INTEGRABILY AND COHOMOLOGY AND 6-SPHERE

JUN LING

ABSTRACT. We construct a differential from Nijenhuis tensor of any almost complex structure on a differentiable manifold, and show a relationship between the integrability of the almost complex structure and the cohomology of the manifold. For the case of 6-sphere, we first show that this form does not vanish for a special almost complex structure, and then show that this form does not vanish for any almost complex structure on the 6-sphere. Therefore all almost complex structures on 6-sphere are not integrable.

1. INTRODUCTION

Let M be a differential n-manifold and J an almost complex structure on M. We construct a differential form ℓ from J and Nijenhuis tensor N of the complex structure J, and show a relation between integrability of the almost complex structure and the cohomology of the manifold M. In 6-sphere case, we show form ℓ is not vanishing for a special almost complex structure first and then show this form is not vanishing for any almost complex structure on 6-sphere. That the form does not vanish implies that Nijienhius tensor does not vanish, which implies the almost complex structure is not integrable. Therefore all almost complex structures on 6-sphere are not integrable.

Integability of almost complex structure on differential manifold, in particular on high dimensional spheres has been studied extensively. If an almost complex structure is integrable, then it is a complex structure that makes the underline differential manifold a complex manifold. Conversely, the complex structure of a complex manifold induces a (an integrable) almost complex structure. There have been lot of great work in this field, for example, Hopf [13], Borel and Serre [5], Ehresmann [9], Kirchhoff [14], Eckmann and Frölicher [8], Ehressmann and Libermann [10], LeBrun [16], Atiyah [2], Bryant and S.S. Chern [3] [4], Cirici-Wilson[6], and etc to name a few. For spheres, it is known that all high dimensional (dimension greater than 2) spheres are not complex manifolds except for 6-sphere. Whether 6-sphere is a complex manifold or not is still a well-known open problem. See Hirzebruch [12] in 1954, Libermann [17] in 1955 and Yau [20] in 1990. Almost complex structures do exist on 6-sphere. It is known that none

Date: January 31, 2025.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C15; Secondary 32Q60.

Key words and phrases. Nijenhuis Tensor, almost complex structures.

Thank Princeton University and Cornell University for their hospitality.

JUN LING

of known almost complex structures is integrable therefore not a complex

structure that makes 6-sphere a complex manifold. See [1] for a survey.

We have the following results.

Theorem 1.1. For Nijenhuis tensor N of any almost complex structure J,

N(X,Y) = [JX, JY] - J[X, JY] - J[JX, Y] - [X,Y], for smooth vector fields X and Y,where $[\cdot, \cdot \cdot]$ is Lie bracket, let ℓ be the tensor defined by (1.1) $\ell(X,Y) := \operatorname{trace}\{JN(N(X, \cdot), Y)\}$ for smooth vector fields X and Y.

Then ℓ is a differential 2-form on M.

Corollary 1.2. If form ℓ is not closed, then J is not integrable.

Theorem 1.3. Any almost complex structure on S^6 is not integrable.

Proof. By Theorem 1.1, ℓ is a 2-form. If there exits a J whose ℓ form is closed, then $\ell \in H^2_{\text{deRham}}(S^6)$. It is known that $H^2_{\text{deRham}}(S^6)$ is trivial. So $\ell \equiv 0$, which contradicts to Theorem 1.4, since in current case ℓ is a topological invariant with unique vanishing value. Therefore in S^6 there is no J whose ℓ form is closed. For all almost complex structure J inducing form ℓ , $d\ell \neq 0$. So $\ell \neq 0$, and $N \neq 0$. By Newlander-Nirenberg Theorem [19], J is not integrable.

View S^6 as the unit sphere in the imaginary part of Octonians. There is a well-known canonical almost complex structure define on the tangent bundle of S^6 by multiplication in Octonions. We call it Left-multiplication almost complex structure. Please refer to Section 3, [15], or [7] for more details about Left-multiplication almost complex structure.

Theorem 1.4. Form ℓ is not vanishing for the Left-multiplication almost complex structure on S^6 .

