Proofs of Legendre Conjecture and Some Related Conjectures

Wing K. Yu

Abstract

This paper is an improvement on my previous work and proves the Legendre, Oppermann, Brocard, and Andrica conjectures using basic analytical methods.

Keywords

Legendre conjecture, Oppermann conjecture, Brocard conjecture, Andrica conjecture prime gaps, prime number distribution

1. Introduction

In this paper, we will use basic algebraic methods to analyze the binomial coefficients $\binom{\lambda n}{n}$, where λ and n are positive integers, to prove the Legendre conjecture, the Oppermann conjecture, the Brocard conjecture, and the Andrica conjecture [1], [2], [3], [4], [5].

Definition: $\Gamma_{a \ge p > b} \left\{ \binom{\lambda n}{n} \right\}$ denotes the prime number factorization operator of the integer expression $\binom{\lambda n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{\lambda n}{n}$ in the range of $a \ge p > b$. In this operator, p is a prime number, a and b are real numbers, and $a \ge p > b \ge 1$.

It has some properties:

It is always true that $\Gamma_{a \ge p > b} \left\{ \binom{\lambda n}{n} \right\} \ge 1.$

$$\geq 1. \tag{1.1}$$

If there is no prime number in $\binom{\lambda n}{n}$ within the range of $a \ge p > b$, then $\Gamma_{a \ge p > b}\left\{\binom{\lambda n}{n}\right\} = 1$, or vice versa, if $\Gamma_{a \ge p > b}\left\{\binom{\lambda n}{n}\right\} = 1$, then there is no prime number in $\binom{\lambda n}{n}$ within the range of $a \ge p > b$. (1.2)

For example, when $\lambda = 5$ and n = 4, $\Gamma_{16 \ge p > 10} \{ \binom{20}{4} \} = 13^0 \cdot 11^0 = 1$. No prime number 13 or 11 is in $\binom{20}{4}$ in the range of $16 \ge p > 10$.

If there is at least one prime number in $\binom{\lambda n}{n}$ in the range of $a \ge p > b$, then $\Gamma_{a \ge p > b}\left\{\binom{\lambda n}{n}\right\} > 1$, or vice versa, if $\Gamma_{a \ge p > b}\left\{\binom{\lambda n}{n}\right\} > 1$, then there is at least one prime number in $\binom{\lambda n}{n}$ within the range of $a \ge p > b$. (1.3)

For example, when $\lambda = 5$ and n = 4, $\Gamma_{18 \ge p > 16} \{ \binom{20}{4} \} = 17 > 1$. Prime number 17 is in $\binom{20}{4}$ within the range of $18 \ge p > 16$.

Let $v_p(n)$ be the *p*-adic valuation of *n*, the exponent of the highest power of *p* that divides *n*. We define R(p) by the inequalities $p^{R(p)} \le \lambda n < p^{R(p)+1}$, and determine $v_p(n)$ of $\binom{\lambda n}{n}$. $v_p\left(\binom{\lambda n}{n}\right) = v_p((\lambda n)!) - v_p(((\lambda - 1)n)!) - v_p(n!) = \sum_{i=1}^{R(p)} \left(\left\lfloor \frac{\lambda n}{p^i} \right\rfloor - \left\lfloor \frac{(\lambda - 1)n}{p^i} \right\rfloor - \left\lfloor \frac{n}{p^i} \right\rfloor \right) \le R(p)$

because for any real numbers a and b, the expression of $\lfloor a + b \rfloor - \lfloor a \rfloor - \lfloor b \rfloor$ is 0 or 1.

Thus, if
$$p$$
 divides $\binom{\lambda n}{n}$, then $v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le \log_p(\lambda n)$, or $p^{v_p\binom{\lambda n}{n}} \le p^{R(p)} \le \lambda n$ (1.4)

If
$$\lambda n \ge p > \lfloor \sqrt{\lambda n} \rfloor$$
, then $0 \le v_p\left(\binom{\lambda n}{n}\right) \le R(p) \le 1.$ (1.5)

Let $\pi(n)$ be the number of distinct prime numbers less than or equal to n. Among the first six consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, $p \equiv 1 \pmod{6}$

and
$$p \equiv 5 \pmod{6}$$
. Thus, $\pi(n) \le \left\lfloor \frac{n}{3} \right\rfloor + 2 \le \frac{n}{3} + 2$. (1.6)

Let the primordial function $n# = \prod_{n \ge p} p$ where the product is taken over all distinct prime numbers p less than or equal to the integer n.

Since
$$\binom{2n-1}{n}$$
 is an integer and all the primes in the range of $(n + 1) \le p \le (2n - 1)$
appear in its numerator but not in its denominator, we have
 $\frac{(2n-1)\#}{n\#} \le \binom{2n-1}{n} = \frac{1}{2} \left(\binom{2n-1}{n-1} + \binom{2n-1}{n} \right) < \frac{1}{2} (1+1)^{2n-1} = 2^{2n-2}$.
The proof proceeds by induction on n .
If $n = 3$, then $n\# = 6 < 8 = 2^{2n-3}$.
If $n = 4$, then $n\# = 6 < 32 = 2^{2n-3}$.
If $n = 4$, then $n\# = 6 < 32 = 2^{2n-3}$.
If $n = (2m - 1)$ is odd and $n \ge 5$, then $m \ge 3$ and then
 $n\# = (2m - 1)\# < m\# \cdot 2^{2m-2} < 2^{2m-3} \cdot 2^{2m-2} = 2^{4m-5} = 2^{2n-3}$.
If $n = 2m$ is even and $n \ge 6$, then $m \ge 3$ and then
 $n\# = (2m)\# = (2m - 1)\# < m\# \cdot 2^{2m-2} < 2^{2m-3} \cdot 2^{2m-2} = 2^{4m-5} < 2^{4m-3} = 2^{2n-3}$.
Thus, when $n \ge 3$, $n\# = \prod_{n\ge p} p < 2^{2n-3}$.
From the prime number decomposition, when $n > \lfloor \sqrt{\lambda n} \rfloor$,

