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Abstract. 

 

We present in this article fundamental elements that can guide us in the process of developing a 

possible classical electromagnetic theory. Maxwell's equations, which involve line integrals of the 

electric and magnetic fields, are reformulated into expressions that are almost completely 

symmetrical. We show that the continuity equation for current naturally arises from the 

reformulated Maxwell-Ampère law. Ampère's law is generalized and applied to calculate the 

magnetic field due to some common current distributions found in the literature, including a 

moving charged particle and a finite current segment. The expression for magnetic force is 

modified, and the cyclotron frequency of a charged particle in a uniform magnetic field is obtained 

in accordance with classical mechanics. The magnetic field in the spin-orbit interaction within an 

atom is determined from the reference frame at rest with the nucleus, which cannot be achieved 

with electromagnetic theory in its usual form. The force between two long current-carrying wires 

and a brief discussion on the interaction between two arbitrary current circuits are addressed using 

the reformulated laws. Next, we present a special non-material medium to correspond to the 

luminiferous ether, that is, a medium through which the electromagnetic wave propagates. Then, 

the electromagnetic interaction between two charged particles is examined. Thus, in this work, we 

propose basic elements to complete the classical electromagnetic theory. 
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1. Introduction. 

 

Since Maxwell modified Ampère’s law [1,2,3] in 1865, the pursuit of symmetries within 

the fundamental laws of a theory have become a subject of general scientific interest. Among the 

goals of this work, one is to present a new formulation of the Maxwell-Ampère and Faraday laws 

[3,4,5], a reformulation that exhibits an almost complete symmetry between these two laws upon 

interchanging E and B, symbols representing the electric and magnetic fields, respectively, as used 

throughout this study. 

In the development of the electromagnetic theory presented here, we will use Gaussian 

units, for which 0=
1/4 and 0 =4/c2. Therefore, Maxwell's equations [3,6] take the following 

forms: 

Gauss's Law                                          𝛁 ⋅ 𝐄 = 4𝜋𝜌,                (1.1) 

Gauss's law for the magnetic field        𝛁 ∙ 𝐁 = 0,                    (1.2) 

Faraday's Law                                       𝛁 × 𝐄 = −
1

c

∂

∂t
𝐁,         (1.3) 

Maxwell and Ampère`s Law                 𝛁 × 𝐁 =
4π

c
𝐉 +

1

c

∂

∂t
𝐄.   (1.4) 



  

The symbols have their usual meanings as found in literature. The last two equations, (1.3) and 

(1.4), will be rewritten in more generalized and nearly symmetric forms. 

To achieve our objectives, we will consider Faraday’s law of 

induction for a closed-circuit C, with velocity 𝐯´ =
d𝐫´

dt
 , as shown in Fig. 

(1.1), expressed in integral form [3,4] 

∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c

d

dt
∫ 𝐁 ⋅ d𝐚

𝑆
.   (1.5) 

where E is the electric field induced at the position of the element dl in 

C, due to the variation in magnetic flux, 

φ(t) ≡ ∫ 𝐁 ⋅ da
𝑆

,    (1.6) 

across a surface S with boundary C. Since the circuit C is moving with 

velocity v´, the total time derivative in (1.5) must account for this motion. 

Given that the divergence of the magnetic field is zero, ∇ ∙ 𝐁 = 0, the 

total time derivative of the magnetic flux φ(t), through the moving circuit 

C 3 can be expressed as 
d

dt
φ(t) =

d

dt
∫ 𝐁 ⋅ d𝐚

𝑆
=  − ∮ 𝐁 ∙ (d𝒍 × 𝐯´)

𝐶
 + ∫

∂

∂t
𝐁 ⋅ d

𝑆
a.    (1.7) 

Thus, Faraday's law (1.5) can be written in the form 

∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
 ∮ (−𝐯´ × 𝐁) ⋅ d𝒍

𝐶
 −  

1

c
∫

∂

∂t
𝐁 ⋅ d𝐚

𝑆
,     (1.8) 

where the line integral in the first term on the right-hand side represents the rate of change of 

magnetic flux through S due to the motion of the circuit C; it also corresponds to the rate at which 

the magnetic flux or the magnetic field lines are swept by the curve C. Furthermore, regarding the 

first term on the right-hand side of relation (1.8), we can state that it represents the circulation of 

the magnetic force per unit charge, or the induced electromotive force, which arises due to the 

motion of C [4,5]. In fact, the magnetic force on a particle with charge q in the circuit C, moving 

with velocity v', is 

𝐅 =  
q

c
 𝐯´x 𝐁.       (1.9) 

We will use these interpretations, referring to the first term on the 

right side of expression (1.8), to develop a reformulation of Faraday’s 

and Maxwell-Ampère’s laws in the following sections.  

In the literature, one finds the integral form of Faraday's law (1.8) 

generalized for an arbitrary movement of circuit C, denoting 𝐯´ =
d𝐫´

dt
  as 

the velocity of the infinitesimal element dl of the circuit, as shown in Fig. 

(1.1), and considering the circuit as a closed imaginary line C [3,4,5]. 

With a new formulation in mind, we will consider the velocity v = u 

- v´ as the velocity of the E and B field lines relative to the dl element of 

curve C. Here, we introduce the concept of field line velocity, where u 

represents the velocity of the E and B field lines at the position r of the 

element dl respect to the laboratory reference frame, the observation 

frame (see Fig. (1.2)). 