In [18] author proved above ℓ is traceless. Along this line, the author later studied further during the visits to Princeton Mathematics Department and to Cornell Mathematics Department, and afterwards. The author obtained differential form ℓ in July of 2024, which includes traceless result in [18] since a skew-symmetric matrix is hollow therefore is traceless, and Theorem 1.4 and Theorem 1.3 in January of 2025. The author sincerely appreciate hospitality of the Princeton University and Cornell University.

In the following sections we give detailed calculations for above results. The next section is for proving Theorem 1.1. Last section is for proving Theorem 1.4.

2. Form

We take a local coordinates $\{x^i\}_{i=1}^n$ at point $x \in M$. Take sum for a repeating index, unless otherwise stated. Let $\partial_i = \frac{\partial}{\partial x^i}$, $J\frac{\partial}{\partial x^i} = J_i^j\frac{\partial}{\partial x^j}$,

 $\mathbf{2}$

 $J_i = J_i^p \frac{\partial}{\partial x^p}$, and components of Nijenhuis tensor N.

$$N\Big(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\Big) := N_{ij}^k \frac{\partial}{\partial x^k}.$$

It is easy to verify

$$N_{ij}^k = J_i^p (\partial_p J_j^k - \partial_j J_p^k) - J_j^p (\partial_p J_i^k - \partial_i J_p^k).$$

Proof of Theorem 1.1. The component form of Theorem 1.1 is the following Theorem 2.1. we prove it.

Theorem 2.1. ℓ can be written in the following form in local coordinates:

$$\ell = \ell_{ij} dx^i \wedge dx^j.$$

 ℓ_{ij} is skew symmetric in i and j and

$$\ell_{ij} = -J_k^l \cdot J_i J_l^r \cdot J_j J_r^k + J_k^l \partial_i J_r^k \partial_j J_l^r + \{-J_i J_k^l \partial_j J_l^k + J_j J_k^l \partial_i J_l^k\} + 2\{J_i J_k^l \partial_l J_j^k - J_j J_k^l \partial_l J_i^k\} + 2\{-J_k J_l^l \partial_l J_j^k + J_k J_j^l \partial_l J_i^k\} + 2\{J_k J_l^l \partial_j J_l^k - J_k J_j^l \partial_i J_l^k\}.$$

We need only to show matrix $[\ell_{ij}]$ is sew-symmetric at every $x \in M$. By (1.1), we have

$$\ell_{ij} = N_{ik}^{i} N_{rj}^{r} J_{s}^{\kappa} = J_{s}^{\kappa} N_{ik}^{i} N_{rj}^{r}$$

$$= J_{s}^{k} \cdot J_{i} J_{k}^{r} \cdot J_{r} J_{j}^{s} - J_{r}^{q} J_{s}^{k} \cdot J_{i} J_{k}^{r} \cdot \partial_{j} J_{q}^{s} - J_{s}^{k} \cdot J_{i} J_{k}^{r} \cdot J_{j} J_{r}^{s} + J_{j}^{q} J_{s}^{k} \cdot J_{i} J_{k}^{r} \cdot \partial_{r} J_{q}^{s}$$

$$-J_{i}^{p} \cdot J_{s} J_{p}^{r} \cdot J_{r} J_{j}^{s} + J_{r}^{q} J_{i}^{p} \cdot J_{s} J_{p}^{r} \cdot \partial_{j} J_{q}^{s} + J_{i}^{p} \cdot J_{s} J_{p}^{r} \cdot J_{j} J_{r}^{s} - J_{j}^{q} J_{i}^{p} \cdot J_{s} J_{p}^{r} \cdot \partial_{r} J_{q}^{s}$$

$$+J_{r} J_{j}^{s} \cdot \partial_{s} J_{i}^{r} - J_{r}^{q} \cdot \partial_{j} J_{q}^{s} \cdot \partial_{s} J_{i}^{r} - J_{j} J_{r}^{s} \cdot \partial_{s} J_{i}^{r} + J_{j}^{q} \cdot \partial_{r} J_{q}^{s} \cdot \partial_{s} J_{i}^{r}$$

$$-J_{r} J_{j}^{s} \cdot \partial_{i} J_{s}^{r} + J_{r}^{q} \cdot \partial_{i} J_{s}^{r} \cdot \partial_{j} J_{q}^{s} + J_{j} J_{r}^{s} \cdot \partial_{i} J_{s}^{r} - J_{j}^{q} \cdot \partial_{r} J_{q}^{s} \cdot \partial_{i} J_{s}^{r}$$