$$\binom{\lambda n}{n} = \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \cdot \Gamma_{n \ge p > \lfloor \sqrt{\lambda n} \rfloor} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \ge p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\}.$$

$$When n \le \lfloor \sqrt{\lambda n} \rfloor, \ \binom{\lambda n}{n} \le \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \ge p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\}.$$

$$Thus, \ \binom{\lambda n}{n} \le \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \cdot \Gamma_{n \ge p > \lfloor \sqrt{\lambda n} \rfloor} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \cdot \Gamma_{\lfloor \sqrt{\lambda n} \rfloor \ge p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\}$$

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} = \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\}$$
since all prime numbers in *n*! do not appear in the range of $\lambda n \ge p > n.$

Referring to (1.5) and (1.7), when $n \ge (\lambda - 2) \ge 13$, then $\lfloor \sqrt{\lambda n} \rfloor \ge 13$.

$$\Gamma_{n \ge p > \left\lfloor \sqrt{\lambda n} \right\rfloor} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \le \frac{\prod_{n \ge p} p}{13\#} \le \frac{2^{2n-3}}{2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13} = \frac{2^{2n-4}}{15015} .$$
Referring to (1.4) and (1.6), $\Gamma_{\left\lfloor \sqrt{\lambda n} \right\rfloor \ge p} \left\{ \frac{(\lambda n)!}{n! \cdot ((\lambda - 1)n)!} \right\} \le (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} .$
Thus, when $n \ge (\lambda - 2) \ge 13$, $\binom{\lambda n}{n} < \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \frac{2^{2n-4}}{15015} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} .$
(1.8)

2. Lemmas

Lemma 1: If a real number $x \ge 3$, then $\frac{2(2x-1)}{x-1} > \left(\frac{x}{x-1}\right)^x$. (2.1) Proof: $\sum_{x \ge 1} \frac{2(2x-1)}{x-1} = \frac{2(x-1)(2x-1)'-2(2x-1)(x-1)'}{x-1} = \frac{2}{x-1}$

Let $f_1(x) = \frac{2(2x-1)}{x-1}$; then, $f_1'(x) = \frac{2(x-1)(2x-1)'-2(2x-1)(x-1)'}{(x-1)^2} = \frac{-2}{(x-1)^2} < 0.$ Thus, $f_1(x)$ is a strictly decreasing function for x > 1.

Since
$$f_1(3) = 5$$
, and $\lim_{x \to \infty} f_1(x) = 4$, for $x \ge 3$, we have $5 \ge f_1(x) = \frac{2(2x-1)}{x-1} \ge 4$.
Let $f_2(x) = \left(\frac{x}{x-1}\right)^x$, then $f_2'(x) = \left(\left(\frac{x}{x-1}\right)^x\right)' = \left(\frac{x}{x-1}\right)^x \cdot \left(\ln\frac{x}{x-1} - \frac{1}{x-1}\right)$ (2.1.1)
When $x \ge 3$, $\frac{1}{x-1} = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4} + \frac{1}{x^5} + \frac{1}{x^6} + \cdots$
Using the formula: $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \cdots$,
 $\ln\frac{x}{x-1} = \ln\frac{1}{1+\frac{-1}{x}} = -\ln\left(1+\frac{-1}{x}\right) = \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{3x^3} + \frac{1}{4x^4} + \frac{1}{5x^5} + \frac{1}{6x^6} + \cdots$
Thus, for $x \ge 3$, $\ln\frac{x}{x-1} - \frac{1}{x-1} < 0$.
Since $\left(\frac{x}{x-1}\right)^x$ is a positive number for $x \ge 3$, $f_2'(x) = \left(\frac{x}{x-1}\right)^x \cdot \left(\ln\frac{x}{x-1} - \frac{1}{x-1}\right) < 0$.
Thus $f_2(x)$ is a strictly decreasing function when $x \ge 3$.
Since $f_2(3) = 3.375$ and $\lim_{x \to \infty} f_2(x) = e \approx 2.718$,
when $x \ge 3$, $3.375 \ge f_2(x) = \left(\frac{x}{x-1}\right)^x \ge e$.
(2.1.2)

Since for $x \ge 3$, $f_1(x)$ has a lower bound of 4 and $f_2(x)$ has an upper bound of 3.375,

$$f_1(x) = \frac{2(2x-1)}{x-1} > f_2(x) = \left(\frac{x}{x-1}\right)^x$$
 is proven. (2.1.3)

Lemma 2: For
$$n \ge 2$$
 and $\lambda \ge 3$, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$. (2.2)

Proof:

