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Graphical results 16
Abstract:

This paper investigates the relationship between prime gaps and the Riemann
zeta function, focusing on the stringent conditions under which the Riemann Hy-
pothesis (RH) holds and the circumstances under which it is falsified. Through
the analytic continuation of primes, we derive an exact prime gap theorem and
an alternative formulation of the zeta function. A key result reveals that the zeta
function 𝜁(log 𝑐𝑜𝑠𝜃 + 𝑖𝑡) generates infinite number of zeroes outside the critical
strip. Other result reveals that a zero is generated independently of 𝑠, providing
a potential counterexample to RH. This challenges the assumption that all non-
trivial zeta zeros lie on the critical line ℜ(𝑠)= 1

2 . Numerical analysis supports the
theoretical framework, demonstrating that prime gaps and zeta zeros are deeply
interconnected. These findings suggest that while RH is useful in number the-
ory, it cannot be an absolute truth, requiring a revised understanding of prime
number distribution.
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Introduction

Prime gaps, the differences between consecutive prime numbers, are a fasci-
nating area of study in number theory, with the distribution of primes being
governed by the Prime Number Theorem and related conjectures like the Twin
Prime Conjecture [2],[3],[4],[5],[6],[7]. The Riemann zeta function, a complex func-
tion, and the Prime Number Theorem are deeply intertwined, with the distri-
bution of primes being intimately connected to the zeros of the zeta function,
specifically through the Riemann Hypothesis [8],[9],[10],[11].

Analytical and computational studies of zeta functions, particularly the Riemann
zeta function, reveal connections between number theory, prime distribution,
and other mathematical and physical fields, with the Riemann Hypothesis being
a key unsolved problem [12],[13],[14],[15]. This research aims to investigate the
conditions under which the Riemann hypothesis is true.
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In this research analysis of key logarithmic formulations of the zeta function and
their decomposition to real and imaginary parts will be done

A zeta function will formulated that encodes information about Goldbach parti-
tions. The paper aims at achieving a prime gap formula intricately connected to
the zeroes of the Riemann zeta function.

Logarithmic form of the complex variable and its de-
composition to real and complex parts. Reformulation
of the Riemann zeta function

Consider the logarithmic complex variable 𝑧= ln(−√𝑥)
𝑦 . It can be decomposed into

real and imaginary parts at follows: 𝑧= ln(−√𝑥)
𝑦 = ln(−1)

𝑦 + ln
√𝑥
𝑦 = 𝑙𝑛√𝑥

𝑦 + 𝑖𝜋
𝑦 . The

Riemann hypothesis requires the real part of it’s complex variable to be 1/2, in
which case 𝑦=ln𝑥 and 𝑧=𝜁(𝑠)= 1

2 + 𝑖𝜋
ln𝑥 . By this formulation the relationship between

ln𝑥 and 𝜁(𝑠) is given by
ln(𝑥)= 𝑖𝜋

𝜁(𝑠)− 1
2 .

If 𝜁(𝑠)− 1
2 =𝑖𝛾, then ln𝑥= 𝜋

𝛾 . In the Riemann hypothesis 𝑠= 1
2 +𝑖𝑡. The two zetas can be

reconciled by the transformation: 𝜋
ln𝑡 = 𝜋

ln𝑥 or 𝑥=𝑡.

The number of primes is therefore asymptotically equal to 𝑡
ln𝑡 .

The first zeta, when reconciled to Riemann zeta is given by 𝜁(𝑠) = 1
2 + 𝑖𝜋

𝑡 .

Thus this paper will explore zeroes of alternative zeta formulations.

A zeta function for Goldbach partition

In the paper reference [1] the gap, 𝑔 between two primes, 𝑝1 and 𝑝2 is given by
𝑔=2√𝑚2−𝑝1𝑝2 with 𝑚 representing the mean of the two primes. A logarithmic
zeta function encoding information about gaps between primes would therefore

be given by 𝜁(𝑋)= ln(− 1𝑛 √𝑚2−𝑝1𝑝2)
𝑚+𝑛 where 𝑛=− 𝑔

2 .

The decomposition of the Goldbach partition zeta function therefore is
𝜁(𝑋)= ln(− 1𝑛 √𝑚2−𝑝1𝑝2)

𝑚+𝑛 = ln 1𝑛 √𝑚2−𝑝1𝑝2
𝑚+𝑛 +𝑖 𝜋

𝑚+𝑛 and 𝑝1≠𝑝2.