Using facts $J^2 = -1$ and tr(J) = 0 to calculate, it is easy to

$$\ell_{ij} = -J_k^l \cdot J_i J_l^r \cdot J_j J_r^k + J_k^l \partial_i J_r^k \partial_j J_l^r + \{-J_i J_k^l \partial_j J_l^k + J_j J_k^l \partial_i J_l^k\} + 2\{J_i J_k^l \partial_l J_j^k - J_j J_k^l \partial_l J_i^k\} + 2\{-J_k J_i^l \partial_l J_j^k + J_k J_j^l \partial_l J_i^k\} + 2\{J_k J_i^l \partial_j J_l^k - J_k J_j^l \partial_i J_l^k\},$$

Therefore ℓ_{ij} is sew-symmetric on i and j .

3. Nonvanishing of ℓ for Left-Multiplication

Let $\mathbb O$ be octonions. Every octonion x is a real linear combination of the unit octonions

 $x = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 + x_6e_6 + x_7e_7, \quad e_0 = 1.$ The product of $x, y \in \mathbb{O}$ is denoted by $x \cdot y$. If x and y are perpendicular, then $Im(x \cdot y) = x \cdot y$.

$$S^{6} = \{ x \in Im(\mathbb{O}) | |X|^{2} = 1 \}.$$

Take a point $e_1 \in S^6$, and y in tangent space of S^6 : $Jv = e_1 \cdot v$ defines a linear transformation on the tangent space $T_{e_1}S^6$ with $J^2 = -1$. So it is an almost complex structure on S^6 . We call it the Left-multiplication J. There are more details in [15] and [7] and many other presentations about this J.

Consider $X, Y : S^6 \longrightarrow \mathbb{R}^7$ as mappings, and dX and dY are differentials of mappings, Ch. [7]. Therefore

$$[X,Y] = dY(X) - dX(Y)$$

$$d(JY)(JX) = (JdY)(JX) + (dJY)(JX) = JdY(JX) + JX \cdot Y$$

$$d(JY)(X) = (JdY)(X) + (dJY)(X) = JdY(X) + X \cdot Y$$

$$[X,Y] = dY(X) - dX(Y)$$

$$\begin{split} [JX, JY] &= d(JY)(JX) - d(JX)(JY) = JdY(JX) + JX \cdot Y - JdX(JY) - JY \cdot X \\ J[X, JY] &= Jd(JY)(X) - JdX(JY) = -dY(X) + J(X \cdot Y) - JdX(JY) \\ J[JX, Y] &= J(dY)(JX) - Jd(JX)(Y) = JdY(JX) + dX(Y) - J(Y \cdot X) \end{split}$$

$$N(X,Y) = [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y]$$

= $JdY(JX) + JX \cdot Y - JdX(JY) - JY \cdot X$
+ $dY(X) - J(X \cdot Y) + JdX(JY) - JdY(JX) - dX(Y) + J(Y \cdot X) - [X, Y]$
= $JX \cdot Y - JY \cdot X - J(X \cdot Y) + J(Y \cdot X)$

Let N_1 be Nijenhuis tensor at point $e_1 \in S^6$. $N_1(2,3) := N_{e_1}(e_2, e_3), \cdots$, and etc. We have the following.