 

2. Reformulation of Faraday’s Law and Maxwell-Ampère’s Law. 

 

 We will begin the present development by considering the situation where the temporal 

variations of the electric and magnetic fields at the observation point r occur due to the movement 

v´ 

dr´ 

dl 

Figure (1.1). Circuit C with 

velocity v' in the magnetic 

field B. 

dlxv´ 

B 

C 

´ 

B 
E 

u 

v´ dl 

C 

´ 

Figure (1.2). Curve C, the 

element dl with velocity v'.    

E and B represent the field 

lines at dl with velocity u. 



  

of the field lines relative to r, as in the case, for example, of the dragging of fields lines 

configurations by a charged particle or a magnet due to their motion, say with velocity u.  

Let B(r, t) and E(r, t)  be, respectively, the magnetic field and the electric field at the 

position r of the element dl of curve C, and 

𝐯 = 𝐮 − 𝐯´      (2.1) 

the velocity of the magnetic and/or electric field lines relative to C at the position r of the element 

dl, as shown in Fig. (1.2), which is determined by the motion of the sources generating B and E 

(such as a moving electromagnet or a moving charged particle) with velocity u and by the 

movement of curve C with velocity v' at r. So, keeping in mind the restriction imposed on the 

variation of the fields, we write the modified form of Faraday’s law 

∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
 ∮ (𝐯 × 𝐁) ⋅ d

𝐶
𝒍 = −

1

c
 ∮ (𝐮 − 𝐯´) × 𝐁 ⋅ d𝒍

𝐶
,   (2.2) 

which results directly from expression (1.5), and which, when compared with relation (1.8), leads 

us to identify the equality 

∮ (𝐮 × 𝐁) ⋅ d𝒍
𝐶

= ∫
∂𝐮

∂t
𝐁 ⋅ d𝐚

𝑆
.     (2.3) 

Here, we observe that the variation of the magnetic field across surface S, with boundary on curve 

C, considered momentarily at rest, is due to the movement of the magnetic field lines B inward (or 

outward) through the curve. This variation is quantified in relation (2.3), which relates the flux 

swept by the curve per unit time with the flux variation through S due to the movements of the B 

field lines. The index u in the derivative operation within the integral on the right-hand side 

indicates that we are considering only variations in B due to the movement of the field lines. The 

negative factor on the right side of (2.2), as in (1.5), is required by Lenz's experimental law 

[3,4,5,6,8], which we can state here as follows: the induced electric field E along curve C is such 

that it opposes the flux of the magnetic field B swept by curve C. 

 The differential form corresponding to (2.3) is 

 (𝐮 ⋅ 𝛁)𝐁 = −
∂𝐮

∂t
𝐁,      (2.4) 

 which can be obtained using Stokes' theorem [3,4,5] in relation (2.3), Maxwell's equation (1.2), 

𝛁 ∙ 𝐁 = 0, and assuming that the velocity u is independent of the position vector r of the 

observation point. Such a relation can be used to determine u in situations where we cannot directly 

relate u to the velocity of the source of the magnetic field, as in the case of a magnet’s velocity. 

 Let us consider law (2.2) for the case v' = 0, with the curve C at rest, and use equality (2.3) to 

express the relations 

∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
∮ 𝐮 × 𝐁 ⋅ d𝒍 =  −

1

c
∮

∂𝐮

∂t𝑆𝐶
𝐁 ∙ d𝐚,     (2.5) 

where we identify the integral form of Faraday's law, which here involves only the flux variation 

over S due to the movement of the field lines. The flux variation of the magnetic field due to the 

creation of field lines or the increase of field lines in the study region because of changes in field 

sources, such as the variation in current in an electromagnet, was not considered. In the above 

development, only the motion of the electromagnet, with its current fixed, was addressed. Thus, 

we propose the following reformulation of Faraday’s law (1.3) in the integral form for a general 

situation: 

∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
 ∮ (𝐯 × 𝐁) ⋅ d

𝐶
𝒍 −

1

c
∫

∂f

∂t
𝐁

𝑆
∙ d𝐚,    (2.6) 

where the flux variation per unit time across S, due to the movement of the B field lines relative to 

curve C, is represented by the first integral on the right side, and the integral in the last term denotes 

the flux variation of the magnetic field B per unit time due to changes in the field source, such as 

variations in the current in an electromagnet. The superscript f in the last integral of (2.6) is and 



  

will be used to specify this type of variation of magnetic field B and the electric field E in the 

following developments. 

Keeping in mind the importance and application of symmetry in physics [2,3,4,7] and the 

reformulation of Faraday’s law (2.6), we propose the new form for the Maxwell-Ampère law: 

∮ 𝐁 ⋅ d𝒍
𝐶

=
1

c
 ∮ (𝐯 × 𝐄) ⋅ d𝒍 +

1

c
∫

∂f

∂t
𝐄

𝑆𝐶
∙ d𝐚,    (2.7) 

where the first integral on the right side represents the flux of the electric field E swept by curve C 

per unit time due to the movement of the E field lines relative to C, and the integral in the last term 

represents the flux variation of the electric field E over S per unit time, resulting from changes in 

the source of the E field, such as variations in the magnetic field in the region. Here, we observe 

an almost complete symmetry between laws (2.6) and (2.7), with symmetry broken by the negative 

factor in (2.6), a consequence of Lenz's law [3,4,5,7] as previously mentioned. 

