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Abstract

This paper explores the relationship between prime gaps and the behavior
of the Riemann zeta function. We analyze key logarithmic formulations of the
zeta function and their decomposition to real and imaginary parts.

A zeta function is formulated that encodes information about Goldbach
partitions. An exact prime gap equation is generated. It is shown the prime
gaps are determined using the zeroes of the Riemann zeta function. With the
exact prime gap formula, an exact formula for counting the number of primes
is presented. The mystery of prime numbers is solved.

Keywords

Zeta function for Goldbach partition; Riemann hypothesis proof; prime gaps and
singularities in 𝜁(𝑠); Alternative zeta formulations; proof of prime gap conjecture;
Exact prime gap theorem

Introduction

Prime gaps, the differences between consecutive prime numbers, are a fasci-
nating area of study in number theory, with the distribution of primes being
governed by the Prime Number Theorem and related conjectures like the Twin
Prime Conjecture [2],[3],[4],[5],[6],[7]. The Riemann zeta function, a complex func-
tion, and the Prime Number Theorem are deeply intertwined, with the distri-
bution of primes being intimately connected to the zeros of the zeta function,
specifically through the Riemann Hypothesis [8],[9],[10],[11].

Analytical and computational studies of zeta functions, particularly the Riemann
zeta function, reveal connections between number theory, prime distribution,
and other mathematical and physical fields, with the Riemann Hypothesis being
a key unsolved problem [12],[13],[14],[15]. This research aims to investigate the
conditions under which the Riemann hypothesis is true.

In this research analysis of key logarithmic formulations of the zeta function and
their decomposition to real and imaginary parts will be done

A zeta function will formulated that encodes information about Goldbach parti-
tions. The paper aims at achieving a prime gap formula intricately connected to
the zeroes of the Riemann zeta function.
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Logarithmic form of the complex variable and its de-
composition to real and complex parts. Reformulation
of the Riemann zeta function

Consider the logarithmic complex variable 𝑧= ln(−√𝑥)
𝑦 . It can be decomposed into

real and imaginary parts at follows: 𝑧= ln(−√𝑥)
𝑦 = ln(−1)

𝑦 + ln
√𝑥
𝑦 = 𝑙𝑛√𝑥

𝑦 + 𝑖𝜋
𝑦 . The

Riemann hypothesis requires the real part of it’s complex variable to be 1/2, in
which case 𝑦=ln𝑥 and 𝑧=𝜁(𝑠)= 1

2 + 𝑖𝜋
ln𝑥 . By this formulation the relationship between

ln𝑥 and 𝜁(𝑠) is given by
ln(𝑥)= 𝑖𝜋

𝜁(𝑠)− 1
2 .

If 𝜁(𝑠)− 1
2 =𝑖𝛾, then ln𝑥= 𝜋

𝛾 . In the Riemann hypothesis 𝑠= 1
2 +𝑖𝑡. The two zetas can be

reconciled by the transformation: 𝜋
ln𝑡 = 𝜋

ln𝑥 or 𝑥=𝑡.

The number of primes is therefore asymptotically equal to 𝑡
ln𝑡 .

The first zeta, when reconciled to Riemann zeta is given by 𝜁(𝑠) = 1
2 + 𝑖𝜋

𝑡 .

Thus this paper will explore zeroes of alternative zeta formulations.

A zeta function for Goldbach partition

In the paper reference [1] the gap, 𝑔 between two primes, 𝑝1 and 𝑝2 is given by
𝑔=2√𝑚2−𝑝1𝑝2 with 𝑚 representing the mean of the two primes. A logarithmic
zeta function encoding information about gaps between primes would therefore

be given by 𝜁(𝑋)= ln(− 1𝑛 √𝑚2−𝑝1𝑝2)
𝑚+𝑛 where 𝑛=− 𝑔

2 .

The decomposition of the Goldbach partition zeta function therefore is
𝜁(𝑋)= ln(− 1𝑛 √𝑚2−𝑝1𝑝2)

𝑚+𝑛 = ln 1𝑛 √𝑚2−𝑝1𝑝2
𝑚+𝑛 +𝑖 𝜋

𝑚+𝑛 and 𝑝1≠𝑝2.

