit

for DRC, and 3) measurement in the adaptive quantum circuit for decision-

making.
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3.1. Quantum amplitude encoding for BBA

In this section, QBBA in QET is expressed for quantum amplitude en-

coding. In this context, a BBA is encoded as a superposition over an n-qubit

quantum state.

Definition 17 (QBBA expression for quantum amplitude encoding).

Let QM be a QBBA on the QFOD |Φ⟩ = {|ϕ1⟩, . . . , |ϕi⟩, . . . , |ϕn⟩} with quan-

tum proposition |ψj⟩ ⊆ |Φ⟩. The QBBA expression for quantum amplitude

encoding, also called a quantum superposition state of the QBBA, is defined

as:

|QM⟩ =
∑

|ψj⟩⊆|Φ⟩

QM(|ψj⟩)|ψj⟩

=
∑

|ψj⟩⊆|Φ⟩

φ(|ψj⟩)eiθ(|ψj⟩)|ψj⟩,

∑
|ψj⟩⊆|Φ⟩

|QM(|ψj⟩)|2 = φ2(|ψj⟩) = 1,

(22)

where

|ψj⟩ =
n⊗
i=1

|δji⟩ = |δjn⟩ · · · |δji⟩ · · · |δj2⟩|δj1⟩, (23)

and

δji =

1, if |ϕi⟩ ∈ |ψj⟩,

0, if |ϕi⟩ /∈ |ψj⟩.
(24)

When θ(|ψj⟩) = 0, the QBBA expression for quantum amplitude encoding

can be represented as:

|QM⟩ =
∑

|ψj⟩⊆|Φ⟩

φ(|ψj⟩)|ψj⟩,

∑
|ψj⟩⊆|Φ⟩

φ2(|ψj⟩) = 1.
(25)
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Definition 18 (Quantum amplitude encoding of BBA). Let mh be a

BBA on the FOD Φ = {ϕ1, . . . , ϕi, . . . , ϕn} with proposition ψj ⊆ Φ. Con-

sidering QBBA expression for quantum amplitude encoding, a BBA mh is

encoded into the amplitudes of an n-qubit state as:

|QMh
⟩ = UE(mh)|0⟩⊗n =

∑
|ψj⟩⊆|Φ⟩

QMh
(|ψj⟩)|ψj⟩

=
∑

|ψj⟩⊆|Φ⟩

φh(|ψj⟩)eiθh(|ψj⟩)|ψj⟩,
(26)

satisfying

φh(|ψj⟩)eiθh(|ψj⟩) =
√
mh(ψj)e

i0 =
√
mh(ψj), and

∑
|ψj⟩⊆|Φ⟩

∣∣∣∣√mh(ψj)

∣∣∣∣2 = 1,

(27)

where |ψj⟩ is defined in Definition 17, and UE denotes a state preparation

oracle or operator.

3.2. Construction of an adaptive quantum circuit for DRC

The encoded quantum states of BBAs {|QM1⟩, . . . , |QMh
⟩, . . . , |QMk

⟩} will

be combined by a series of specific quantum operators, which can be catego-

rized as one types of UC designed through Toffoli gates. Then, after imple-

menting UC , we obtain:

ρQM21
=

∑
|ψt⟩⊆|Φ⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤2

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2 |ψt⟩⟨ψt|

=
∑

|ψt⟩⊆|Φ⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤2

∣∣∣∣√mh(ψj)

∣∣∣∣2 |ψt⟩⟨ψt|. (28)

The output in terms of ρQMh...1
after implementing UC based on Toffoli
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gates are delivered to |0⟩⊗n-qubit. Then, after implementing UC , we obtain:

ρQMh...1
=

∑
|ψt⟩⊆|Φ⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2 |ψt⟩⟨ψt|

=
∑

|ψt⟩⊆|Φ⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣∣√mh(ψj)

∣∣∣∣2 |ψt⟩⟨ψt|. (29)

3.3. Measurement in the adaptive quantum circuit for decision-making

We define two types of measurement operators in terms of the quantum

belief level and the plausibility level decision-making for different application

requirements.