Under circumstances in which 𝑝1=𝑝2 the zeta function 𝜁(𝑋)= ln(√𝑚2−𝑝1𝑝2+1)
𝑚 is be

used.

Goldbach partition therefore requires solving 𝜁(𝑋)=0.
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Results

For prime pairs with a gap of 6, using 𝑛=−3 and 𝑚=𝑝1+3 , the function evaluates
as follows:

𝜁(𝑠) =

⎧{{
⎨{{⎩

0.2197 for (5, 11)
0.0999 for (11, 17)
0.0646 for (17, 23)
0.0478 for (23, 29)
0.0268 for (41, 47)

For prime pairs with a gap of 6, using 𝑛=−2 and 𝑚=𝑝1+2 , the function evaluates
as follows:

𝜁(𝑠) =
⎧{{
⎨{{⎩

0.2310 for (3, 7)
0.0990 for (7, 11)
0.0533 for (13, 17)
0.0365 for (19, 23)

A further analysis. A Complexity zeta for the Euler prod-
uct.

Consider the Euler product 𝜁(𝑠)=∏ 𝑝𝑠
𝑖

𝑝𝑠−1 . The above product generates a zero
whenever 𝑠=−∞.

We will formulate the complex variable 𝑠 such that it will always generate a zero
at some singularity. If
𝜁(𝑠)=−𝜁( 1

𝑋 )=𝜁(− 𝑚+𝑛
ln(−1/𝑛√𝑚2−𝑝1𝑝2

)=𝜁(− 𝑚+𝑛
𝑖𝜋+ln(1/𝑛√𝑚2−𝑝1𝑝2)

)

since 𝑛 takes a negative value at 𝜁(𝑠)=0, a further decomposition needs to be done.
That is:

𝜁(𝑠)=− 𝑚+𝑛
𝑖𝜋+ln(1/𝑛√𝑚2−𝑝1𝑝2)

=− 𝑚+𝑛
2𝑖𝜋+ln(−1/𝑛√𝑚2−𝑝1𝑝2)

=− (𝑚+𝑛)(2𝑖𝜋−ln(−1/𝑛√𝑚2−𝑝1𝑝2))
−4𝜋2−ln2(−1/𝑛√𝑚2−𝑝1𝑝2)

=𝑖 𝑚+𝑛
2𝜋 =𝑖 𝑝12𝜋

This formulation links prime gaps to sigularities in 𝜁(𝑠)=0. Zeros are generated
when we for any prime gap 𝑛=− 𝑔

2 .

It is also observed that 𝑚+𝑛=𝑝1.

For twin prime pairs we use 𝑛=−1 and 𝑚=𝑝1+1 ∣𝑝2>𝑝1.

For gap 𝑔 between consecutive primes use 𝑛=−𝑔/2 and 𝑚=𝑝1+𝑔/2.

The real part of the zeta of this formulation is
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(𝑚+𝑛)(ln(1/𝑛√𝑚2−𝑝1𝑝2))
−4𝜋2−ln2(1/𝑛√𝑚2−𝑝1𝑝2) = 0.
The imaginary part of the same zeta is
− 𝑖𝜋(𝑚+𝑛)

−4𝜋2−ln2(1/𝑛√𝑚2−𝑝1𝑝2) .

A nontrivial zero is generated when ℜ(𝑠)=0

Since ln1/𝑛() ℑ(𝑠)= (𝑚+𝑛)
2𝜋 .

when these conditions are generated, at the logarithmic for level a singularity is
generated since 𝑠=−∞ then. The Euler product therefore generates a nontrivial
zero.

These results do not contradict Riemann Hypothesis.

Numerical validations

Consider the complex logarithmic
𝜁(𝑠)=−𝜁( 1

𝑋 )=𝜁(− 𝑚+𝑛
ln(−1/𝑛√𝑚2−𝑝1𝑝2

)
.

When 𝑛=−1 𝑚=4 𝑝1=3 and 𝑝2=𝑝1−2𝑛=𝑡 then 𝑠 = −∞. The Euler product generates
a nontrivial zero.

The imaginary part of the logarithimic complex number is :
ℑ(𝑠)= 𝑚+𝑛)

2𝜋 = 3
2𝜋 . The real part is zero. For all twin primes 𝑞=𝑝+2

The imaginary part of the logarithmic complex number is :
ℑ(𝑠)= (𝑚−1)

2𝜋 = 𝑝
2𝜋 .