When
$$\lambda \ge 3$$
 and $n = 2$, $\binom{\lambda n}{n} = \binom{2\lambda}{2} = \frac{2\lambda(2\lambda-1)(2\lambda-2)!}{2(2\lambda-2)!} = \lambda(2\lambda-1).$ (2.2.1)

$$\frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)^{(\lambda-1)n-\lambda+1}} = \frac{\lambda^{2\lambda-\lambda+1}}{2(\lambda-1)^{2(\lambda-1)-\lambda+1}} = \frac{\lambda(\lambda-1)}{2} \cdot \left(\frac{\lambda}{\lambda-1}\right)^{\lambda}.$$
(2.2.2)

Referring to (2.1), when $x = \lambda \ge 3$, we have $\frac{2(2\lambda-1)}{\lambda-1} > \left(\frac{\lambda}{\lambda-1}\right)^{\lambda}$. (2.2.3)Since $\frac{\lambda(\lambda-1)}{2}$ is a positive number for $\lambda \ge 3$, referring to (2.2.1) and (2.2.2), when $\frac{\lambda(\lambda-1)}{2}$ multiplies both sides of (2.2.3), we have $\left(\frac{\lambda(\lambda-1)}{2}\right)\left(\frac{2(2\lambda-1)}{\lambda-1}\right) = \lambda(2\lambda-1) = \binom{\lambda n}{n} > \left(\frac{\lambda(\lambda-1)}{2}\right)\left(\frac{\lambda}{\lambda-1}\right)^{\lambda} = \frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)(\lambda-1)n-\lambda+1}.$ Thus, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ when $\lambda \ge 3$ and n = 2. (2.2.4)By induction on *n*, when $\lambda \ge 3$, if $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ is true for *n*, then for n + 1, $\binom{\lambda(n+1)}{n+1} = \binom{\lambda n+\lambda}{n+1} = \frac{(\lambda n+\lambda)(\lambda n+\lambda-1)\cdots(\lambda n+2)(\lambda n+1)}{(\lambda n+\lambda-n-1)(\lambda n+\lambda-n-2)\cdots(\lambda n-n+1)(n+1)} \cdot \binom{\lambda n}{n}$ $\binom{\lambda(n+1)}{n+1} > \frac{(\lambda n+\lambda)(\lambda n+\lambda-1)\cdots(\lambda n+2)(\lambda n+1)}{(\lambda n+\lambda-n-1)(\lambda n+\lambda-n-2)\cdots(\lambda n-n+1)(n+1)} \cdot \frac{\lambda^{\lambda n-\lambda+1}}{n(\lambda-1)^{(\lambda-1)n-\lambda+1}}$ $\binom{\lambda(n+1)}{n+1} > \frac{(\lambda n+\lambda)(\lambda n+\lambda-1)\cdots(\lambda n+2)}{(\lambda n+\lambda-n-1)(\lambda n+\lambda-n-2)\cdots(\lambda n-n+1)} \cdot \frac{\lambda n+1}{n} \cdot \frac{1}{(n+1)} \cdot \frac{\lambda^{\lambda n-\lambda+1}}{(\lambda-1)^{(\lambda-1)n-\lambda+1}}$ Notice $\frac{\lambda n+1}{n} > \lambda$, and $\frac{(\lambda n+\lambda)(\lambda n+\lambda-1)\cdots(\lambda n+2)}{(\lambda n+\lambda-n-1)(\lambda n+\lambda-n-2)\cdots(\lambda n-n+1)} > \left(\frac{\lambda}{\lambda-1}\right)^{(\lambda-1)}$ because $\frac{\lambda n + \lambda}{\lambda n + \lambda - n - 1} = \frac{\lambda}{\lambda - 1}$; $\frac{\lambda n + \lambda - 1}{\lambda n + \lambda - n - 2} > \frac{\lambda}{\lambda - 1}$; $\cdots \frac{\lambda n + 2}{\lambda n - n + 1} > \frac{\lambda}{\lambda - 1}$. Thus, $\binom{\lambda(n+1)}{n+1} > \frac{\lambda^{\lambda-1}}{(\lambda-1)^{(\lambda-1)}} \cdot \frac{\lambda}{1} \cdot \frac{1}{(n+1)} \cdot \frac{\lambda^{\lambda n-\lambda+1}}{(\lambda-1)^{(\lambda-1)n-\lambda+1}} = \frac{\lambda^{\lambda(n+1)-\lambda+1}}{(n+1)(\lambda-1)^{(\lambda-1)(n+1)-\lambda+1}}$ (2.2.5)From (2.2.4) and (2.2.5), we have for $n \ge 2$ and $\lambda \ge 3$, $\binom{\lambda n}{n} > \frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}}$ Thus, Lemma 2 is proven.

3. A Prime Number between $(\lambda - 1)n$ and λn when $n \ge (\lambda - 2) \ge 13$

Proposition:

For $n \ge \lambda - 2 \ge 13$, there exists at least a prime number p such that $(\lambda - 1)n . (3.1)$ **Proof:**

Applying (2.2) to (1.8), when $n \ge (\lambda - 2) \ge 13$, $\frac{\lambda^{\lambda n - \lambda + 1}}{n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} < {\lambda n \choose n} < \Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} \cdot \frac{2^{2n - 4}}{15015} \cdot (\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2}.$ Because $(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} > 0$ and $\frac{2^{2n - 4}}{15015} > 0$,