3.3.1. Quantum measurement for quantum belief level decision-making

Definition 19 (Measurement operator for quantum belief level). The

measurement operator UQB
M is defined for the quantum belief level decision-

making as:

UQB
M = {M|ψt⟩||ψt⟩ ⊆ Φ}, (30)

and

M|ψt⟩ = |ψt⟩⟨ψt|, (31)

where |ψt⟩ is defined in Definition 17.

Definition 20 (QBP expression for quantummeasurement outcomes).

Let ρQMk...1
be a density operator with regards to the trace of the output of

UC . Let UQB
M = {M|ψt⟩ = |ψt⟩⟨ψt|||ψt⟩ ⊆ Φ} be a set of measurement

operators. The quantum basic probability (QBP) expression for quantum

measurement outcomes is defined as:

M(|ψt⟩) =
Tr

(
M†

|ψt⟩M|ψt⟩ · ρQMk...1

)
∑

|ψv⟩⊆|Φ⟩
|ψv⟩̸=∅

Tr
(
M†

|ψv⟩M|ψv⟩ · ρQMk...1

) ,
(32)
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which forms a quantum basic probability assignment (QBPA) M.

After implementing the measurement operator UQB
M , for |ψt⟩ ⊆ Φ, |ψt⟩ ̸=

∅, we obtain the quantum basic probability (QBP) for each |ψt⟩:

M(|ψt⟩) =
Tr

(
M†

|ψt⟩M|ψt⟩ · ρQMk...1

)
∑

|ψv⟩⊆|Φ⟩
|ψv⟩̸=∅

Tr
(
M†

|ψv⟩M|ψv⟩ · ρQMk...1

) =

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2

∑
|ψv⟩⊆Φ
|ψv⟩̸=∅

∑
∩|ψj⟩=|ψv⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2 .

(33)

Because
∣∣φh(|ψj⟩)eiθh(|ψj⟩)

∣∣2 =
∣∣∣√mh(ψj)

∣∣∣2 and m(ψt) = M(|ψt⟩), the

combined BAA can be generated:

m(ψt) = M(|ψt⟩) =

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣√mh(ψj)
∣∣∣2

∑
|ψv⟩⊆Φ
|ψv⟩̸=∅

∑
∩|ψj⟩=|ψv⟩

∏
1≤h≤k

∣∣∣√mh(ψj)
∣∣∣2 . (34)

For |ψt⟩ = |∅⟩, we have

K = Tr
(
M†

|∅⟩M|∅⟩ · ρQMk...1

)
=

∑
∩|ψj⟩=|∅⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2

=
∑

∩|ψj⟩=|∅⟩

∏
1≤h≤k

∣∣∣∣√mh(ψj)

∣∣∣∣2 . (35)

Then, for |ψt⟩ ⊆ Φ, |ψt⟩ ̸= ∅, we also have

m(ψt) =
Tr

(
M†

|ψt⟩M|ψt⟩ · ρQMk...1

)
1− Tr

(
M†

|∅⟩M|∅⟩ · ρQMk...1

) =

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣√mh(ψj)
∣∣∣2

1−K
. (36)

When implementing AQC-DRC based on the quantum measurement for

quantum belief level decision-making, denoted as AQC-DRCQB, a decision

can be made as follow:

δ = |ψt⟩, and w = argmax
t

{M(|ψt⟩)} = argmax
t

{m(ψt)}. (37)
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3.3.2. Quantum measurement for quantum plausibility level decision-making

On the basis of the density matrix of ρQMh...1
, we obtain:

ρQw
Mh...1

=
∑

|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2 |1⟩⟨1|+

1−
∑

|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2 |0⟩⟨0|

=
∑

|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣∣√mh(ψj)

∣∣∣∣2 |1⟩⟨1|+1−
∑

|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣∣√mh(ψj)

∣∣∣∣2
 |0⟩⟨0|.

(38)

Definition 21 (Measurement operator for quantum plausibility level).

The measurement operator UQPl
M is defined for quantum plausibility level

decision-making as follows:

UQPl
M = {M|u⟩|u ∈ {0, 1}}, (39)

and

M|u⟩ = |u⟩⟨u|. (40)

Definition 22 (QPl expression for quantummeasurement outcomes).