 Using Stokes' theorem [3,4,5], we then write the differential form for the reformulated 

Faraday’s law (2.6): 

𝛁 × 𝐄 = −
1

c
𝛁 × (𝐯 × 𝐁) −

1

c

∂f

∂t
𝐁,     (2.8) 

and for the Maxwell-Ampère law (2.7): 

𝛁 × 𝐁 =
1

c
𝛁 × (𝐯 × 𝐄) +

1

c

∂f

∂t
𝐄.     (2.9) 

We should note, by taking the divergence of expressions (2.8) and (2.9), that 

∇ ∙
∂f

∂t
𝐁 = 0     e     ∇ ∙

∂f

∂t
𝐄 = 0,     (2.10) 

 In other words, the increments in the electric and magnetic fields per unit time, due solely to 

variations in the sources (such as the acceleration of charged particles, current variations, or 

variations in the E and B fields, excluding variations in E and B due to the movement of field lines 

at point r) have zero divergence. 

 At this point, by accepting relations (2.6) and (2.7) as valid, we can assert that at an observation 

point r moving relative to magnetic (electric) field lines, an electric (magnetic) field exists, and 

likewise, variations in the magnetic (electric) field due to source changes imply the existence of an 

electric (magnetic) field at r. The integral forms (2.6) and (2.7) and the differential forms (2.8) and 

(2.9) are nearly symmetric with respect to the exchange of E for B, which is not the case with the 

conventional forms, where the Maxwell-Ampère law explicitly contains the term 4J/c, involving 

the current density J. 

 To ensure the acceptance of relations (2.8) and (2.9), along with their integral forms, as 

generalizations of Faraday’s and Maxwell-Ampère's laws, respectively, we will derive from them 

the well-known forms of Faraday’s and Maxwell-Ampère’s laws [3,4,5,6]. For this, we consider 

curve C at rest, i.e., v' = 0, and assume that u, the velocity of the field lines, is independent of the 

observation position r. So, we can write that [4] 𝛁 × (𝐯 × 𝐄) = 𝛁 × (𝐮 × 𝐄) = 𝐮(𝛁 ⋅ 𝐁) −
(𝐮 ⋅ 𝛁)𝐁, and since ∇ ∙ 𝐁 = 0, it follows from (2.8) that 

𝛁 × 𝐄 =
1

c
(𝐮 ⋅ 𝛁)𝐁 −

1

c

∂f

∂t
𝐁.      (2.11) 

And then, by using relation (2.4), the usual form of Faraday’s law (1.3) follows immediately 

𝛁 × 𝐄 = −
1

c

∂𝐮

∂t
𝐁 −

1

c

∂f

∂t
𝐁 = −

1

c

∂

∂t
𝐁,    (2.12) 

that is 

𝛁 × 𝐄 = −
1

c

∂

∂t
𝐁,      (2.13) 

where we introduce the expression 



  

∂

∂t
𝐁 =

∂𝐮

∂t
𝐁 +

∂f

∂t
𝐁,      (2.14) 

for the total time variation of B(r, t) at r.  

 Now let us consider the generalized Maxwell-Ampère law (2.9), and write [4] 

𝛁 × 𝐁 =
1

c
[𝐮(𝛁 ⋅ 𝐄) − (𝐮 ⋅ 𝛁)𝐄] +

1

c

∂f

∂t
𝐄.    (2.15) 

The spatial differential operations are associated with the displacement dr of the field lines relative 

to the observation point r. Keeping in mind Gauss's law [3,4,5] 𝛁 ⋅ 𝐄 = 4𝜋𝜌, where 𝜌 is the charge 

density at point r, and using relation (2.4) for the electric field, which becomes (𝐮 ⋅ 𝛁)𝐄 = −
∂𝐮

∂t
𝐄, 

we can derive from relation (2.15) the expression 

 𝛁 × 𝐁 =
4π

c
ρ𝐮 +

1

c

∂𝐮

∂t
𝐄 +

1

c

∂f

∂t
𝐄.     (2.16) 

And, as u, the speed of the electric field line, is the velocity of the charge carrier at r, it follows 

that 𝐮ρ(𝐫, t) = 𝐉(𝐫, t ) = 𝐉 is the current density, and thus from (2.16) we write the Maxwell-

Ampère law (1.4), 

𝛁 × 𝐁 =
4π

c
𝐉 +

1

c

∂

∂t
𝐄,      (2.17) 

where we use the relation  

∂

∂t
𝐄 =

∂𝐮

∂t
𝐄 +

∂f

∂t
𝐄,      (2.18) 

for the total time variation of the electric field E(r, t) at point r.  