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{\lambda^{\lambda n - \lambda + 1}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 2} \cdot \frac{2^{2n - 4}}{15015} \cdot n(\lambda - 1)^{(\lambda - 1)n - \lambda + 1}} = \frac{60060\lambda^2 \cdot \left(\left(\frac{\lambda - 1}{4}\right) \cdot \left(\frac{\lambda}{\lambda - 1}\right)^{\lambda} \right)^{(n - 1)}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} > 0 \; .$$

Referring to (2.1.2), when $\lambda \ge 3$, $\left(\frac{\lambda}{\lambda-1}\right)^{\lambda} \ge e$. Thus, when $n \ge (\lambda - 2) \ge 13$,

$$\Gamma_{\lambda n \ge p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > \frac{60060\lambda^2 \cdot \left(\left(\frac{\lambda - 1}{4} \right) \cdot e \right)^{\gamma}}{(\lambda n)^{\frac{\sqrt{\lambda n}}{3} + 3}} = f_3(n, \lambda) > 0.$$
(3.2)

Let $x \ge 13$ and $y \ge 15$, where x and y are both real numbers.

When
$$x = y - 2$$
,

$$f_{3}(x, y) = \frac{60060y^{2} \cdot \left(\left(\frac{y-1}{4}\right) \cdot e\right)^{(x-1)}}{(yx)^{\frac{\sqrt{yx}}{3} + 3}} = \frac{60060(x+2)^{2} \cdot \left(\left(\frac{x+1}{4}\right) \cdot e\right)^{(x-1)}}{((x+2) \cdot x)^{\frac{\sqrt{x}(x+2)}{3} + 3}}$$

$$> f_{4}(x) = \frac{60060(x+2)^{2} \cdot \left(\left(\frac{x+1}{4}\right) \cdot e\right)^{(x-1)}}{((x+2) \cdot x)^{\frac{x+1}{3} + 3}} > 0.$$
(3.3)
$$f_{4}'(x) = f_{4}(x) \cdot \left(\frac{2}{x+2} + ln\left(\frac{x+1}{4}\right) + \frac{4}{3} - \frac{2}{x+1} - \frac{1}{3}ln((x+2) \cdot x) - \frac{10}{3x} - \frac{8}{3(x+2)}\right) = f_{4}(x) \cdot f_{5}(x)$$
where $f_{5}(x) = \frac{2}{x+2} + ln\left(\frac{x+1}{4}\right) + \frac{4}{3} - \frac{2}{x+1} - \frac{1}{3}ln((x+2) \cdot x) - \frac{10}{3x} - \frac{8}{3(x+2)}\right) = f_{4}(x) \cdot f_{5}(x)$

$$f_{5}'(x) = \frac{-2}{(x+2)^{2}} + \frac{1}{x+1} + \frac{2}{(x+1)^{2}} - \frac{1}{3x} - \frac{1}{3(x+2)} + \frac{10}{3x^{2}} + \frac{8}{3(x+2)^{2}}$$

$$= \frac{-2x^{2} - 4x - 2}{(x+1)^{2} \cdot (x+2)^{2}} + \frac{2x^{2} + 8x + 8}{(x+1)^{2} \cdot (x+2)^{2}} + \frac{3x^{2} + 6x}{3x(x+1)(x+2)} - \frac{x^{2} + 3x + 2}{3x(x+1)(x+2)} - \frac{x^{2} + x}{3x(x+1)(x+2)} + \frac{10}{3x^{2}} + \frac{8}{3(x+2)^{2}}$$

$$f_{5}'(x) = \frac{4x + 6}{(x+1)^{2} \cdot (x+2)^{2}} + \frac{x^{2} + 2x - 2}{3x(x+1)(x+2)} + \frac{10}{3x^{2}} + \frac{8}{3(x+2)^{2}} > 0$$
 when $x \ge 3$.

Thus, $f_5(x)$ is a strictly increasing function for $x \ge 3$.

When x = 13, $f_5(x) = \frac{2}{13+2} + ln\left(\frac{13+1}{4}\right) + \frac{4}{3} - \frac{2}{13+1} - \frac{ln(15)}{3} - \frac{ln(13)}{3} - \frac{10}{39} - \frac{8}{45} \approx 0.384 > 0$. Thus, for $x \ge 13$, $f_5(x) > 0$. Then, $f_4'(x) = f_4(x) \cdot f_5(x) > 0$, and $f_4(x)$ is a strictly increasing function for $x \ge 13$.

Referring to (3.3), as long as $x = (y - 2) \ge 13$, $f_3(x, y)$ is an increasing function respect to both x and y, because $f_3(x, y) > f_4(x)$.

Thus, when
$$x = (y - 2) \ge 13$$
, $f_3(x + 1, y + 1) > f_3(x, y)$. (3.4)

$$\frac{\partial f_3(x,y)}{\partial x} = f_3(x,y) \cdot \left(\ln\left(\frac{y-1}{4}\right) + 1 - \frac{\sqrt{y}}{6\sqrt{x}} \cdot \ln(yx) - \frac{\sqrt{y}}{3\sqrt{x}} - \frac{3}{x} \right) = f_3(x,y) \cdot f_6(x,y)$$
(3.5)

where
$$f_6(x, y) = ln\left(\frac{y-1}{4}\right) + 1 - \frac{\sqrt{y}}{6\sqrt{x}} \cdot ln(yx) - \frac{\sqrt{y}}{3\sqrt{x}} - \frac{3}{x}$$