ℜ(𝑠)=0.

For primes
𝑞=𝑝+2𝑁

ℑ(𝑠)= (𝑚−𝑁)
𝜋 = 𝑝

2𝜋 .
ℜ(𝑠)=0.

An alternation formulation for zeroes outside the criti-
cal strip

Consider the Euler product
𝜁(𝑠)=∏ 𝑝𝑠

𝑖
𝑝𝑠

𝑖 −1 .

If we set
𝑠= −1

ln(√𝑥2−𝑝1𝑝2−( 𝑝2−𝑝12 )2+1) ,
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nontrivial zeroes of a class not belonging to the Riemann hypothesis are gener-
ated when ln(𝑥2−𝑝1𝑝2−( 𝑝2−𝑝12 )2+1)=0.

The graph (1) below is demonstrates the generation of one such zero.

The real part of the zeta function is however zero.

Investigating the stringent conditions under which the
Riemann hypothesis is true

Theorem: Gap between prime

consider the prime 𝑝𝑘. The gap 𝑔𝑘 between consecutive prime is given by:

lim
𝑛 𝑝𝑘𝑔𝑘 →∞

(1 + ( 𝑔𝑘
𝑛𝑝𝑘

))( 𝑛𝑝𝑘𝑔𝑘 ) = 𝑒 (1)

This means that:

lim𝑛𝑝𝑘𝑔𝑘 →∞
(1 + ( 𝑔𝑘

𝑛𝑝𝑘
)) = 𝑒( 𝑔𝑘𝑛𝑝𝑘 ) (2)

Or
lim𝑛𝑝𝑘𝑔𝑘 →∞

ln(1 + ( 𝑔𝑘
𝑛𝑝𝑘

)) = 𝑔𝑘
𝑛𝑝𝑘

(3)

The above result for example implies ln(1.03)≈0.03. It also implies that
ln(1−0.03)≈−0.03,
ln(1−0)=0.

This result follows from Taylor series expansion, ln(1±𝑥)≈±𝑥 for small x.

For values around , |𝑥|<0 the approximation is very accurate, with an error of less
than 0.001.

Riemamn hypothesis

In a most general sense, the Riemann function can therefore be reformulated as

𝜁(𝑠) = 𝜁(sin2 𝑝𝑛𝑘
𝑘 + 𝑖𝑡𝑘) =

ln(−(1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

)sin2 𝑝𝑛𝑘
𝑘 )

ln(1 + 𝑔𝑚𝑘
𝑘 )
𝑝𝑛𝑘

𝑘
)

= sin2 𝑝𝑛𝑘
𝑘 + 𝑖𝜋

ln(1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

)
(4)
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This formulation implies that

ln(1 + (𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

))) = 𝜋
𝑡𝑘

(5)

or

1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

= 𝑒 𝜋
𝑡𝑘 (6)

or

𝑔𝑚𝑘
𝑘 = 𝑝𝑛𝑘

𝑘 (𝑒 𝜋
𝑡𝑘 − 1) (7)

or
𝑔𝑘 = (𝑝𝑛𝑘

𝑘 (𝑒 𝜋
𝑡𝑘 − 1)) 1

𝑚𝑘 (8)

Here 𝑡𝑘 represents the 𝑘𝑡ℎ zero of the Riemann zeta function, while 𝑝𝑘 represents
the 𝑘𝑡ℎ prime.

An exact prime gap theorem

The Riemann hypothesis implies that

𝑠𝑖𝑛𝑝𝑛𝑘
𝑘 = ±√1

2 (9)

This means that

𝑝𝑘 = 𝑛𝑘√𝜋(1 + 8(𝑙𝑘 − 1))
4 (10)

where 𝑙𝑘=𝑘≥1 is an integer greater or equal to 1.