 It is useful to take a moment here to introduce the important continuity equation for current 

[3,4,5], which expresses the law of charge conservation. To do so, let us take the divergence of 

relation (2.17), use relation (2.18), and apply the relation  ∇ ∙
∂f

∂t
𝐄 = 0 from (2.10), which allows 

us to write 
4π

c
 𝛁 ∙ 𝐉 +

1

c
𝛁 ∙

∂𝐮

∂t
𝐄 =

4π

c
 𝛁 ∙ 𝐉 +

1

c

∂𝐮

∂t
𝛁 ∙ 𝐄 = 0,     

where the permutation between the operators 
∂𝐮

∂t
  and ∇ was used. And, finally, using Gauss's law 

(1.1), it results in 

𝛁 ∙ 𝐉 +
∂𝐮

∂t
𝜌= 0,     (2.19) 

the continuity equation of the current, which tells us that the variation of charge within a closed 

surface per unit of time is solely due to the displacement of charges across the surface per unit of 

time. Thus, the presence of the index u in relation (2.19) can now be omitted, and we write 

𝛁 ∙ 𝐉 +
𝜕

∂t
𝜌 = 0,      (2.20) 

the continuity equation of the current as presented in the literature [3,4,5]. In the present 

formulation, we can state that the relations 
𝜕

∂t
𝜌 =

𝜕𝐮

∂t
𝜌   ou   

∂f

∂t
𝜌 = 0       

are also expressions of charge conservation; in other words, we can state that the temporal variation 

of the charge density 𝜌(𝐫, t)  occurs exclusively due to the movement of charge between point r 

and its vicinity, a movement here remembered by the index u. 

 Let's briefly address in this paragraph the concept of displacement current density JD 

[3,4,5,7,8]. For this, let us consider again expression (2.16) and write the expressions 

𝛁 × 𝐁 =
4π

c
𝐉 +

4π

c
ϵ0

∂𝐮

∂t
𝐄 +

1

c

∂f

∂t
𝐄,    (2.21) 

and 



  

𝛁 × 𝐁 =
4π

c
(𝐉 + 𝐉D) +

1

c

∂f

∂t
𝐄,     (2.22) 

after we use the relation ϵ0 = 1
4π⁄  and that 

𝐉D = ϵ0
∂𝐮

∂t
𝐄.      (2.23) 

Where a new definition for the displacement current density JD is presented in terms of 
∂𝐮

∂t
𝐄. We 

also recall that, in the last term on the right side of (2.22), the time derivative with index f is taken 

by considering the electric field lines momentarily at rest. 

 Thus, considering the developments above, we can accept that relations (2.8) and (2.9) are, 

respectively, generalizations of Faraday's law (1.3) and Maxwell-Ampère's law (1.4). We rewrite 

them below in their integral forms (2.6) and (2.7) without using the indices u and f, noting that the 

line integrals on the right-hand sides represent the fluxes of the fields swept per unit time by the 

curve C, due to the motion of the field lines relative to C. The surface integrals represent the flux 

variations of the fields on surface S, per unit time, due to variations in the sources of the fields. 

Faraday´s Law:                      ∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
 ∮ (𝐯 × 𝐁) ⋅ d

𝐶
𝒍 −

1

c
∫

∂

∂t
𝐁 ⋅ d𝐚

𝑆
,  (2.24) 

 

Maxwell -Ampère´s Law: ∮ 𝐁 ⋅ d𝒍
𝐶

=
1

c
 ∮ (𝐯 × 𝐄) ⋅ d

𝐶
𝒍 +

1

c
∫

∂

∂t
𝐄 ⋅ d𝐚

𝑆
.   (2.25) 

 In the next section, we will address some simple problems in electromagnetism using the 

integral form of Maxwell-Ampère's law, (2.25). We will select the observer's reference frame such 

that v' = 0 and thus v = u. 

 

3. The Generalized Ampère's Law and Applications. 
 

In this section, the chosen curve C is at rest, so v' = 0 and v = u. We will apply the 

generalized law (2.25) in low-velocity regimes, u<<c, so that we can use classical expressions for 

the electric field E in determining the magnetic field B due to certain current distributions, 

problems thoroughly covered in electromagnetism texts using Ampère's law and/or the Biot-Savart 

law [3,4,5,7,8]. In other words, these are problems where ∫
∂

∂t
𝐄 ⋅ d𝐚

𝑆
= 0. Thus, the relation to be 

used is 

∮ 𝐁 ⋅ d𝒍
𝐶

=
1

c
 ∮ (𝐮 × 𝐄) ⋅ d

𝐶
𝒍.     (3.1) 

Which we will call Ampère's generalized law. The integral on the right side of (3.1), to the current 

distributions here addressed, corresponds to 4π(𝐈 + 𝐈D), where I is the conduction current and ID is 

the displacement current associated with the displacement current density JD defined in equation 

(2.23). 

 

i) Infinitely long current-carrying wire. 

 

In this first example, we observe that the resulting electric field Er due to the long current-

carrying wire is zero. However, at any position r, Fig. (3.1), there are moving electric field lines, 

associated with the electric field E of the charge carriers moving at velocity u, generating the 

current I. Let λ be the linear charge density of these carriers; by integrating Coulomb's law or 

applying Gauss's law [3,4,5,7,8] over the infinite linear charge distribution with density λ, it follows 

the expression 

𝐄 =  
2λ

r
 �̂�         (3.2) 



  

for the electric field E, whose field lines are in motion. 

 Then, using Ampère's generalized law (3.1), expression (3.2), and the symmetry shown in 

Fig. (3.1), we obtain the magnetic field, 

  

𝐁 =  
1

c
𝐮 × 𝐄 =   

2λ

cr
𝐮 × �̂̂�̂,   (3.3) 

and since 𝐮 = u�̂� and u = I, it is the current in the wire, the 

expression results as 

𝐁 =   
2I

cr
�̂� × �̂�,    (3.4) 

which is the expected result [7,8]. 

