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Abstract

The Conjoined Spherical Triangle (CST) framework introduces a
novel approach to unifying general relativity and quantum mechan-
ics through the concept of a computationally aware space-time. This
paper presents the CST as a geometrical model that integrates grav-
itational dynamics and quantum phenomena, treating space-time not
only as a passive arena for physical processes but as an active, in-
formationally dynamic system. We explore how the four laws of the
CST—path law, area law, duality law, and entropy law—encode both
space-time curvature and quantum state evolution. By embedding
quantum information within the geometry of space-time, the CST
framework offers a geometrically grounded interpretation of quantum
entanglement, superposition, and the wavefunction collapse. Further-
more, the CST provides a pathway for addressing key challenges in
quantum gravity, such as the black hole information paradox and the
unification of quantum mechanics with general relativity. The poten-
tial applications of the CST extend to high-energy physics, cosmology,
and quantum field theory, where it serves as a computationally aware
medium for processing both gravitational and quantum information.
This paper highlights the CST framework’s potential to bridge the gap
between gravitational systems and quantum states, offering a promis-
ing new direction for the future of theoretical physics.
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1 Introduction

The pursuit of a unified theory of physics has been a central goal of theoret-
ical research for over a century. While general relativity (GR) [1] provides
an elegant description of the large-scale structure of the universe, encom-
passing the behavior of gravitational systems, it struggles to incorporate the
discrete and probabilistic nature of quantum mechanics [2]. On the other
hand, quantum mechanics successfully explains the interactions of particles
at the smallest scales but does not account for the curvature of space-time.

A natural approach to solving this problem is to find a framework that
integrates both theories, allowing them to coexist within a single, unified
structure. In this paper, we propose the Conjoined Spherical Triangle
(CST) as a new and powerful tool for this unification. The CST is based on
simple spherical geometry, yet it provides a framework in which information,
curvature, and computation are intrinsically embedded into the very fabric of
space-time.

We show that the CST framework can explain key phenomena in both
general relativity and quantum mechanics, bridging the gap between the con-
tinuous geometry of gravitational systems and the discrete information at the
heart of quantum mechanics. Specifically, the CST:

• Models free-fall and gravitational deformation within the context of an
infalling object, referencing points A and C to describe its motion.

• Provides a new geometrical understanding of quantum entanglement,
using the deformation parameter to represent entangled states.

• Demonstrates how space-time itself can become computationally aware,
allowing the CST to process quantum information and apply it to grav-
itational systems.

The CST, by unifying geometry and information theory, provides a com-
putationally aware space-time framework that could serve as the cornerstone
for a future theory of quantum gravity. In the following sections, we will
explore the mathematical foundations of the CST, its application to gravita-
tional systems, and its role in quantum information processing.
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2 The Conjoined Spherical Triangle Frame-

work

We now introduce the Conjoined Spherical Triangle (CST), a reversible ge-
ometric structure defined entirely on the surface of a unit sphere. The CST
serves as a curvature-aware informational unit that encodes relationships
among three geometrically significant points: an initial position, an evolving
point, and a center point. This structure enables us to capture asymmetry,
angular deformation, and entanglement-like constraints across evolving spin
network configurations.

Definition and Setup

Let the points A, Q, and C lie on the surface of a unit sphere:

• A is a fixed reference point, analogous to an origin or initial location.

• C is another fixed point, interpreted as the target or geometric anchor.

• Q is a movable point on the arc between A and C, representing a
dynamic evolution state.

Let B′ be a fourth point such that both△AB′Q and△CB′Q are spherical
triangles sharing the common side QB′. This segment QB′ will be denoted
by the symbol h, which we interpret as a hinge length:

QB′ = h.

The two triangles are joined at the segment QB′ and together define the
Conjoined Spherical Triangle. Each triangle is described by its interior angles
at the vertices:

• In triangle △AB′Q, ∠B′AQ = A (sight angle), ∠AQB′ = θ (swing
angle), ∠AB′Q = i (angle of incidence).