When $x = y - 2$, then $f_6(x, y) = f_7(x) = ln\left(\frac{x+1}{4}\right) + 1 - \frac{\sqrt{x+2}}{6\sqrt{x}} \cdot (ln(x+2) + ln(x) + 2) - \frac{3}{x}$

$$f_7'(x) = \frac{1}{x+1} - \frac{\sqrt{x+2}}{6\sqrt{x}} \cdot \left(\frac{1}{x+2} + \frac{1}{x}\right) + \frac{\ln(x+2) + \ln(x) + 2}{6x\sqrt{x(x+2)}} + \frac{3}{x^2} = \left(\frac{1}{x+1} - \frac{1}{3\sqrt{x(x+2)}}\right) + \frac{\ln(x+2) + \ln(x)}{6x\sqrt{x(x+2)}} + \frac{3}{x^2} + \frac{3}{x^2} + \frac{1}{3\sqrt{x(x+2)}} + \frac{3}{3\sqrt{x(x+2)}} + \frac{3}{3\sqrt{x(x+2)$$

 $\frac{1}{x+1} - \frac{1}{3\sqrt{x(x+2)}} = \frac{3\sqrt{x(x+2)} - (x+1)}{3(x+1)\sqrt{x(x+2)}} \cdot \frac{3\sqrt{x(x+2)} + (x+1)}{3\sqrt{x(x+2)} + (x+1)} = \frac{8x^2 + 16x - 1}{9(x+1)\sqrt{x(x+2)}\left(\sqrt{x(x+2)} + (x+1)\right)} > 0 \text{ when } x > 1.$

When $x \ge 3$, $f_7'(x) = \left(\frac{1}{x+1} - \frac{1}{3\sqrt{x(x+2)}}\right) + \frac{\ln(x+2) + \ln(x)}{6x\sqrt{x(x+2)}} + \frac{3}{x^2} > 0$, then $f_7(x)$ is a strictly increasing function.

When $x = (y - 2) \ge 3$, because $f_6(x, y) = f_7(x)$, $f_6(x, y)$ is an increasing function respect to both x and y. (3.6)

$$\begin{aligned} \frac{\partial f_{6}(x,y)}{\partial x} &= \frac{\sqrt{y}}{12x\sqrt{x}} \cdot \ln(yx) + \frac{3}{x^{2}} > 0 \text{ when } x \geq 3 \text{ and } y \geq 3. \end{aligned}$$
Thus, when $x = (y - 2) \geq 3$, $f_{6}(x, y)$ is an increasing function respect to x . (3.7)
When $x = (y - 2) = 13$, $f_{6}(x, y) = \ln\left(\frac{15-1}{4}\right) + 1 - \frac{\sqrt{15}}{6\sqrt{13}} \cdot \ln(195) - \frac{\sqrt{15}}{3\sqrt{13}} - \frac{3}{13} \approx 0.720 > 0. \end{aligned}$
Referring to (3.6), when $x = (y - 2) \geq 13$, $f_{6}(x, y) > 0$.
Referring to (3.5), when $x \geq (y - 2) \geq 13$, $f_{6}(x, y) > 0$.
Referring to (3.5), when $x \geq (y - 2) \geq 13$, since $f_{3}(x, y) > 0$ and $f_{6}(x, y) > 0$, $\frac{\partial f_{3}(x, y)}{\partial x} > 0$, and $f_{3}(x, y)$ is an increasing function respect to x .
Thus, when $x \geq (y - 2) = 13$, $f_{3}(x + 1, y) > f_{3}(x, y)$. (3.8)
When $x = (y - 2) = 13$,
 $f_{3}(x, y) = \frac{60060y^{2} \cdot \left(\left(\frac{\lambda - 1}{4}\right) \cdot e\right)^{(x-1)}}{(xy)^{\frac{\lambda + y}{3} + 3}} = \frac{60060 \cdot 15^{2} \cdot \left(\left(\frac{15-1}{4}\right) \cdot e\right)^{(13-1)}}{(15 \cdot 13)^{\frac{\sqrt{15}+13}{3} + 3}} \approx \frac{7.432E+18}{3.386E+17} > 1. \end{aligned}$
Referring to (3.4), when $x = (y - 2) \geq 13$, $f_{3}(x, y) > 1$.
Referring to (3.8), when $x \geq (y - 2) \geq 13$, $f_{3}(x, y) > 1$.
Referring to (3.8), when $x \geq (y - 2) \geq 13$, $f_{3}(x, y) > 1$.
Let $x = n$ and $y = \lambda$, then when $n \geq (\lambda - 2) \geq 13$, $f_{3}(n, \lambda) > 1$.
Let integer $m \geq n$. When $m \geq n \geq \lambda - 2 \geq 13$, $\int_{\lambda m \geq p > n} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} > f_{3}(m, \lambda) > 1$. (3.10)
Referring to (1.8), when $n \geq (\lambda - 2) \geq 13$, if there is a prime number p in $\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)m)!} \right\}$
then $p \geq n + 1 = \sqrt{(n + 2)n + 1} > \sqrt{\lambda n}$. From (1.5), $0 \leq v_p \left(\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)m)!} \right\} \le R(p) \leq 1$.
Thus, when $m \geq n \geq \lambda - 2 \geq 13$, every distinct prime number in $\Gamma_{\lambda n \geq p > n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)m)!} \right\}$ and in $\Gamma_{\lambda m \geq p > n} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\}$ has a power of 0 or 1.