$$N_{1}(2,3) = -4e_{6}, N_{1}(2,4) = 0, N_{1}(2,5) = 4e_{7}, N_{1}(2,6) = 4e_{3}, N_{1}(2,7) = -4e_{5},$$

$$N_{1}(3,4) = 4e_{5}, N_{1}(3,5) = -4e_{4}, N_{1}(3,6) = -4e_{2}, N_{1}(3,7) = 0,$$

$$N_{1}(4,5) = 4e_{3}, N_{1}(4,6) = -4e_{7}, N_{1}(4,7) = 4e_{6},$$

$$N_{1}(5,6) = 0, N_{1}(5,7) = 4e_{2},$$

$$N_{1}(6,7) = -4e_{4},$$

 $N_1(6,7) = -4e_4,$ Let $e_1 = f_7, e_2 = f_1, e_3 = f_2, e_4 = f_3, e_5 = f_4, e_6 = f_5, e_7 = f_6.$ In the following we denote $N(i,j) := N_{f_7}(f_i, f_j)$ for i, j = 1, 2, 3, 4, 5, 6. At $f_7 = e_1 \in S^6$, we have

$$(3.1) \qquad \frac{1}{4}[N(f_i, f_j)] = \begin{bmatrix} 0 & -f_5 & 0 & f_6 & f_2 & -f_4 \\ f_5 & 0 & f_4 & -f_3 & -f_1 & 0 \\ 0 & -f_4 & 0 & f_2 & -f_6 & f_5 \\ -f_6 & f_3 & -f_2 & 0 & 0 & f_1 \\ -f_2 & f_1 & f_6 & 0 & 0 & -f_3 \\ f_4 & 0 & -f_5 & -f_1 & f_3 & 0 \end{bmatrix}$$

Similarly we may calculate J_i^j at point $f_7 = e_1$. Note $J: T_{f_7}S^6 \longrightarrow T_{f_7}S^6$.

$$[J_i^j] = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4

FORM

$$\begin{split} -\ell_{ij} &= -N_{ik}^r N_{rj}^s J_s^k = N_{ik}^r N_{jr}^s J_s^k \\ &= 0 + N_{i6}^1 N_{j1}^2 + 0 + N_{i5}^1 N_{j1}^4 - N_{i4}^1 N_{j1}^5 - N_{i2}^1 N_{j1}^6 \\ &+ N_{i3}^2 N_{j2}^1 + 0 - N_{i1}^2 N_{j2}^3 + N_{i5}^2 N_{j2}^4 - N_{i4}^2 N_{j2}^5 - 0 \\ &+ 0 + N_{i6}^3 N_{j3}^2 - 0 + N_{i5}^3 N_{j3}^4 - N_{i4}^3 N_{j3}^5 - N_{i2}^3 N_{j3}^6 \\ &+ N_{i3}^4 N_{j4}^1 + N_{i6}^4 N_{j4}^2 - N_{i1}^4 N_{j4}^3 + 0 - 0 - N_{i2}^4 N_{j4}^6 \\ &+ N_{i3}^5 N_{j5}^1 + N_{i6}^5 N_{j5}^2 - N_{i1}^5 N_{j5}^3 + 0 - 0 - N_{i2}^5 N_{j5}^6 \\ &+ N_{i3}^6 N_{j6}^1 + 0 - N_{i1}^6 N_{j6}^3 + N_{i5}^6 N_{j6}^4 - N_{i4}^6 N_{j6}^5 - 0 \end{split}$$

Now take i = 4, j = 5. Use values of N_{ij}^k s listed after (3.1), we have

 $-\ell_{45}$

$$\begin{split} &= 0 + N_{46}^1 N_{51}^2 + 0 + N_{45}^1 N_{51}^4 - N_{44}^1 N_{51}^5 - N_{42}^1 N_{51}^6 \\ &+ N_{43}^2 N_{52}^1 + 0 - N_{41}^2 N_{52}^3 + N_{45}^2 N_{52}^4 - N_{44}^2 N_{52}^5 - 0 \\ &+ 0 + N_{46}^3 N_{53}^2 - 0 + N_{45}^3 N_{53}^4 - N_{44}^3 N_{53}^5 - N_{42}^3 N_{53}^6 \\ &+ N_{43}^4 N_{54}^1 + N_{46}^4 N_{54}^2 - N_{41}^4 N_{54}^3 + 0 - 0 - N_{42}^4 N_{54}^6 \\ &+ N_{43}^5 N_{55}^1 + N_{46}^5 N_{55}^2 - N_{41}^5 N_{55}^3 + 0 - 0 - N_{42}^5 N_{55}^6 \\ &+ N_{43}^6 N_{56}^1 + 0 - N_{41}^6 N_{56}^3 + N_{45}^6 N_{56}^4 - N_{44}^6 N_{56}^5 - 0 \end{split}$$