• In triangle △CB′Q, ∠B′CQ = C (sight angle), ∠CQB′ = π−θ (swing
angle), ∠CB′Q = r (angle of reflection).

The sides opposite to these angles are as follows:

3



• AB′ and B′C are opposite to angles θ and π− θ (under the symmetric
path condition, θ = π/2),

• Common hinge QB′ = h is opposite angles A and C (under symmetric
swing conditions, A = C),

• AQ and QC lie along the arc between A and C and opposite to angles
i and r (under combined symmetric conditions AC = QC and i = r).

Derivation of Equation 1

We apply the spherical law of sines to both triangles [3]:
For triangle △AB′Q:

sin(AB′)

sin(θ)
=

sin(h)

sin(A)
=

sin(AQ)

sin(i)
.

For triangle △CB′Q:

sin(B′C)

sin(π − θ)
=

sin(h)

sin(C)
=

sin(QC)

sin(r)
.

Under the single symmetry, AQ = QC, we divide these to obtain the key
identity—Equation 1:

sin(AB′)

sin(B′C)
=

sin(i)

sin(r)
=

sin(A)

sin(C)
= 1. (1)

This equation is the basis for all CST laws and characterizes perfect
geometric symmetry across the CST independent of h,AQ/h, θ.

Equation 1A: Path Law

From Equation 1, symmetry implies that the arc lengths satisfy:

AB′ +B′C = π.

That is, the combined path length from A to C via the hinge at B′

subtends a semicircle. Since the sphere has radius 1, this corresponds to a
maximal straight-line path in spherical geometry. We interpret this as the
unit CST encoding an entangled separation of π radians.
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Equation 1B: Area Law

The area of a spherical triangle is given by the spherical excess:

Area(△) = ∠A+ ∠B + ∠C − π.

Applying this to both triangles and using the identity from Equation 1,
we compute:

Area(△AB′Q) + Area(△CB′Q) = (A+ i+ θ − π) + (C + r + θ − π).

Substituting A = π − C and i = π − r, and simplifying:

= [(π − C) + (π − r) + θ − π] + [C + r + θ − π] = π.

Thus, the combined CST encloses an area of π steradians on the unit
sphere.

Equation 1C: Duality Law

From classical spherical trigonometry (Todhunter’s polar triangle construc-
tion [4]), each triangle in a CST has a polar conjugate. Under inertial sym-
metry, the polar of triangle △AB′Q is triangle △CB′Q, and vice versa. This
duality implies a reversible angular mapping that preserves area and curva-
ture under reflection across the hinge.

Equation 1D: Informational Tension Law

Define h = QB′ as the hinge segment of the CST. If we consider a wave
of wavelength λ propagating along the spherical arc, then the informational
tension across the hinge is defined as:

TCST =
h

λ
.

This is analogous to Planck’s relation in wave dynamics and characterizes
the CST’s energy or information-bearing capacity under inertial conditions.
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Figure 1: Conjoined Spherical Triangle (CST) Diagram. This illustra-
tion shows two spherical triangles joined at the common edge QB′, forming
a hinge structure with arc paths AB′ and B′C. The midpoint Q of the great
circle arc AC serves as the baseline symmetry point. This geometry encodes
a fixed total arc length of π radians across the hinge, enabling invariant in-
formational cycles. This diagram is limited to the domain AC < 2h.

3 Generalizing the CST with the Sine-Alpha

Function

The inertial Conjoined Spherical Triangle (CST) represents a perfectly sym-
metric configuration in which the evolving point Q lies exactly halfway along
the arc connecting points A and C. In this case, the path lengths AQ and
QC are equal, and the four CST laws—path, area, duality, and informational
tension—remain balanced and internally reversible.

However, in dynamic or non-inertial settings—such as those encountered
in evolving quantum geometries—the pointQmay shift asymmetrically along
the arc from A to C. This introduces a curvature imbalance that must be
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regulated to preserve consistency across the CST structure. To accommodate
such deformation, we introduce a continuous balancing mechanism: the sine-
alpha function.