 $\Gamma_{\lambda m \ge p > m} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} =$ $=\Gamma_{\lambda m \ge p > (\lambda-1)m} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{(\lambda-1)m}_i \ge p > \frac{\lambda m}{i+1}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \cdot \Gamma_{\underline{\lambda m}_i \ge p > \frac{(\lambda-1)m}{i+1}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right)$ $\ln \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{(\lambda-1)m} \ge p > \frac{\lambda m}{(\lambda-1)m}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right), \text{ for every distinct prime number } p \text{ in these ranges, the}$ numerator $(\lambda m)!$ has the product of $p \cdot 2p \cdot 3p \cdots ip = (i)! \cdot p^i$. The denominator $((\lambda - 1)m)!$ also has the same product of $(i)! \cdot p^i$. Thus, they cancel each other in $\frac{(\lambda m)!}{((\lambda - 1)m)!}$. Referring to (1.2), $\prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\underline{(\lambda-1)m} \geq p > \frac{\lambda m}{i+1}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right) = 1.$ Thus, $\Gamma_{\lambda m \ge p > m} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} = \Gamma_{\lambda m \ge p > (\lambda - 1)m} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} \cdot \prod_{i=1}^{i=\lambda-2} \left(\Gamma_{\lambda m \ge p > \frac{(\lambda - 1)m}{i+\lambda}} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} \right)$ $\Gamma_{\lambda m \ge p > m} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} = \prod_{i=1}^{i=\lambda-1} \left(\Gamma_{\underline{\lambda m}_{\ge p > \frac{(\lambda - 1)m}{i}}} \left\{ \frac{(\lambda m)!}{((\lambda - 1)m)!} \right\} \right).$ (3.11) $\prod_{i=1}^{i=\lambda-1} \left(\prod_{\substack{\lambda m \\ i \geq p > \frac{(\lambda-1)m}{i}}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right) \text{ is the product of } (\lambda -1) \text{ sectors from } i = 1 \text{ to } i = (\lambda -1).$ Each of these sectors is the prime number factorization of the product of the consecutive integers between $\frac{(\lambda - 1)m}{i}$ and $\frac{\lambda m}{i}$. From (3.10) and (3.11), when $m \ge n \ge \lambda - 2 \ge 13$, $\prod_{i=1}^{i=\lambda-1} \left(\prod_{\substack{k=2\\ i \ge p > \frac{(\lambda-1)m}{i}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right) > 1.$ Referring to (1.1), $\Gamma_{\underline{\lambda m}_{i} \ge p > \frac{(\lambda-1)m}{i}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \ge 1$. Thus, when $m \ge n \ge \lambda - 2 \ge 13$, at least one of the sectors in $\prod_{i=1}^{i=\lambda-1} \left(\frac{\Gamma_{\lambda m}}{\sum_{i=1}^{i} p > \frac{(\lambda-1)m}{i}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} \right)$ is greater than one. Let $\prod_{\substack{i \geq p > (\lambda-1)m \\ i}} \left\{ \frac{(\lambda m)!}{((\lambda-1)m)!} \right\} > 1$ be such a sector and let m = ni where $(\lambda - 1) \ge i \ge 1$. Thus, when $m = ni \ge n \ge \lambda - 2 \ge 13$, $\Gamma_{\underline{\lambda m}_{i} \geq p > \underline{(\lambda-1)m}_{i}}\left\{\frac{(\lambda m)!}{((\lambda-1)m)!}\right\} = \Gamma_{\underline{\lambda n i}_{i} \geq p > \underline{(\lambda-1)ni}_{i}}\left\{\frac{(\lambda n i)!}{((\lambda-1)ni)!}\right\} = \Gamma_{\lambda n \geq p > (\lambda-1)n}\left\{\frac{(\lambda n i)!}{((\lambda-1)ni)!}\right\} > 1.$ (3.12) $\frac{(\lambda ni)!}{((\lambda-1)ni)!} = \frac{(\lambda ni) \cdot (\lambda ni-1) \cdots (\lambda ni-i) \cdots (\lambda ni-2i) \cdots (\lambda ni-(n-1)i) \cdots (\lambda ni-ni+1) \cdot ((\lambda-1)ni)!}{((\lambda-1)ni)!}$ $\frac{(\lambda ni)!}{((\lambda-1)ni)!} = \frac{i \cdot (\lambda n) \cdot (\lambda ni-1) \cdots i \cdot (\lambda n-1) \cdots i \cdot (\lambda n-2) \cdots i \cdot (\lambda n-n+1) \cdots (\lambda ni-ni+1) \cdot ((\lambda-1)ni)!}{((\lambda-1)ni)!}$ Thus, $\frac{(\lambda ni)!}{((\lambda-1)ni)!}$ contains all the factors of (λn) , $(\lambda n - 1)$, $(\lambda n - 2)$,... $(\lambda n - n + 1)$ in $\frac{(\lambda n)!}{((\lambda-1)n)!}$. These factors make up all the consecutive integers in the range of $\lambda n \ge p > (\lambda - 1)n$ in $\frac{(\lambda n)!}{(\lambda-1)n!}$. Thus, $\frac{(\lambda n)!}{(\lambda-1)n!}$ contains $\frac{(\lambda n)!}{(\lambda-1)n!}$. Referring to the definition, all prime numbers in $\frac{(\lambda ni)!}{((\lambda - 1)ni)!}$ in the ranges of $\lambda ni \ge p > \lambda n$ and