$$= 0 - 16 + 0 + 0 - 0 - 0$$
$$-16 + 0 - 0 + 0 - 0 - 0$$
$$+0 + 0 - 0 + 0 - 0 - 16$$
$$+0 + 0 - 0 + 0 - 0 - 0$$
$$+0 + 0 - 0 + 0 - 0 - 0$$
$$+0 + 0 - 16 + 0 - 0 - 0$$
$$= -64$$

Therefore $\ell_{45} = 64 \neq 0$.

JUN LING

References

- I. Agricola, G. Bazzoni:, and O. Goertsches, On the history of the Hopf problem, Differential Geometry and its Applications, 57(2018), 1–9.
- [2] Michael Atiyah The Non-Existent Complex 6-Sphere, https://arxiv.org/abs/1610.09366
- [3] R. Bryant S.-S. Chern's study of almost-complex structures on the six-sphere, 2005, https://arxiv.org/abs/math/0508428
- [4] R. Bryant S.-S. Chern's study of almost-complex structures on the six-sphere, International Journal of Mathematics, 32(12) (2021). https://doi.org/10.1142/S0129167X21400061
- [5] A. Borel and J-P Serre, tes de Steenrod, Amer. J. Math., 75:409-448, 1953.
- [6] Joana Cirici and Scott O. Wilson, Dolbeault Cohomology for Almost Complex Manifolds, ArXiv: 1809.01416, 16 Jan 2020.
- [7] L. Díaz , A note on Kirchhoff's theorem for almost complex spheres I, https://arxiv.org/pdf/1804.05794.
- [8] B. Eckmann and A. Fr¨olicher, Sur l'int 'egrabilit 'e des structures presque complexes, C. R. Acad. Sci. Paris, 232:2284–2286, 1951.
- [9] C. Ehresmann. Sur la th'eorie des espaces fibr'es, in Topologie alg'ebrique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 12, pages 3–15. Centre de la Recherche Scientifique, Paris, 1949.
- C. Ehresmann and P. Libermann. Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, 232:1281–1283, 1951.
- [11] Frölicher, A.Nijenhuis, Theory of vector-valued differential forms (I), Proc. Koninkl. Nederl. Akad. Wetensch., ser.A, 59, issue 3 (1956), 338-359.
- [12] F. Hirzebruch Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties, Proc. Nat. Acad. Sci. U. S. A., 40:110–114, 1954.
- [13] H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten., In Studies and Essays Presented to R. Courant on his 60th Birthday,167–185, Interscience Publishers, Inc., New York, 1948,
- [14] A. Kirchhoff Sur l'existence des certains champs tensoriels sur les sph'eres 'a n dimensions, C. R. Acad. Sci. Paris, 225:1258–1260, 1947.
- [15] P.Konstantis and M. Parton, ALMOST COMPLEX STRUCTURES ON SPHERES, Differential Geometry and its Applications, 57(2018), 10–12.
- [16] C. LeBrun, Orthogonal complex structures on S⁶, Proc. Am. Math. Soc., 101(1987), 136–138.
- [17] P. Libermann Sur les structures presque complexes et autres structures infinit'esimales r'eguli'eres, Bull. Soc. Math. France, 83:195–224, 1955.
- [18] J. Ling The Square of Nijenhuis Tensor and Applications, The square of Nijenhuis tensor and its vanishing results, Asian-European Journal of Mathematics, Asian-European Journal of Mathematics, 15, no 8(2022).
- [19] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math., 65(1957), 391–404.
- [20] S.-T. Yau. Open problems in geometry, partial differential equations on manifolds (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages 1–28. Amer. Math. Soc., Providence, RI, 1993.

DEPARTMENT OF MATHEMATICS, UTAH VALLEY UNIVERSITY, OREM, UTAH 84058 *Email address*: lingju@uvu.edu