Under circumstances in which 𝑝1=𝑝2 the zeta function 𝜁(𝑋)= ln(√𝑚2−𝑝1𝑝2+1)
𝑚 is be

used.

Goldbach partition therefore requires solving 𝜁(𝑋)=0.

Results

For prime pairs with a gap of 6, using 𝑛=−3 and 𝑚=𝑝1+3 , the function evaluates
as follows:
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𝜁(𝑠) =

⎧{{
⎨{{⎩

0.2197 for (5, 11)
0.0999 for (11, 17)
0.0646 for (17, 23)
0.0478 for (23, 29)
0.0268 for (41, 47)

For prime pairs with a gap of 6, using 𝑛=−2 and 𝑚=𝑝1+2 , the function evaluates
as follows:

𝜁(𝑠) =
⎧{{
⎨{{⎩

0.2310 for (3, 7)
0.0990 for (7, 11)
0.0533 for (13, 17)
0.0365 for (19, 23)

A further analysis. A Complexity zeta for the Euler prod-
uct.

Consider the Euler product 𝜁(𝑠)=∏ 𝑝𝑠
𝑖

𝑝𝑠−1 . The above product generates a zero
whenever 𝑠=−∞.

We will formulate the complex variable 𝑠 such that it will always generate a zero
at some singularity. If
𝜁(𝑠)=−𝜁( 1

𝑋 )=𝜁(− 𝑚+𝑛
ln(−1/𝑛√𝑚2−𝑝1𝑝2

)=𝜁(− 𝑚+𝑛
𝑖𝜋+ln(1/𝑛√𝑚2−𝑝1𝑝2)

)

since 𝑛 takes a negative value at 𝜁(𝑠)=0, a further decomposition needs to be done.
That is:

𝜁(𝑠)=− 𝑚+𝑛
𝑖𝜋+ln(1/𝑛√𝑚2−𝑝1𝑝2)

=− 𝑚+𝑛
2𝑖𝜋+ln(−1/𝑛√𝑚2−𝑝1𝑝2)

=− (𝑚+𝑛)(2𝑖𝜋−ln(−1/𝑛√𝑚2−𝑝1𝑝2))
−4𝜋2−ln2(−1/𝑛√𝑚2−𝑝1𝑝2)

=𝑖 𝑚+𝑛
2𝜋 =𝑖 𝑝12𝜋

This formulation links prime gaps to sigularities in 𝜁(𝑠)=0. Zeros are generated
when we for any prime gap 𝑛=− 𝑔

2 .

It is also observed that 𝑚+𝑛=𝑝1.

For twin prime pairs we use 𝑛=−1 and 𝑚=𝑝1+1 ∣𝑝2>𝑝1.

For gap 𝑔 between consecutive primes use 𝑛=−𝑔/2 and 𝑚=𝑝1+𝑔/2.

The real part of the zeta of this formulation is
(𝑚+𝑛)(ln(1/𝑛√𝑚2−𝑝1𝑝2))
−4𝜋2−ln2(1/𝑛√𝑚2−𝑝1𝑝2) = 0.
The imaginary part of the same zeta is
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− 𝑖𝜋(𝑚+𝑛)
−4𝜋2−ln2(1/𝑛√𝑚2−𝑝1𝑝2) .

A nontrivial zero is generated when ℜ(𝑠)=0

Since ln1/𝑛() ℑ(𝑠)= (𝑚+𝑛)
2𝜋 .

when these conditions are generated, at the logarithmic for level a singularity is
generated since 𝑠=−∞ then. The Euler product therefore generates a nontrivial
zero.

These results do not contradict Riemann Hypothesis.

Numerical validations

Consider the complex logarithmic
𝜁(𝑠)=−𝜁( 1

𝑋 )=𝜁(− 𝑚+𝑛
ln(−1/𝑛√𝑚2−𝑝1𝑝2

)
.