Defining the Asymmetry Parameter α

Let AQ = L1 and QC = L2. Define the asymmetry ratio as:

α =
L2

L1

=
QC

AQ
.

Under inertial conditions, α = 1, and the CST is symmetric. When α ̸= 1,
the CST becomes asymmetrically stretched or compressed depending on the
direction and magnitude of α. This parameter acts as a curvature-aware
deformation variable and serves as the input to the sine-alpha function.

The Sine-Alpha Function

We generalise Bolyai [5] to define the sine-alpha function as a deformation
of the classical sine function:

sinα(x) =
∞∑
n=0

(−1)nαn

(2n+ 1)!
x2n+1.

This series retains the odd-parity structure of the classical sine function
but introduces an exponential weighting of each term by powers of α. The
function is designed to recover sin(x) when α = 1, and to deform continuously
for α ̸= 1. Its purpose is not to define a physical field, but to regulate
asymmetry across the CST’s internal structure.

Generalized CST Laws

We now generalize the four CST laws to account for the asymmetry intro-
duced by arbitrary α.

Equation 1A (Generalized Path Law)

In the symmetric case, the arc lengths satisfy AB′ + B′C = π. For α ̸=
1, the CST must adjust its total arc length to preserve internal curvature
consistency. Define the generalized total arc length Φ(α) as:
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Φ(α) = π · 2min(α, 1)

1 + α
.

Thus, the generalized path law becomes:

AB′ +B′C = Φ(α).

This construction preserves the limiting case Φ(1) = π and ensures con-
tinuity and reversibility under asymmetric deformation.

Equation 1B (Generalized Area Law)

We define the generalized CST area using a curvature-regulated scaling func-
tion:

Ψ(α) =
4α

(1 + α)2
.

Then the total area enclosed by the CST becomes:

Area(△AB′Q) + Area(△CB′Q) = π ·Ψ(α).

This function is symmetric under α → 1/α, reflecting geometric re-
versibility, and satisfies Ψ(1) = 1, reproducing the inertial CST area of π
steradians.

Equation 1C (Generalized Duality Law)

The duality relationship between the triangles deforms with asymmetry. De-
fine the duality modulation function:

Ω(α) =
2
√
α

1 + α
.

Then the polar triangle relation generalizes to:

Polarα(△AB′Q) = △C̃B′Q(α), with conjugation factor Ω(α).

This maintains reversibility and angle correspondence under deformation,
with Ω(1) = 1.
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Equation 1D (Generalized Informational Tension Law)

The hinge length h = QB′ deforms with asymmetry. Define the general form
of the informational tension:

TCST =
h(α)

λ
, where h(α) = h0 ·

1 + α2

2α
.

This function is minimized when α = 1 and increases with asymmetry in
either direction, capturing the growth in internal tension due to curvature
imbalance.

Interpretation

These four generalized laws preserve the structural integrity of the CST under
deformation. The parameter α = QC/AQ serves as a geometric regulator,
encoding how far the configuration has deviated from symmetry. The sine-
alpha function governs the scaling of deformation effects across all four laws,
ensuring internal reversibility and a continuous path back to equilibrium.

4 CST in General Relativity

In general relativity (GR), space-time is curved by the presence of mass and
energy. The dynamics of objects in gravitational fields are governed by the
curvature of space-time, which influences their trajectories. The Conjoined
Spherical Triangle (CST) provides a new way of representing space-time by
encoding the information and curvature directly into the geometry.

4.1 CST Geometry and Gravitational Systems

The CST geometry begins with three key points in space-time:

• A, a fixed reference point in space,

• C, the center of mass of a massive body (such as a black hole or a
neutron star),

• Q, the position of a test mass (e.g., a particle or object falling towards
the massive body).
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In GR, an object falling under the influence of gravity follows a geodesic,
a path determined by the curvature of space-time. The CST geometry rep-
resents this path as a spherical triangle with sides corresponding to the dis-
tances between A, Q, and C. The deformation parameter α = QC

AQ
charac-

terizes the degree of deformation in the CST system, where:

• α > 1: Elongation (the test mass is far from the massive body).