We observe in this example that there is no variation 

in the electric field flux through a surface S with boundary 

C, and the flux through such a surface is zero. Consequently, 

the integral on the right side of Ampère's generalized law 

(3.1) is exclusively the flux swept by the curve C per unit of 

time. It can also be shown here that 

∮ 𝐁 ⋅ d𝒍
𝐶

=
4π

𝑐
I   (3.5) 

for any curve C, regardless of its shape. That is, one can 

obtain from expression (3.1) the Ampère's law, highlighting 

the generality of law (3.1). 

 

ii) Particle with charge q and constant velocity u. 

 

In this example sketched in Fig. (3.2), the velocity u 

of the electric field line, at position r relative to the particle, 

is equal to the velocity of this. The electric field lines E are 

radial, emanating from the charge, and the lines of the vector 

field uxE and the magnetic field B are circular lines, 

perpendicular and coaxial to the direction of u, consequences 

of the symmetry of this problem, which leads us to choose 

the curve C coaxial and perpendicular to z. Then it follows 

from the modified Ampère’s law (3.1) that 

𝐁 =  
1

c
 𝐮 × 𝐄.    3.6) 

Where for E, because of the low-velocity regime, we 

consider the Coulomb field [4,5,7,8], 

𝐄 =  
q𝐫

r3       (3.7) 

And it follows, for the magnetic field, the result: 

𝐁 =  
q𝐮

c
×

𝐫

r3 ,         (3.8) 

which corresponds to the Biot-Savart law [3,4,5]. Such a problem cannot be addressed by Ampère’s 

law [3,4,5,7,8], which provides a second evidence for the generality of relation (3.1), the 

generalized Ampère’s law. 

uxE 

dl 
E 

r 

u 

B 

q 
C 

Figure (3.2). Fixed circular curve C, 

coincident with the lines of the fields   

B and u x E, element dl at position r, 

charge q with velocity u along the z -

axis direction. 

z 

 

 

 

u 

r 
I

u 

B 
C 

Figure (3.1) Speed u of the electric 

field line E at point r, due to the 

charge carriers in the infinite straight 

wire. The field lines uxE and B, 

coinciding with curve C, are also 

shown. 



  

iii) Finitely current-carrying wire. 

 

In this case, the resulting electric field Er due to the current-

carrying wire is also zero. However, at any position r (see the 

figures (3.3) and (3.4)), there are moving electric field lines, those 

associated with the electric field E of the charge carriers moving 

at velocity u, which generate the current I; let λ be the linear charge 

density of these carriers. By integrating Coulomb's law [4,5,7,8] 

over this finite linear charge distribution, we obtain for the electric 

field, with moving lines, the expression 

𝐄 =  
λ

r
[(sin(θ2)-sin(θ1))�̂� − (cos(θ2)-cos(θ1))�̂�]  (3.9) 

 Thus, using the generalized Ampère's law (3.1), the 

result (3.9), and the symmetry shown in Fig. (3.3), we obtain 

the magnetic field, 

𝐁 =   
1

c
 𝐮 × 𝐄 =

λ

cr
(sin(θ2)-sin(θ1))𝐮 × �̂�. (3.10) 

Since 𝐮 = u�̂� and u = I, the expression results as 

𝐁 =   
I

cr
[sin(θ2)-sin(θ1)]�̂� × �̂�,  (3.11) 

the expected result according to the literature [3,4,5,7,8], 

where the Biot-Savart law (3.8) integration is used. In this 

problem, the usual Ampère's law does not apply either. 

 

iv) Infinite current plane. 

 

Let σ be the surface charge density of the carriers 

generating the linear current density i in the plane. Thus, 

according to Fig. (3.5), the electric field whose lines move with 

velocity u is 

E = 2πσ r̂,   (3.12) 

which can be obtained using Gauss's law [7,8], where �̂� is the unit 

normal vector to the plane. Then, using relation (3.1) and Fig. 

(3.5), we write the expressions 

𝐁 =  
1

c
 𝐮 × 𝐄 =  

1

c
2πσ(𝐮 × �̂�) =

1

c
2πσu�̂� ,  (3.13)  

with �̂� defined in the relation 𝐮 × �̂� = u�̂�, and since σu=i, the 

linear current density, we write for B the well-known formula 

[3,7,8]. 

𝐁 =
2πi 

c
�̂�.    (3.14) 

 

v) A long solenoid with current. 

 

Let us consider, as a final example in this section, a long cylindrical charge distribution, 

with linear charge density λ, rotating around its z-axis with angular velocity w, as shown in Fig. 

(3.6). Here, the moving electric field lines are those of the field 

𝐄 =  
2λ

r
 �̂�          (3.15) 
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and it follows, using the symmetry results of this 

problem found in the literature [4,5,7,8] and the 

modified Ampère's law (3.1), for the magnetic field the 

expression 

𝐁 =  −
2λ

cr
u×�̂� =

2λ

c
w�̂� .  (3.16) 

Since w=2πi, where i is the linear current density, the 

solution is given by 

𝐁  =  
4π i

c
 �̂�  .   (3.17) 

And for the case of a long solenoid with concatenated 

turns, where we identify that w=2πnI with n being the 

turn density and I the current in the turns, the expression 

follows as 

 

𝐁  =
𝟒𝛑 nI

𝐜
 �̂� ,   (3.18) 

 

well-known in literature [3,4,5,7,8]. 