When 𝑛=−1 𝑚=4 𝑝1=3 and 𝑝2=𝑝1−2𝑛=𝑡 then 𝑠 = −∞. The Euler product generates
a nontrivial zero.

The imaginary part of the logarithimic complex number is :
ℑ(𝑠)= 𝑚+𝑛)

2𝜋 = 3
2𝜋 . The real part is zero. For all twin primes 𝑞=𝑝+2

The imaginary part of the logarithmic complex number is :
ℑ(𝑠)= (𝑚−1)

2𝜋 = 𝑝
2𝜋 .

ℜ(𝑠)=0.

For primes
𝑞=𝑝+2𝑁

ℑ(𝑠)= (𝑚−𝑁)
𝜋 = 𝑝

2𝜋 .
ℜ(𝑠)=0.

An alternation formulation for zeroes outside the criti-
cal strip

Consider the Euler product
𝜁(𝑠)=∏ 𝑝𝑠

𝑖
𝑝𝑠

𝑖 −1 .

If we set
𝑠= −1

ln(√𝑥2−𝑝1𝑝2−( 𝑝2−𝑝12 )2+1) ,

nontrivial zeroes of a class not belonging to the Riemann hypothesis are gener-
ated when ln(𝑥2−𝑝1𝑝2−( 𝑝2−𝑝12 )2+1)=0.

The graph (1) below is demonstrates the generation of one such zero.
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The real part of the zeta function is however zero.

Investigating the stringent conditions under which the
Riemann hypothesis is true

Theorem: Gap between prime

consider the prime 𝑝𝑘. The gap 𝑔𝑘 between consecutive prime is given by:

lim
𝑛 𝑝𝑘𝑔𝑘 →∞

(1 + ( 𝑔𝑘
𝑛𝑝𝑘

))( 𝑛𝑝𝑘𝑔𝑘 ) = 𝑒 (1)

This means that:

lim𝑛𝑝𝑘𝑔𝑘 →∞
(1 + ( 𝑔𝑘

𝑛𝑝𝑘
)) = 𝑒( 𝑔𝑘𝑛𝑝𝑘 ) (2)

Or
lim𝑛𝑝𝑘𝑔𝑘 →∞

ln(1 + ( 𝑔𝑘
𝑛𝑝𝑘

)) = 𝑔𝑘
𝑛𝑝𝑘

(3)

The above result for example implies ln(1.03)≈0.03. It also implies that
ln(1−0.03)≈−0.03,
ln(1−0)=0.

This result follows from Taylor series expansion, ln(1±𝑥)≈±𝑥 for small x.

For values around , |𝑥|<0 the approximation is very accurate, with an error of less
than 0.001.

Riemamn hypothesis

In a most general sense, the Riemann function can therefore be reformulated as

𝜁(𝑠) = 𝜁(sin2 𝑝𝑛𝑘
𝑘 + 𝑖𝑡𝑘) =

ln(−(1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

)sin2 𝑝𝑛𝑘
𝑘 )

ln(1 + 𝑔𝑚𝑘
𝑘 )
𝑝𝑛𝑘

𝑘
)

= sin2 𝑝𝑛𝑘
𝑘 + 𝑖𝜋

ln(1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

)
(4)

This formulation implies that
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ln(1 + (𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

))) = 𝜋
𝑡𝑘

(5)

or

1 + 𝑔𝑚𝑘
𝑘

𝑝𝑛𝑘
𝑘

= 𝑒 𝜋
𝑡𝑘 (6)

or

𝑔𝑚𝑘
𝑘 = 𝑝𝑛𝑘

𝑘 (𝑒 𝜋
𝑡𝑘 − 1) (7)

or
𝑔𝑘 = (𝑝𝑛𝑘

𝑘 (𝑒 𝜋
𝑡𝑘 − 1)) 1

𝑚𝑘 (8)

Here 𝑡𝑘 represents the 𝑘𝑡ℎ zero of the Riemann zeta function, while 𝑝𝑘 represents
the 𝑘𝑡ℎ prime.