$$\begin{split} & (\lambda - 1)n > p \text{ do not contribute to } \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n i)!}{((\lambda - 1)ni)!} \right\}, \text{ nor does } i \text{ for } (\lambda - 1) \ge i \ge 1. \text{ Only} \\ & \text{the prime numbers in the prime factorization of } \frac{(\lambda n i)!}{((\lambda - 1)ni)!} \text{ in the range of } \lambda n \ge p > (\lambda - 1)n \\ & \text{present in } \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n i)!}{((\lambda - 1)ni)!} \right\}. \text{ Since } \frac{(\lambda n)!}{((\lambda - 1)n)!} \text{ is the product of all the consecutive} \\ & \text{integers in this range, } \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n i)!}{((\lambda - 1)ni)!} \right\} = \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n i)!}{((\lambda - 1)n)!} \right\}. \\ & \text{Referring to } (\mathbf{3.12}), \text{ when } m = ni \ge n \ge \lambda - 2 \ge 13, \ \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n i)!}{((\lambda - 1)ni)!} \right\} > 1. \text{ Thus,} \\ & \text{when } n \ge \lambda - 2 \ge 13, \ \Gamma_{\lambda n \ge p > (\lambda - 1)n} \left\{ \frac{(\lambda n)!}{((\lambda - 1)n)!} \right\} > 1. \text{ Referring to } (\mathbf{1.3}), \text{ there exists at least a} \\ & \text{prime number } p \text{ such that } (\lambda - 1)n$$

Thus, Proposition (3.1) is proven. It becomes a theorem: Theorem (3.1).

4. Proof of Legendre's Conjecture

Legendre's conjecture states that there is a prime number between n^2 and $(n + 1)^2$ for every positive integer n. (4.1)

Proof:

Referring to **Theorem (3.1)**, for integers $j \ge k - 2 \ge 13$, there exists at least a prime number p such that j(k - 1) . (4.2)

When $k = j + 1 \ge 15$, then $j = k - 1 \ge 14$. Applying k = j + 1 into **(4.2)**, then $j^2 .$ $Let <math>n = j \ge 14$, then we have $n^2 .$ **(4.3)**

For $1 \le n \le 13$, we have a table, **Table 1**, that shows Legendre's conjecture valid. (4.4)

n	1	2	3	4	5	6	7	8	9	10	11	12	13
n^2	1	4	9	16	25	36	49	64	81	100	121	144	169
p	3	5	11	19	29	41	53	67	83	103	127	149	173
$(n+1)^2$	4	9	16	25	36	49	64	81	100	121	144	169	196

Table 1: For $1 \le n \le 13$, there is a prime number between n^2 and $(n + 1)^2$.

Combining (4.3) and (4.4), we have proven Legendre's conjecture.

Extension of Legendre's conjecture

There are at least two prime numbers, p_n and p_m , between j^2 and $(j + 1)^2$ for every positive integer j such that $j^2 < p_n \le j(j + 1)$ and $j(j + 1) < p_m < (j + 1)^2$ where p_n is the n^{th} prime number, p_m is the m^{th} prime number, and $m \ge n + 1$. (4.5)

Proof:

Referring to **Theorem (3.1)**, for integers $j \ge k - 2 \ge 13$, there exists at least a prime number p such that j(k-1) .

When $k-1 = j \ge 14$, then $j(k-1) = j^2 < p_n \le jk = j(j+1)$. Thus, there is at least a prime number p_n such that $j^2 < p_n \le j(j+1)$ when $j = k-1 \ge 14$. When $j = k-2 \ge 14$, then k = j+2.

 $j(k-1) = j(j+1) < p_m \le jk = j(j+2) < (j+1)^2$. Thus, there is at least another prime number p_m such that $j(j+1) < p_m < (j+1)^2$ when $j = k-2 \ge 14$.

Thus, when $j \ge 14$, there are at least two prime numbers p_n and p_m between j^2 and $(j + 1)^2$ such that $j^2 < p_n \le j(j+1) < p_m < (j+1)^2$ where $m \ge n+1$ for $p_m > p_n$. (4.6)

For $1 \le j \le 13$, we have a table, **Table 2**, that shows that (4.5) is valid. (4.7)

Table 2: For $1 \le j \le 18$, there are 2 primes such that $j^2 < p_n \le j(j+1) < p_m < (j+1)^2$.

j	1	2	3	4	5	6	7	8	9	10	11	12	13
j^2	1	4	9	16	25	36	49	64	81	100	121	144	169
p_n	2	5	11	19	29	41	53	67	83	103	127	149	173
j(j+1)	2	6	12	20	30	42	56	72	90	110	132	156	182
p_m	3	7	13	23	31	43	59	73	97	113	137	163	191
$(j + 1)^2$	4	9	16	25	36	49	64	81	100	121	144	169	196

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5).

5. The Proofs of Three Related Conjectures

Oppermann's conjecture states that for every integer x > 1, there is at least one prime number between x(x - 1) and x^2 , and at least another prime number between x^2 and x(x + 1). (5.1)

Proof:

Theorem (4.5) states that there are at least two prime numbers, p_n and p_m , between j^2 and $(j + 1)^2$ for every positive integer j such that $j^2 < p_n \le j(j + 1) < p_m < (j + 1)^2$ where $m \ge n + 1$ for $p_m > p_n$.

j(j + 1) is a composite number except j = 1. Since $j^2 < p_n \le j(j + 1)$ is valid for every positive integer j, when we replace j with j + 1, we have $(j + 1)^2 < p_v < (j + 1)(j + 2)$.