• α = 1: Neutral (the test mass is in an equilibrium state).

• α < 1: Compression (the test mass is close to the massive body).

The CST thus provides a geometric description of gravitational deforma-
tion, where the path of an object falling into a gravitational field can be
viewed as a symbolic deformation of the CST system.

4.2 The Four Laws and Gravitational Deformation

The four laws governing the CST are as follows:

• Path Law (1A): Describes how the deformation of the CST geometry
affects the distances between pointsA, Q, and C as the test mass moves.
The path length remains consistent for any change in α, reflecting the
conservation of information in gravitational dynamics.

• Area Law (1B): The areas of spherical triangles formed within the CST
geometry are invariant under changes in the deformation parameter α.
This law reflects the conservation of gravitational energy and the way
space-time curvature remains constant in certain systems.

• Duality Law (1C): Establishes the duality between different gravita-
tional states, where elongation or compression corresponds to dual
geometrical interpretations of the same system. This highlights the
symmetry between different configurations of space-time.

• Entropy Law (1D): Describes how entropy behaves in the CST system.
As a test mass approaches a massive body, the information encoded in
the CST system grows, reflecting the increase in entropy as the system
evolves towards a more disordered state.

10



These four laws, when applied to gravitational systems, offer new insights
into the behavior of mass and energy in curved space-time. They allow us
to model free-fall, black hole dynamics, and gravitational waves in a unified
framework.

4.3 Sine Alpha Function and Gravitational Behavior

The sine alpha function, embedded in the CST structure, provides a measure
of the deformation of space-time as an object falls towards a massive body.
It captures the curvature induced by the presence of mass and encodes the
gravitational interaction in a way that is consistent with general relativity.

The sine law for spherical triangles applied to the CST system is given
by:

sin(a)

sin(c)
=

AQ

QC
= 1

where a and c are the angles of the CST triangle corresponding to points
A and C, and the distances AQ and QC correspond to the spatial intervals
between the test mass and the central body.

This relationship ensures that the gravitational deformation is captured
in a geometrically consistent way, allowing us to model geodesic motion in
terms of the deformation of space-time, just as general relativity describes
it.

4.4 Applications to Gravitational Systems

The CST framework provides a new approach to understanding gravitational
systems, including:

• Free-fall motion: The CST can model how objects move under the
influence of gravity, providing a geometrically aware description of free-
fall trajectories.

• Black holes: The CST framework offers a new perspective on black
hole dynamics, including the event horizon and singularity, through
the geometry of space-time.
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• Gravitational waves: By understanding space-time deformation through
CST, we gain new insights into the behavior of gravitational waves as
they propagate through curved space-time.

Thus, the CST structure is a powerful tool for describing and under-
standing gravitational phenomena in a unified and computationally aware
framework.

5 CST in Quantum Mechanics

Quantum mechanics describes the behavior of particles at the smallest scales,
where discreteness and probability play central roles. The Conjoined Spher-
ical Triangle (CST) framework, through its geometric interpretation and
symbolic states, provides a novel way to represent quantum systems. By
embedding information within the very geometry of space-time, CST allows
us to think about quantum entanglement, superposition, and wavefunction
collapse in terms of geometrical deformation rather than abstract quantum
states.

5.1 CST Geometry and Quantum Systems

At the quantum level, information is fundamental to understanding the be-
havior of particles. However, space-time and information are traditionally
treated separately in quantum mechanics. The CST framework breaks this
distinction by treating space-time itself as an informational medium. This
means that quantum information is inherently encoded within the curvature
of space-time, and the deformation of space-time reflects the evolution of
quantum states.

The CST structure uses the deformation parameter α = QC
AQ

, where:

• Q represents the quantum system (e.g., a particle or field),

• A and C are reference points in space-time, akin to positions of particles
or quantum states.

Because the CST equations are independent of H (the radius or scale of
the system), the same framework applies across all scales of quantum sys-
tems, from the submolecular to the cosmological level. Whether describing
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particle interactions at the quantum scale or the global behavior of cosmo-
logical systems, the CST structure remains applicable, providing a unified
geometrical and informational model.