An exact prime gap theorem

The Riemann hypothesis implies that

𝑠𝑖𝑛𝑝𝑛𝑘
𝑘 = ±√1

2 (9)

This means that

𝑝𝑘 = 𝑛𝑘√𝜋(1 + 8(𝑙𝑘 − 1))
4 (10)

where 𝑙𝑘=𝑘≥1 is an integer greater or equal to 1.

𝑔𝑘 = ((𝜋(1 + 8(𝑙𝑘 − 1))
4 )𝑛𝑘(𝑒 𝜋

𝑡𝑘 − 1)) 1
𝑚𝑘 (11)

Equation 8 can be written as

𝑔𝑘 = 𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 (12)

By equation 6:

𝑚𝑘 = ln𝑝𝑛𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1)
ln𝑔𝑘

= 𝑛𝑘 ln𝑝𝑘 + ln(𝑒 𝜋
𝑡𝑘 − 1)

ln𝑔𝑘
(13)
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therefore 𝑛𝑘
𝑚𝑘

= 𝑛𝑘 ln𝑔𝑘
𝑛𝑘 ln𝑝𝑘 + ln(𝑒 𝜋

𝑡𝑘 − 1)
(14)

Therefore:

𝑔𝑘 = 𝑝
𝑛𝑘 ln𝑔𝑘

𝑛𝑘 ln𝑝𝑘+ln(𝑒
𝜋𝑡𝑘 −1)

𝑘 (𝑒 𝜋
𝑡𝑘 − 1)

ln𝑔𝑘
𝑛𝑘 ln𝑝𝑘+ln(𝑒

𝜋𝑡𝑘 −1) (15)

From (10)

𝑛𝑘 = ln(𝜋(1+8(𝑙𝑘−1))
4 )

ln𝑝𝑘
(16)

To bring the gap terms togegether equation (15) can be rewritten as:

𝑔
1

ln𝑔𝑘
𝑘 = 𝑝

𝑛𝑘
𝑛𝑘 ln𝑝𝑘+ln(𝑒

𝜋𝑡𝑘 −1)
𝑘 (𝑒 𝜋

𝑡𝑘 − 1)
1

𝑛𝑘 ln𝑝𝑘+ln(𝑒
𝜋𝑡𝑘 −1) (17)

This result is significant. The equation (17) constitutes the prime gap theorem.

Table of analysis

[
𝑝𝑘 𝑔𝑘 (Empirical) 𝑔𝑘 (Computed) 𝑡𝑘 (Zeta Zero) 𝑛𝑘
2 1 1.0000 14.1347 -0.3485
3 2 2.0000 21.0220 1.7801
5 2 2.0000 25.0109 1.6103
7 4 4.0000 30.4249 1.5300
11 2 2.0000 32.9351 1.3574
13 4 4.0000 37.5862 1.3536
17 2 2.0000 40.9187 1.2884
19 4 4.0000 43.3271 1.2911
23 6 6.0000 48.0052 1.2543
29 2 2.0000 49.7738 1.2024

]

These findings suggest that prime gaps are fundamentally governed by the be-
havior of 𝜁(𝑠) zeros, a significant result in analytic number theory.
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An exact formulation for counting the number of primes

The mean prime gap, 𝑔𝑚 can be defined as:

𝑔𝑚 = ∑(𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 ) + 2

𝑘 − 1 (18)

This means

𝑘 = 𝜋(𝑝𝑘) = ∑(𝑝
𝑛𝑘𝑚𝑘
𝑘 (𝑒 𝜋

𝑡𝑘 − 1) 1
𝑚𝑘 ) + 2

𝑔𝑚
(19)

Summary and Conclusion

This research establishes a direct relationship between prime gaps and the non-
trivial zeroes of the Riemann zeta function. This work Numerically supports the
Riemann hypothesis.

This research establishes a prime gap Theorem.

The Theorem strongly implies that prime gaps are not random but instead follow
a well-defined deterministic law governed by prime numbers and the nontrivial
zeros of the Riemann zeta function.
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Figure 1: Zero
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