 

4. Reformulation of Magnetic Force and the Final Forms of Maxwell's Equations. 

 

In this section, we present a reformulation of the magnetic force based on experimental results 

from two problems. The first is the dependence of cyclotron frequency [4,5,7,8] on the velocity of 

a charged particle in a uniform magnetic field. The second problem involves the magnetic field due 

to the nucleus in the spin-orbit interaction within an atom [3,5], 

analyzed from the perspective of an observer at rest with respect 

to the atom's nucleus, a problem for which no solution exists 

within usual electromagnetic theory. With these considerations 

in mind, we propose the expression for the magnetic force F on 

a particle with charge qi and velocity vi in a magnetic field B as 

follows: 

 𝐅 =  αi
qi

c
 𝐯ix𝐁 .   (4.1) 

Where, in this new formula, vi is the velocity of the particle 

relative to the magnetic field lines, and  𝛼i = (1 −  
vi

2

c2 )

1

2
. Thus, 

observers in different inertial frames will measure the same 

magnetic force if B does not depend on the frame of reference, 

in accordance with classical mechanics. We remember that the 

usual magnetic force law depends on the observer, as in this law, vi is the velocity of the particle 

relative to the observer, and 𝛼i = 1. 

 Now, to address the first problem mentioned above, let us consider a particle with mass mi, 

charge qi, and velocity vi in a uniform magnetic field B, as shown in Fig. (4.1). Under the present 

reformulation of the magnetic force, the particle follows a circular motion that satisfies the 

following relationships: 

𝐅 = mi𝐰i × 𝐯i =  αi
qi

c
 𝐯ix𝐁  =  - αi

qi

c
 𝐁x𝐯i,    (4.2) 

from which, for 𝐰i , the cyclotron frequency of the particle, the following relation results: 
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 𝐰i = −αi
qi

mic
 𝐁,       (4.3) 

which shows a dependence on the particle's velocity, consistent with results found in the literature 

[3,4,5,7,8]. In this new treatment presented here, the mass mi remains constant, independent of 

velocity, in accordance with classical mechanics. 

 The problem of the magnetic force between two long current-carrying wires is essential here, 

as it highlights the need for a complementary modification to Faraday's law (2.24) and 

consequently to the Maxwell-Ampère law (2.25), for reasons of symmetry. Let us then consider 

two long, parallel wires carrying currents I1 and I2, as shown in Fig. (4.2), and use the result from 

item i) in Section 3 to write the expression for the magnetic field of 

current I2 at the position of wire 1 as follows: 

𝐁𝟐 =
1

c
𝐮2 × 𝐄𝟐 =

2𝜆2

cr
𝐮𝟐 × �̂� =

2I2

cr
�̂� × �̂�  (4.4) 

where u2 is the velocity of the charge carriers in wire 2, or the 

velocity of the electric field lines E2, due to these carriers, at 

position r. Using the force law (4.1), assuming a low-velocity 

regime where  𝛼1 = (1 − 
v1

2

c2 )

1

2
≅ 1, and that dq1u1 is equivalent 

to I1dl1 (with dq1 being the charge of the carriers in dl1  moving 

with velocity u1), we can write the expressions for the magnetic 

force F12, which is the force on segment dl1 of wire 1 due to wire 

2, as follows: 

d𝐅12 =
dq1𝐮1

c
× (

1

c
𝐮2 × 𝐄𝟐) =

I1𝑑𝒍1

c
× (

2I2

cr
�̂� × �̂�). (4.5) 

Let us remember that, according to the new law of magnetic force (4.1), u1 is the velocity of charge 

dq1 relative to the lines of magnetic field B2. It is important to note that the configuration of the B2 

field lines is stationary relative to wire 2, which applies to any closed current circuit, such as the 

magnetic field of a current loop. 

 By integrating relation (4.5) over dl1 along a length l1 of wire 1 and solving the cross products, 

we obtain the result for the force per unit length between the wires: 

 𝒇12 =
𝐅12

𝑙𝟏
⁄ = −

2I1I𝟐

c

1

cr
�̂� = −

𝜇0I1I2

2π

1

r
�̂�,    (4.6) 

which agrees with the literature [3,4,5,7,8], and where it is verified that 𝒇12 = −𝒇21. If we had 

kept the factor ∝𝑖 ≡ ∝1≠ 1, which appears in the reformulated law of force (4.1), the result (4.6) 

would be 

𝒇12 = −∝1
𝜇0I1I2

2π

1

r
�̂�,       (4.7) 

and then we would have 𝒇12 ≠ −𝒇21, that is, a symmetry breaking, which can be restored if we 

introduce the factor ∝2 in expression (4.4) for the magnetic field B2, redefining it as 

𝐁𝟐 =
1

c
∝𝟐 (𝐮2 × 𝐄𝟐),     (4.8) 

resulting, then, the new expression for 𝒇12. 