Thus, we have $j(j+1) < p_m < (j+1)^2 < p_v < (j+1)(j+2)$. (5.2)

When $x > 1$, then $(x - 1) \ge 1$. Substituting j with $(x - 1)$ in (5.2), we have	
$x(x-1) < p_m < x^2 < p_v < x(x+1)$	(5.3)

Thus, we have proven Oppermann's conjecture.

Brocard's conjecture states that there are at least 4 prime numbers between $(p_n)^2$ and $(p_{n+1})^2$, where p_n is the n^{th} prime number, for every n > 1. (5.4) **Proof:** **Theorem (4.5)** states that there are at least two prime numbers, p_n and p_m , between j^2 and $(j + 1)^2$ such that $j^2 < p_n \le j(j + 1)$ and $j(j + 1) < p_m < (j + 1)^2$ for every positive integer j, where $m \ge n + 1$ for $p_m > p_n$. When j > 1, j(j + 1) is a composite number. Then **Theorem (4.5)** can be written as $j^2 < p_n < j(j + 1)$ and $j(j + 1) < p_m < (j + 1)^2$.

In the prime number series: $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$, ... Except p_1 , all prime numbers are odd numbers. Their intervals are 2 or more. Thus, when n > 1, $(p_{n+1} - p_n) \ge 2$. Thus, we have $p_n < (p_n + 1) < (p_n + 2) \le p_{n+1}$ when n > 1. (5.5)

Applying **Theorem (4.5)** to **(5.5)**, when n > 1, we have at least two prime numbers p_{m1} , and p_{m2} in between $(p_n)^2$ and $(p_n + 1)^2$ such that $(p_n)^2 < p_{m1} < p_n(p_n + 1) < p_{m2} < (p_n + 1)^2$, and at least two more prime numbers p_{m3} , p_{m4} in between $(p_n + 1)^2$ and $(p_n + 2)^2$ such that $(p_n + 1)^2 < p_{m3} < (p_n + 1)(p_n + 2) < p_{m4} < (p_n + 2)^2 \le (p_{n+1})^2$. Thus, there are at least 4 prime numbers between $(p_n)^2$ and $(p_{n+1})^2$ for n > 1 such that $(p_n)^2 < p_{m1} < p_n(p_n + 1) < p_{m2} < (p_n + 1)^2 < p_{m3} < (p_n + 1)(p_n + 2) < p_{m4} < (p_{m+1})^2$. (5.6)

Thus, Brocard's conjecture is proven.

Andrica's conjecture is named after Dorin Andrica. It is a conjecture regarding the gaps between prime numbers. The conjecture states that the inequality $\sqrt{p_{n+1}} - \sqrt{p_n} < 1$ holds for all n where p_n is the n^{th} prime number. If $g_n = p_{n+1} - p_n$ denotes the n^{th} prime gap, then Andrica's conjecture can also be rewritten as $g_n < 2\sqrt{p_n} + 1$. (5.7)

Proof:

From **Theorem (4.5)**, for every positive integer j, there are at least two prime numbers p_n and p_m between j^2 and $(j + 1)^2$ such that $j^2 < p_n \le j(j + 1) < p_m < (j + 1)^2$ where $m \ge n + 1$ for $p_m > p_n$. Since $m \ge n + 1$, we have $p_m \ge p_{n+1}$. Thus, we have $j^2 < p_n$ (5.8) and $p_{n+1} \le p_m < (j + 1)^2$. (5.9) Since j, p_n , p_{n+1} , and (j + 1) are positive integers, $j < \sqrt{p_n}$ (5.10) and $\sqrt{p_{n+1}} < j + 1$. (5.11)

Applying (5.10) to (5.11), we have $\sqrt{p_{n+1}} < \sqrt{p_n} + 1$. (5.12)

Thus, $\sqrt{p_{n+1}} - \sqrt{p_n} < 1$ holds for all *n* since in **Theorem (4.5)**, *j* holds for all positive integers. Using the prime gap to prove this conjecture, from **(5.8)** and **(5.9)**, we have

$$g_n = p_{n+1} - p_n < (j+1)^2 - j^2 = 2j + 1 . \text{ From (5.10)}, \ j < \sqrt{p_n} .$$

Thus, $g_n = p_{n+1} - p_n < 2\sqrt{p_n} + 1 .$ (5.13)

Thus, Andrica's conjecture is proven.

6. References

[1] W. Yu, (2023) The Proofs of Legendre's Conjecture and Three Related Conjectures. *Journal of Applied Mathematics and Physics*, **11**, 1319-1336.

- [2] Mathword, https://mathworld.wolfram.com/LegendresConjecture.
- [3] Oppermann, L. (1882), Om vor Kundskab om Primtallenes Mængde given Grændser, Oversigt Oversigt over Det Kongelige Danske Videnskabernes Selskabs Forhandlinger og Dets Medlemmers Arbejder: 169–179
- [4] Wikenigma, https://wikenigma.org.uk/content/mathematics/brocards_conjecture
- [5] Andrica, D. (1986). "Note on a conjecture in prime number theory". *Studia Univ. Babes–Bolyai Math.* **31** (4): 44–48. ISSN 0252-1938. Zbl 0623.10030.