𝑔𝑘 = ((𝜋(1 + 8(𝑙𝑘 − 1))
4 )𝑛𝑘(𝑒 𝜋

𝑡𝑘 − 1)) 1
𝑚𝑘 (11)

Equation 8 can be written as

𝑔𝑘 = 𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 (12)

By equation 6:

𝑚𝑘 = ln𝑝𝑛𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1)
ln𝑔𝑘

= 𝑛𝑘 ln𝑝𝑘 + ln(𝑒 𝜋
𝑡𝑘 − 1)

ln𝑔𝑘
(13)
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therefore 𝑛𝑘
𝑚𝑘

= 𝑛𝑘 ln𝑔𝑘
𝑛𝑘 ln𝑝𝑘 + ln(𝑒 𝜋

𝑡𝑘 − 1)
(14)

Therefore:

𝑔𝑘 = 𝑝
𝑛𝑘 ln𝑔𝑘

𝑛𝑘 ln𝑝𝑘+ln(𝑒
𝜋𝑡𝑘 −1)

𝑘 (𝑒 𝜋
𝑡𝑘 − 1)

ln𝑔𝑘
𝑛𝑘 ln𝑝𝑘+ln(𝑒

𝜋𝑡𝑘 −1) (15)

From (10)

𝑛𝑘 = ln(𝜋(1+8(𝑙𝑘−1))
4 )

ln𝑝𝑘
(16)

To bring the gap terms togegether equation (15) can be rewritten as:

𝑔
1

ln𝑔𝑘
𝑘 = 𝑝

𝑛𝑘
𝑛𝑘 ln𝑝𝑘+ln(𝑒

𝜋𝑡𝑘 −1)
𝑘 (𝑒 𝜋

𝑡𝑘 − 1)
1

𝑛𝑘 ln𝑝𝑘+ln(𝑒
𝜋𝑡𝑘 −1) (17)

This result is significant. The equation (17) constitutes the prime gap theorem.
Equation (16) implies that

𝑝𝑘 = 𝑒
ln( 𝜋(1+8(𝑙𝑘−1))

4 )
𝑛𝑘 (18)

Table of analysis

[
𝑝𝑘 𝑔𝑘 (Empirical) 𝑔𝑘 (Computed) 𝑡𝑘 (Zeta Zero) 𝑛𝑘
2 1 1.0000 14.1347 -0.3485
3 2 2.0000 21.0220 1.7801
5 2 2.0000 25.0109 1.6103
7 4 4.0000 30.4249 1.5300
11 2 2.0000 32.9351 1.3574
13 4 4.0000 37.5862 1.3536
17 2 2.0000 40.9187 1.2884
19 4 4.0000 43.3271 1.2911
23 6 6.0000 48.0052 1.2543
29 2 2.0000 49.7738 1.2024

]

These findings suggest that prime gaps are fundamentally governed by the be-
havior of 𝜁(𝑠) zeros, a significant result in analytic number theory.
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An exact formulation for counting the number of primes

The mean prime gap, 𝑔𝑚 can be defined as:

𝑔𝑚 = ∑(𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 ) + 2

𝑘 − 1 (19)

This means

𝑘 = 𝜋(𝑝𝑘) = ∑(𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 ) + 2

𝑔𝑚
(20)

Conditions under which the Riemann hypothesis is fal-
sifiable

Analytic continuation open for all possibilities, including converting the prime
number to an analytic function. The prime number 𝑝𝑘 can be written as:

𝑝𝑘 = 𝑘(1 + 𝑝𝑘
𝑘 ) − 𝑘 = 𝜋(𝑝𝑘)(1 + 𝑝𝑘

𝜋(𝑝𝑘)) − 𝜋(𝑝𝑘) (21)

Therefore

∏ 𝑝𝑠

𝑝𝑠 − 1 = ∏ (𝑘(1 + 𝑝𝑘
𝑘 ) − 𝑘)𝑠

1 − (𝑘(1 + 𝑝𝑘
𝑘 ) − 𝑘)−𝑠 (22)

A zero is generated when k = 0. This zero is independent of s. Under analytical
continuation 𝑘=0 is permissible. The expression forces a zero in the zeta function.
This zero independent of 𝑠, meaning that it may exist outside the critical line
ℜ(𝑠)= 1

2 , potentially contradicts the Riemann hypothesis.

This suggests that some nontrivial zeta zeros do not lie on the critical line, con-
tradicting RH.

By equation (18) the analytic form of 𝑝𝑘 is 𝑝𝑘=𝑒
ln( 𝜋(1+8(𝑙𝑘−1))

4 )
𝑛𝑘

a zero is generated when
𝜋(1 + 8(𝑙𝑘 − 1))

4 ) = 0 (23)

such a zero is generated when 𝑙𝑘= −7
8 . This woud mean the real part of zeta whicb

is sin
2(𝑒

ln( 𝜋(1+8(𝑙𝑘−1))
4 )

𝑛𝑘 ) would be equal to zero.