5.2 The Four Laws and Quantum Behavior

As with gravitational systems, the CST operates according to its four fun-
damental laws. These laws offer insights into the evolution and dynamics of
quantum systems, as they encode both geometric deformation and symbolic
processing:

• Path Law (1A): Describes how the quantum state evolves as a function
of the deformation parameter α. The quantum state corresponds to
the geometry of the CST, with the deformation representing changes
in the state over time.

• Area Law (1B): In the quantum context, the area law represents the
conservation of quantum information. Just as the area of a spherical
triangle remains invariant under deformation, the information encoded
in a quantum system is preserved even as the system undergoes super-
position or entanglement.

• Duality Law (1C): The duality law in quantum mechanics corresponds
to the duality of quantum states—superposition and entanglement—where
the CST geometry reflects these dualities as geometric deformations.
Just as a particle can be in multiple states at once, the CST can rep-
resent multiple geometric states simultaneously.

• Entropy Law (1D): In quantum mechanics, entropy is associated with
decoherence. The CST entropy law describes how the quantum sys-
tem’s information content changes as the system evolves, maintaining
a balance between information preservation and information loss as
systems collapse into more definite states.

5.3 Sine Alpha Function and Quantum Mechanics

The sine alpha function, sin(α), plays a key role in understanding how quan-
tum states evolve within the CST framework. Just as it describes the defor-
mation in gravitational systems, in quantum mechanics it acts as a measure
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of the deformation of the quantum state. This deformation is akin to the
wavefunction collapse in quantum theory.

For example, the entanglement of two quantum particles can be viewed
as the spatial deformation of two CST units. As the deformation parameter
α changes, the relationship between the two particles changes, reflecting the
shift from entanglement to separation.

5.4 CST and Quantum Entanglement

One of the most profound implications of the CST framework in quantum
mechanics is its potential to provide a geometric understanding of quan-
tum entanglement. Traditionally, entanglement is understood as a non-local
phenomenon, where particles become correlated in ways that defy classical
explanations. However, within the CST framework:

• Entangled states can be modeled as deformation in space-time itself.
The entanglement of two particles corresponds to the curvature defor-
mation in the CST geometry.

• The symbolic states of CST units can represent different quantum
states, such as superposition or entanglement.

• Changes in the deformation parameter α can correspond to quantum
state evolution, such as wavefunction collapse or measurement.

This new perspective on entanglement allows us to visualize quantum
interactions as spatially encoded deformations, rather than abstract correla-
tions between distant particles.

5.5 CST as a Computational Tool for Quantum Grav-
ity

The CST structure provides a promising framework for quantum gravity,
offering a way to treat both quantum information and space-time geometry
within a unified system. By embedding information processing directly into
the curvature of space-time, the CST can describe quantum systems in a
gravitational context, where both quantum mechanics and general relativity
are simultaneously accounted for.
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In this way, CST can help to solve key problems in quantum gravity, such
as the black hole information paradox. The computationally aware space-
time model allows for the tracking and processing of quantum information
even in extreme gravitational environments, providing a potential solution
to the issue of information loss.

5.6 Applications of the CST Framework in Quantum
Mechanics

The CST geometry offers a fresh perspective on quantum phenomena:

• Quantum entanglement: By encoding entanglement as geometric de-
formation, the CST offers a spatially grounded model for quantum
correlations.

• Wavefunction collapse: The CST’s ability to collapse into different sym-
bolic states corresponds to the collapse of a quantum wavefunction,
providing a new interpretation of this process.

• Quantum information: The CST allows us to represent the flow of
quantum information within space-time, opening up new avenues for
quantum computing and quantum communication.

Thus, the CST structure serves as a versatile tool for unifying quantum
mechanics with the geometric framework of space-time, and it provides a new
foundation for studying quantum gravity and quantum information theory.