𝒇12 = −∝1∝𝟐
𝜇0I1I2

2π

1

r
�̂�,     (4.9) 

and then, we again have that 𝒇12 = −𝒇21. As a consequence of the reformulation of the magnetic 

force in (4.1) and the result we proposed for the magnetic field of a long wire in (4.8), Faraday's 

law (2.24) and the Maxwell-Ampère law (2.25), due to symmetry, must be rewritten as follows: 

Lei de Faraday:                    ∮ 𝐄 ⋅ d𝒍
𝐶

= −
1

c
 ∮ ∝ (𝐯 × 𝐁) ⋅ d

𝐶
𝒍 −

1

c
∫

∂

∂t
𝐁 ⋅ d𝐚

𝑆
,  (4.10) 

Lei de Maxwell - Ampère:   ∮ 𝐁 ⋅ d𝒍
𝐶

=
1

c
 ∮ ∝ (𝐯 × 𝐄) ⋅ d

𝐶
𝒍 +

1

c
∫

∂

∂t
𝐄 ⋅ d𝐚

𝑆
,  (4.11) 
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where here  ∝= (1 −  
v2

c2)

1

2
. We recall that v is the velocity of the electric and magnetic field lines 

relative to the position r of the element dl. Here we reconsider the interpretation that the first term 

on the right side of Faraday's law (4.10) is the circulation of magnetic force per unit charge, if curve 

C is a real circuit, as interpreted just above equation (1.9). We should also note that the usual 

Maxwell's laws (1.3) and (1.4) result from expressions (4.10) and (4.11) in the regime of low field 

line velocities, where v ≪ c  so that ∝≅ 1, as we showed in section 2. 

 Next, using the new expression for the magnetic force and the reformulated Maxwell-Ampère 

law (4.14), we will address a problem that persists in the literature without a coherent explanation. 

This problem is the presence of a magnetic field at the position of an electron in an atomic orbit 

relative to the rest frame of the atomic nucleus. Here, we are referring to the problem of spin-orbit 

interaction, which results in the splitting of the atom's energy spectrum, known as fine structure 

[3,5]. 

 The reformulated Maxwell-Ampère law (4.11) makes evident the existence of a magnetic field 

at a point r moving relative to the lines of an electrostatic field E. For example, a point charge q at 

rest, as outlined in Fig. (4.3), produces a magnetic field B at position r, which moves with velocity 

v´ along with curve C, according to law (4.11), and we have 

sufficient symmetry to write 

𝐁 = −
1

c
𝐯´ × 𝐄,    (4.12) 

where we consider v´ ≪ c, and 𝐄 =  
𝐪𝐫

r3 , it is the field of the charge 

at rest [3,4]. And here, keeping in mind the force law (4.1) and, 

as is known in the literature [3,4,5,7,8], no magnetic force is 

observed on a charge q' moving in an electrostatic field, we 

conclude that in this situation the velocity of the charge q' relative 

to the magnetic field line B, which coincides with the curve C, is 

zero. However, if the charge q' has some motion beyond 

translation, such as an intrinsic magnetic moment, interactions 

will occur. In the case of an orbital electron, we have its spin 

magnetic moment µs, and the interaction can be quantified by the torque, 

 𝐓 = 𝛍𝑠 × 𝐁,       (4.13) 

or by the energy 

U = −𝛍𝑠 ∙ 𝐁.       (4.14) 

Thus, the experimental results on spin-orbit interaction [3,5] corroborate the generalized Maxwell-

Ampère law (4.11), because this, along with the force law (4.1), provides an answer for the 

magnetic field B in relation to the rest frame of the nucleus. 

 In the next section, we present a concrete and real medium to correspond to the luminiferous 

ether, an idea that continues to resonate in scientific literature to the present day [9]. 

 

5. "The Luminiferous Ether". 

 

To conclude our proposal, let us present the medium through which the electromagnetic 

wave propagates, "the luminiferous ether", which we assert to be the electromagnetic field itself, 

that is, not a material medium but an immaterial field. To understand this concept, let us present 

an initial sketch considering a particle with charge q2 moving uniformly at velocity v2, using the 

notation (E2, B2, v2) to designate the electromagnetic field of this particle. If this particle 

experiences a brief impulse of duration δt,  for instance, as it passes through a narrow potential 

Figure (4.3). Curve C with velocity 

v´, coinciding with the field lines        

-v' x E and B, and the charge at rest. 

-v´xE 

v´ 
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 q 
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ramp, acquiring a new velocity v2´, a wave pulse is generated [8] and propagates radially from the 

charge at the speed of light c relative to the medium, which we here reaffirm as the electromagnetic 

field of the particle (E2, B2, v2). The field lines have the same velocity as the source, the charged 

particle, just before the pulse emission, so that the center of the radial lines of the electric field E2 

retains the velocity v2 of the particle before the emission of the pulse. As the pulse propagates, the 

electromagnetic field (E2, B2, v2) transitions into the (E2´, B2´, v2´), with the charge, now moving 

at velocity v2´, at the center of the radial lines of the electric field E2´.  

Taking into account the time  t elapsed since t = 0, when the pulse was emitted, the following 

electromagnetic field distribution results [8]: the field  (E2´, B2´, v2´) is established in R1 ≡ { r <
 ct }, where ct is the radial distance from the center of the E2 field lines to the internal surface of 

the emitted pulse; the field (E2, B2, v2)  remains in region R3 ≡ { r >  c(t + δt)}, where c(t+δt) is 

the radial distance from the center of the electric field E2 lines, that is where the charge would be 

if it were still moving at v2, to the external surface of the pulse. The pulse, located in region R2 ≡
{ct > r <  c(t + δt)}, advances radially at velocity c in the medium (E2, B2, v2) toward region 

R3 ≡ { r >  c(t + δt)}. Figures to visualize this outline are found in reference [8]. In the region 

where the pulse is located, the electromagnetic field exhibits transverse oscillations to the radial 

direction, satisfying a wave equation compatible with Maxwell's equations [3-5] and the 

reformulated Maxwell equations (4.13) and (4.14). 