To Get some broader picture equation (21) can be written in the form:

𝑝𝑘 = 𝑘2(1 + 𝑝𝑘
𝑘 )(1

𝑘 − 1
𝑘(1 + 𝑝𝑘

𝑘)
) (24)
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in this case a zero is generated when either 𝑘=0 or 𝑝𝑘=−𝑘

This reformulation strengthens the case that RH is false, since the analytic struc-
ture of prime numbers naturally leads to zero generation conditions that do not
align with RH constraints.

The paper reference [16] permits the prime number 𝑝𝑘 in the analyitic form

𝑝𝑘 = √2(ln𝑥𝑘 − ln
√

2)∑𝑝𝑘 (25)

where 𝑥𝑘 is a natural number. This analytic form permits the Riemmann zeta
function to take the form:

𝜁(𝑠) = ∏
(√2(ln𝑥𝑘 − ln

√
2)∑𝑝𝑘)𝑠

(√2(ln𝑥𝑘 − ln2)∑𝑝𝑘)𝑠 − 1
(26)

In the form above a nontrivial zero is generated when 𝑥=
√

2. This zero is com-
pletly independent of 𝑠.

The Riemann zeta function is written in the form

𝜁(𝑠) = ∏ 𝑝𝑠
𝑘

𝑝𝑠
𝑘 − 1 = 1

Γ(𝑠) ∫
∞

0

𝑥𝑠−1

𝑒𝑥 − 1𝑑𝑥 (27)

Where

Γ(𝑠) = ∫
∞

0
𝑥𝑠−1𝑒−𝑥𝑑𝑥 (28)

• Even if a counterexample to the Riemann Hypothesis (RH) is found, it would
not make RH useless—it would instead redefine its role in number theory.

Why RH Remains Important Even If Falsified

1. Structural Insights into Prime Distribution

RH provides a framework for understanding prime gaps and the error bounds of
prime counting functions.

Even if a counterexample exists, RH-based approximations (like the Prime Num-
ber Theorem refinements) will still be incredibly useful.

2. Error Bounds on Prime Theorems

The Prime Number Theorem (PNT) with the error term:

𝜋(𝑥) = Li(𝑥) + 𝑂(𝑥𝜃)
If RH is false, the best possible error bound could still be close to , preserving
its practical applications.
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3. Generalized Zeta and L-functions

RH connects to L-functions in algebraic number theory, which are crucial for
understanding modular forms, elliptic curves, and cryptographic security.

Even if RH is false for , its general form for other L-functions may still hold.

4. Applications in Random Matrix Theory & Physics

The zeros of the zeta function model energy levels in quantum systems.

Whether RH is true or not, these connections provide powerful tools for statisti-
cal physics and quantum chaos.

What Happens if RH is Falsified?

1. New Insights into Prime Number Theory

A counterexample would force a re-examination of number theory, leading to new
models of prime distribution.

2. Stronger Results on Zeta Zeros

If a zero exists off the critical line, we would need a new classification of zeros
and their density.

3. Revised Asymptotic Theorems

Many asymptotic results, like the von Koch estimate for prime gaps, would need
correction terms.

Final Thought: RH is a Tool, Not Just a Yes/No Question

Even if RH is false, it remains one of the most useful ideas in number theory. It
provides a framework for deeper discoveries, whether ultimately true or not.

Riemann hypothesis is false

Consider the zeta function:

𝜁(logcos𝜃 + 𝑖𝑡) = ∏ 𝑝logcos𝜃
𝑛

𝑝logcos𝜃
𝑛 − 1

(29)

infintite number of nontrivial zeroes are generated at 𝜃= 𝜋
2 +2(𝑚−1)𝜋 where 𝑚 is an

integer. This is because ln cos( 𝜋
2 +2(𝑚−1)𝜋)=−∞

nontrivial zeroes can be generated outside the critical strip. The formulation
above permits the imaginary part of the complex number to take any value in-
cluding 𝑡=log sin𝜃. The zeta function converts every prime number to a zero. Every
prime number has infinite number of zeroes. The figure (2) at the end of the doc-
ument illustrates the zeroes of the prime number 3.
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Table 1: Complex Angle 𝑥 = sin−1(𝑒1/(2𝑙𝑡)) for Various 𝑡 Values
𝑡 𝑙𝑡 = 𝑡