6 A Computationally Aware Spacetime

In this section, we explore how the Conjoined Spherical Triangle (CST) pro-
vides a new and unified framework for understanding both General Relativity
(GR) and Quantum Mechanics (QM). The CST geometry encodes informa-
tion and curvature directly within the structure of space-time itself, creating
a computationally aware space-time [6]. This framework allows us to recon-
cile the continuous nature of space-time in GR with the discrete nature of
quantum systems, offering a potential solution to the problem of quantum
gravity.
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6.1 CST Geometry and Gravitational Systems

In general relativity, the curvature of space-time describes the dynamics of
massive bodies. The CST geometry uses the deformation parameter α = QC

AQ

to represent the deformation in space-time. Here:

• A is a fixed reference point,

• C represents the location of the massive body,

• Q is the position of a test mass (or infalling object).

The CST framework models the gravitational deformation of space-time
through changes in the distances between these points, encapsulating the
spacetime curvature without requiring external forces or a detailed descrip-
tion of mass. The key to CST’s role in GR is that it directly represents the
geometry of space-time while maintaining the core principles of gravitational
dynamics.

The deformation of space-time is governed by the four laws of CST:

• Path Law (1A): Describes how the distance between points in the CST
geometry evolves as the test mass moves, maintaining the information
about its gravitational trajectory.

• Area Law (1B): The area of spherical triangles formed within the CST
geometry remains invariant under changes in the deformation parame-
ter α, reflecting the conservation of gravitational energy.

• Duality Law (1C): The duality between elongation and compression of
the CST geometry mirrors the duality in gravitational systems between
stretched and compressed space-time regions, such as the space around
a black hole and near a massive object.

• Entropy Law (1D): Describes the change in entropy (information con-
tent) as the system evolves, offering insights into the thermodynamic
behavior of gravitational systems and black holes.

These four laws provide a geometrically grounded way to model the be-
havior of free-fall motion, black holes, gravitational waves, and other phe-
nomena in general relativity.
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6.2 CST and Quantum Mechanics

In quantum mechanics, the discreteness of nature and the probabilistic nature
of quantum systems play a central role. However, quantum mechanics has
historically treated space-time and information separately. The CST frame-
work merges these two aspects by modeling quantum states as deformations
in space-time itself, turning space-time into an information processor.

By embedding quantum information into the geometry of space-time,
the CST framework offers a spatially grounded interpretation of quantum
phenomena:

• Entanglement: The CST can model quantum entanglement by repre-
senting entangled quantum states as geometrically coupled deforma-
tions within space-time.

• Superposition: The CST can represent quantum superposition as a
combination of multiple symbolic states (such as elongation and com-
pression), all of which can exist simultaneously in the same spatial
framework.

• Wavefunction Collapse: The CST framework can describe wavefunction
collapse as a change in the symbolic state of the CST, corresponding
to the quantum system’s transition from a superposition of states to a
definite state.

Thus, the CST enables us to geometrically represent quantum states,
allowing space-time itself to process quantum information in the same way
that it describes gravitational systems.

6.3 Sine Alpha Function and Computationally Aware
Space-Time

The sine alpha function sin(α) plays a crucial role in the CST framework by
capturing the deformation of space-time in both gravitational and quantum
systems. In the CST, the deformation parameter α encodes the curvature of
space-time and also represents the evolution of quantum states.

For gravitational systems, the sine alpha function reflects the gravita-
tional deformation due to the mass of a central object, affecting the motion
of a test mass. In quantum mechanics, it describes the entanglement and
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superposition of quantum states, where the deformation of one part of the
CST system affects the rest of the system.

The computationally aware nature of space-time comes from the fact that
space-time itself, as encoded in the CST geometry, processes information and
evolves according to both quantum dynamics and gravitational curvature.
The sine alpha function ensures that this information flow and evolution
occur in a consistent and predictable manner.

6.4 Unifying General Relativity and QuantumMechan-
ics

By embedding both gravitational deformation and quantum information within
the same geometrical framework, the CST offers a potential solution to the
long-standing problem of quantum gravity. The CST provides a way to de-
scribe quantum systems within the context of curved space-time, allowing us
to model quantum states alongside gravitational dynamics.