This concept of an immaterial medium through which the electromagnetic wave propagates 

brings, as a first consequence, a new relation for the Doppler effect of light, where now we must 

consider that the source of the electromagnetic wave moves with the medium through which the 

wave propagates, resulting in the classical formula [3,5] 
𝑓´

𝑓
= ( 1 −

𝐯0∙�̂�

c
 ) ,      (5.1) 

where the restriction that the source and the medium are in relative rest must be considered, v0 is 

the detector’s speed, of the frequency f´, in relation to the medium or source, �̂� indicates the 

direction of wave propagation, and f is the source emission frequency. 

We conveniently leave, as will be noted, for this paragraph a brief discussion on the 

electromagnetic interaction between two charged particles. First, let us observe that a particle with 

charge q1, released with velocity v1 to interact with charge q2, which is in the situation presented in 

the first paragraph of this section, experiences a force whose characteristics depend on the region 

where particle q1 was released. Here, as confirmed by the literature [3,5,8], the concept of force 

between two charged particles lacks meaning, and the idea of interaction at a distance does not 

hold. What occurs is an interaction between particle q1 and an electromagnetic field (E, B, v) at the 

position of q1, which we express by the new force law: 

𝐅 = q1𝐄+∝
𝐮

c
× 𝐁,      (5.2) 

where u = v1 – v, ∝= (1 − 
u2

c2)

1

2
  and the fields E, B, and the velocity v have magnitudes inherent 

to the region where the charge q1 is located. In region 1, for example, we would have the set of 

magnitudes (E´2, B´2, v´2). This means that the particle q1 experiences forces expressed differently 

in different regions. Here, we also note that the concept of force loses meaning unless we present 

an expression for the reaction force of charge q1 on the field (E, B, v). However, this situation does 

not prevent the treatment of such interactions, as these can be addressed using the concepts of 

conservation of energy, linear momentum, and angular momentum, as already established in the 

literature [3,4,5,8]. This is because the particles q1 and q2, when propelled by each other's fields, 

emit electromagnetic pulses as a reaction, carrying energy, linear momentum, and angular 



  

momentum. Such difficulty in the concept of force was not observed in the interaction between 

two long current-carrying wires, discussed in section 4, which led to equation (4.6). Similarly, this 

issue does not arise in the interaction between any two closed current loops [3,4,5], as in these 

cases, the magnetic fields due to closed circuits are stationary, and the conduction charges are 

confined and maintained with their conduction velocity throughout the closed circuit [3,4,5,8], not 

propelled during the interaction.  

So far, we have not presented an expression for the electric field E of a moving charged 

particle. To do this, let us consider the modified electromagnetic force law (5.2) and the situation 

in which two charges q1 and q2 are at rest in reference frame S, and they are kept in this state by 

fixed instruments in S that measure a purely electric force between them. Then, according to law 

(5.2), the force F1 on q1 as measured by an observer in S must be 

𝐅1 = q1𝐄2  e  𝐄2 =  
q2𝐫

r3 ,     (5.3) 

where E2 is the Coulomb field of the particle q2, at rest, at the position r of q1. Now let us consider 

system S' that moves relative to S with velocity -v; then the charges q1 and q2 are observed by an 

observer in S' to have velocity v. According to the force law (5.2), the force between these charges 

is still purely electric, because the relative velocity between charge q1 and the lines of magnetic 

field B2, due charge q2, is zero, and we write 

𝐅1
´ = q1𝐄2

´     e    𝐄2
´ =  

q2𝐫

r3 ,     (5.4) 

where we state that the observer in S' will measure the same force as the observer in S, according 

to classical mechanics, F = F' for these particles confined to uniform rectilinear motion. Thus, we 

conclude that the electric field of a charged particle is independent of the velocity of the inertial 

reference frame in the theory we are proposing here. 

 

6. Conclusion. 

 

The plan proposed in the introduction of this work has been fully accomplished. Maxwell's 

equations (1.3) and (1.4), respectively Faraday's law and Maxwell-Ampère's law, have been 

reformulated, resulting in forms that present greater generality and symmetry. The generalized 

Ampère's law, which results from the reformulated Maxwell-Ampère law, has been successfully 

applied, solving various problems already known in the electromagnetism literature, where they 

are addressed using the Biot-Savart law and/or Ampère's law, among which we mention the infinite 

straight current wire and the finite straight current segment. 

The magnetic field observed in the spin-orbit interaction in an atom, which results in the 

splitting of its energy levels known as fine structure, is obtained using the modified Maxwell-

Ampère law from an inertial reference frame at the nucleus of the atom, which cannot be done with 

the usual Maxwell-Ampère law. 

The expression for the magnetic force was also modified to explain: (i) why the magnetic 

field responsible for the spin-orbit interaction does not exert a force on the electron in translation; 

and (ii) the dependence of the cyclotron frequency of a charged particle in a uniform magnetic field 

on the particle's velocity, maintaining the particle's mass constant, as per classical mechanics.  

Finally, we presented the electromagnetic field itself as the special medium corresponding 

to the luminiferous ether, in which electromagnetic waves propagate, leading to a reinterpretation 

of the Doppler effect and a new understanding of the interaction force between two particles. 

Thus, in this paper, we have established fundamental elements, including a special medium 

through which electromagnetic radiation propagates, to guide us in the development of a possible 



  

classical electromagnetic theory. Our hope is that academics of electromagnetic theory discuss, 

complement, and refine these ideas toward a classical electromagnetic theory. 
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