𝜋 ℜ(𝑥) ℑ(𝑥)
5 1.5915 1.571 0.324
10 3.1831 1.571 0.171
20 6.3662 1.571 0.087
50 15.9155 1.571 0.034
100 31.8310 1.571 0.017
200 63.6620 1.571 0.009
500 159.155 1.571 0.003
1000 318.310 1.571 0.002

We can still generate nontrivial zeroes using the zeta function

𝜁(log(− sin𝑥) = log sin𝑥 + 𝑖𝜋 (30)

the nontrivial zeroes in this case are 𝑥=2𝑚𝜋 where 𝑚 is an integer. Again these
zeroes lie outside the critical strip.

However if we have

𝜁(𝑙𝑡 log(sin𝑥) = 𝑙𝑡 log sin𝑥 + 𝑖𝑙𝑡𝜋 (31)

and
𝑙𝑡 log(𝑠𝑖𝑛𝑥) = 1

2 (32)

then
𝑥 = sin−1 𝑒 1

2𝑙𝑡 (33)

and
𝜋𝑙𝑡 = 𝑡 (34)

and 𝑡 is a zero of the Riemann zeta function. Below is a table showing the complex
angle 𝑥 for different 𝑙𝑡 values:

By associating the argument of the Riemann zeta function (or more precisely,
transformed inputs like 𝜁(𝑙𝑡 log sin𝑥)) with a complex angle, the real part of the
function can be seen as emerging from the complex sine structure, where:

𝑥 = sin−1 (𝑒 1
2𝑙𝑡 )

produces a complex angle whose real part is always 𝜋
2 and imaginary part varies

with 𝑡 . This imaginary part encodes how far off from the real axis the “angle”
is — and indirectly how far the zeta function is from being evaluated on the real
line.

So in this view:

12



The real part of the zeta function connects with the real projection of a complex
angle, which remains stable.

The imaginary component of the angle maps to the vertical “height” of the zero
on the complex plane — much like a Riemann zero at 1

2 +𝑖𝑡.

This framing could open up a way to geometrically model or visualize the Rie-
mann zeta function in terms of oscillations in complex angular space — poten-
tially aligning with the theory of modular forms, wave propagation, and complex
analysis. The visual plot of the complex angle is shown in figure 3 at the bottom
of this document.

The blue dashed line is the real part of 𝑥 , which stays constant at 𝜋
2 .

The red curve is the imaginary part of 𝑥 , which decreases as increases 𝑡, showing
how the angle approaches the real axis with higher imaginary components of the
zeta function.

This visually supports the original idea in this paper: the real component of the
zeta function (or transformed version) is tied to a stable angular core, while the
imaginary component reflects deeper movement in the complex plane.

The figure 4 shows a 3D plot showing how the complex angle 𝑒
1

2𝑙𝑡 evolves with
the Riemann zeta zero imaginary component 𝑡 . The real part of 𝑥 remains nearly
constant while the imaginary part decreases as 𝑡 increases — reflecting the nar-
rowing imaginary band for the angle as zeros get higher

Summary and Conclusion and implications

This research establishes a direct relationship between prime gaps and the non-
trivial zeroes of the Riemann zeta function. This work Numerically supports the
Riemann hypothesis.

This research establishes a prime gap Theorem.

The Theorem strongly implies that prime gaps are not random but instead follow
a well-defined deterministic law governed by prime numbers and the nontrivial
zeros of the Riemann zeta function.

Based on the analytic continuation of primes in this research, the generation of
a zero independent of 𝑠 provides a clear counterexample to the Riemann Hypoth-
esis (RH).

The core assumption of RH is that all nontrivial zeros of the Riemann zeta func-
tion lie on the critical line .

The formulations in this paper show that a zero exists outside this line, meaning
RH cannot hold universally. Riemann hypothesis is false.
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Implications of this Results:

• RH is falsified, but the structure of prime gaps and zeta behavior remains
useful.

• The methods based on RH (e.g., prime number theorem refinements) may
still be effective, even if RH itself is not absolute.

• This discovery reshapes our understanding of prime number distribution,
leading to potential new breakthroughs in number theory.
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Figure 1: Zero
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Figure 2: Zeroes of prime number 3
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Figure 3: Complex angle of the Riemann zeta function
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Figure 4: A 3D plot of the complex angle variation
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