This unification is crucial for understanding phenomena that exist at the
intersection of quantum mechanics and general relativity, such as:

• Black holes: The CST framework provides a new way to model the
event horizon and singularity of black holes, while also accounting for
quantum effects near these extreme gravitational environments.

• Gravitational waves: The CST can describe the propagation of grav-
itational waves through space-time, modeling both the geometry of
space-time and the information encoded in the waves.

• Quantum field theory in curved space-time: The CST framework offers
a novel way to represent quantum fields in curved geometries, where
the spacetime itself processes quantum information.

In this way, the computationally aware spacetime described by the CST
offers a geometrically informed solution to the challenge of unifying general
relativity and quantum mechanics, offering new pathways for further research
in quantum gravity and the fundamental nature of space-time.
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7 Conclusion

The Conjoined Spherical Triangle (CST) framework represents a new and
revolutionary approach to understanding the fundamental aspects of physics.
By combining general relativity and quantum mechanics into a unified com-
putationally aware space-time, the CST offers a novel framework for address-
ing some of the most significant challenges in theoretical physics, including
quantum gravity, black holes, and quantum information theory.

Through the four laws of the CST—path law, area law, duality law,
and entropy law—we have demonstrated how this geometry encapsulates
the core principles of both gravitational dynamics and quantum behavior.
The CST’s ability to model gravitational deformation and quantum states
as geometrically encoded deformations allows us to understand the interplay
between gravity and quantum mechanics in a unified framework.

The CST framework holds particular promise for the following key areas:

• Quantum Gravity: By embedding quantum states in the curvature of
space-time, the CST provides a new perspective on quantum gravity,
potentially offering a solution to the black hole information paradox
and gravitational singularities.

• Quantum Information: The CST’s ability to model quantum entan-
glement and superposition geometrically offers a fresh understanding
of quantum information processing, allowing space-time to act as a
computational medium for quantum systems.

• Cosmology: The CST framework provides a powerful tool for under-
standing the early universe, cosmic inflation, and dark matter and dark
energy through a unified geometrical model that combines quantum
mechanics and general relativity.

• High-Energy Physics: The CST can be applied to high-energy parti-
cle interactions in extreme gravitational fields, offering new insights
into particle physics, string theory, and quantum field theory in curved
space-time.

Despite the promising potential of the CST framework, there are still sev-
eral areas requiring further exploration. Formalizing the CST model within
existing quantum gravity frameworks, such as loop quantum gravity and
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string theory, will be crucial for its wider acceptance in the scientific commu-
nity. Additionally, experimental verification of its predictions, particularly
in gravitational systems and quantum information experiments, is necessary
to test the validity and accuracy of the CST model.

As we move forward, the computationally aware space-time described by
CST offers a new geometrical interpretation of both gravitational and quan-
tum phenomena, potentially leading to breakthroughs in our understanding
of space-time, quantum gravity, and the unification of physics. This approach
provides a pathway toward resolving some of the most profound questions
in modern physics and may offer the missing link between general relativity
and quantum mechanics.

The CST framework opens up new possibilities for the study of space-
time itself as an active, informationally dynamic system, suggesting that
space-time may not merely be a passive stage for physical events but a com-
putationally aware entity that processes both gravitational and quantum
information simultaneously. This perspective could change the way we think
about the fabric of the universe, laying the foundation for the next era of
theoretical physics.
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[3] Arnold Sommerfeld. Über die zusammensetzung der geschwindigkeiten
in der relativtheorie. Physikalische Zeitschrift, 10:826–829, 1909.

[4] Isaac Todhunter. Spherical Trigonometry: For the Use of Colleges and
Schools. Macmillan and Co., London, 5th edition, 1886.

20



[5] János Bolyai. The Scientific Work of János Bolyai: Appendix: The The-
ory of Space. Cosimo Classics, 2004. Originally published 1832 as an
appendix to a work by his father, Farkas Bolyai.

[6] Greg Egan. Permutation City. HarperPrism, 1994. Explores themes of
computationally simulated consciousness and self-aware spacetimes.

21