Let ρwQMk...1
be the density operator of the w-th qubit in terms of the out-

put of UC . Let UQPl
M = {M|u⟩ = |u⟩⟨u||u ∈ {0, 1}} and UQB

M = {M|ψt⟩ =

|ψt⟩⟨ψt|||ψt⟩ ⊆ Φ} be a set of measurement operators. The quantum plausi-

bility (QPl) expression for quantum measurement outcomes is defined as:

QPl(|ψw⟩) =
Tr

(
M†

|1⟩M|1⟩ · ρwQMk...1

)
1− Tr

(
M†

|∅⟩M|∅⟩ · ρQMk...1

) . (41)

13



After implementing the measurement operators, the QPl of each element

|ϕw⟩ (1 ≤ w ≤ n) in FOD are generated directly as follows:

QPl(|ϕw⟩) =
Tr

(
M†

|1⟩M|1⟩ · ρwQMk...1

)
1− Tr

(
M†

|∅⟩M|∅⟩ · ρQMk...1

) =

∑
|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣φh(|ψj⟩)eiθh(|ψj⟩)
∣∣2

1−KG

.

(42)

Because
∣∣φh(|ψj⟩)eiθh(|ψj⟩)

∣∣2 =
∣∣∣√mh(ψj)

∣∣∣2 and Pl(ψw) = QPl(|ϕw⟩), the

Pl for |ϕw⟩ can be generated:

Pl(ϕw) = QPl(|ϕw⟩) =

∑
|ϕw⟩∈|ψt⟩

∑
∩|ψj⟩=|ψt⟩

∏
1≤h≤k

∣∣∣√mh(ψj)
∣∣∣2

1−KG

.
(43)

When implementing AQC-DRC based on the quantum plausibility level

decision-making, denoted as AQC-DRCQPl, a decision can be made as follow:

δ = |ϕw⟩, and w = argmax
w

{QPl(|ϕw⟩)} = argmax
w

{Pl(ϕw)}. (44)

4. Computational complexity analysis

Assume that there are n elements in the frame of discernment (FOD) and

k pieces of evidence, with a total of N focal elements.

For quantum belief-level decision-making, the time complexity of the clas-

sical DRC is O(kN22n). In contrast, with sufficient auxiliary qubits, the time

complexity of AQC-DRC, in terms of both the circuit depth and the normal-

ization process, denoted as AQC-DRCQB, is O(kn + N). Through compar-

ative analysis, the time complexity of AQC-DRCQB achieves an exponential

reduction compared to that of the classical DRC. Moreover, the space com-

plexity, corresponding to the number of qubits required by AQC-DRCQB, is
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O(kn), which increases linearly with the number of elements n in the FOD

and the number of pieces of evidence k.

For quantum plausibility-level decision-making, the time complexity of

AQC-DRC, in terms of both the circuit depth and the normalization pro-

cess, denoted as AQC-DRCQPl, is O(kn
2). Similarly, through comparative

analysis, the time complexity of AQC-DRCQPl demonstrates an exponen-

tial reduction compared to that of the classical DRC. The space complexity,

representing the number of qubits required for quantum plausibility-level

decision-making in AQC-DRCQPl, remains O(kn), which also grows linearly

with the number of elements n in the FOD and the number of pieces of

evidence k.

5. Conclusion

In this paper, we propose an adaptive quantum circuit for Dempster’s rule

of combination (AQC-DRC) to support quantum-level belief and plausibility

decision-making within the framework of quantum evidence theory (QET).

The AQC-DRC enables deterministic computation of evidence combination

rules, thereby ensuring high precision in fusion outcomes without informa-

tion loss. Moreover, it achieves an exponential reduction in computational

complexity, making it a promising approach for real-time quantum multi-

source information fusion. The architecture of the proposed AQC-DRC is

conceptually straightforward and highly scalable, which facilitates its prac-

tical implementation.

It is observed that the quantum basic belief assignment (QBBA) in QET

can naturally express the quantum amplitude encoding. The quantum ba-
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sic probability (QBP)in QET, forming the quantum basic probability as-

signment (QBPA), can directly express quantum measurement outcomes for

belief-level decision-making, while the quantum plausibility (QPl) function

in QET can also naturally represent the quantum measurement outcomes for

plausibility-level decision-making. These insights not only broaden the un-

derstanding of QET, but also provide a more intuitive physical interpretation

of quantum measurement outcomes.
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