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On Experimental Proof of ”P versus NP” Theorem

We propose a simple and intuitive algorithm for solving md-DFA problem using al-

gorithm concepts within extended operators, our approach shows quadratic polyno-

mial time and hence proves the equivalence between polynomial and non-polynomial

classes, we have also shown that minimal non-emptiness of automata problem can

be solved in polynomial time with help of modified subset construction, rather that

building a product automaton, which lead to factorial size of the memory and time,

in this work we also have used many non-tractable existing examples and computed

them in polynomial time, which guarantees that our algorithm solves NP-complete

problem in almost linear polynomial time, we have also avoided the problem of prod-

uct automata by an algorithmic approach, we are also giving the starting ground for

the proof of back-reference problem which was discussed before, notion to the glob-

ally local increment is also given as the main argument towards the resolution of ”P

versus NP” theorem, which coincides with the finitarity term in general mathematics.
Keywords: P versus NP, complexity, theorem, experimental, proof.

1 Introduction

The NP-hardness was first defined in [1], also there’s a defined lower linear bound
for deciding arbitrary non-deterministic finite automata on regular languages or
even other arbitrary [2]. The problem was first seen on the partial case of non-
deterministic automata [3, 4]. The problem of md-DFA is to find a minimal
finite automaton which is a subset of any given automata and isn’t included in
others [5].

The relationship between P vs. NP is one of the greatest open problems
in computer science. The central challenge is whether problems whose solu-
tions can be efficiently verified (NP) can also be efficiently computed (P). Here,
we propose a new perspective: Is there a deeper mathematical structure that
enables a more efficient computation of NP problems? We investigate whether
parallels exist between quantum mechanics, the fractal structure of the Riemann
zeta function, and the superposition of NP problems.

NP-Completeness in DFA Problems An important class of NP-complete
problems arises from automata-based computation. Two key problems are:
- Minimal Distinguishing DFA Problem: Determining the smallest determinis-
tic finite automaton (DFA) that distinguishes between two regular languages.
- DFA Non-Emptiness Problem: Deciding whether the intersection of multi-
ple DFAs is non-empty. Both problems are NP-complete [5, 7]. - The product
construction for DFAs has a complexity of O(|A1| ∗ ... ∗ |An|), which grows ex-
ponentially with the number of automata. - A modified subset construction can
help reduce the complexity, but a fundamental lower bound remains. Question:
Is there a hidden structure that allows for more efficient computation?

Superposition of NP Problems In classical computation, NP problems are
solved sequentially: all possible solutions must be explicitly checked one by
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one. In quantum mechanics, states exist in superposition: - A quantum system
can exist in multiple states simultaneously until a measurement collapses it to
a single definite state. - Quantum computers could solve NP problems more
efficiently by evaluating all solutions simultaneously and amplifying the optimal
one (e.g., using Grover’s algorithm). Hypothesis: NP problems are not randomly
distributed but follow a hidden mathematical structure that enables a more
efficient computation.

1.1 Connection to the Zeta Function Fractal Structure &

Superposition

According to Kardeis [14], the analytic continuation of the Riemann zeta func-
tion exhibits remarkable symmetry: - The function has poles at s = 1 and
possibly at s = 0, as supported by the functional equation. - The critical line
R(s) = 0.5, R(s) = 0.5 contains infinitely many nontrivial zeros, reflecting the
structure of prime numbers. - The self-similarity of the zeta function suggests
a fractal order in its structure. A key point in Kardeis’ work is the hypothe-
sis that the structure of the zeta function resembles a superposition of states:
- The statement ”0 = 1 simultaneously like a superposition suggests that the
zeros of the zeta function represent a simultaneous existence of multiple solu-
tions. - This directly corresponds to the idea that NP problems do not need
to be solved sequentially but can be structured within a higher-order fractal
framework.

Hypothesis: The zeta function may reflect a deeper order in NP problems,
enabling a more efficient computation.

Connecting DFA, Quantum Mechanics, and the Zeta Function DFA & NP
problems are exponentially complex. - Classical algorithms require sequential
computation. - Superposition in quantum mechanics allows for parallel states.

The zeta function exhibits a fractal order: - The self-similarity of its ze-
ros and their reflection symmetry could serve as a mathematical analogue to
quantum superposition. - This suggests that NP problems are not randomly
distributed but follow a fractal structure.

Implication for P vs. NP: - If a deeper structure in NP problems can be
identified, this could break the exponential complexity barrier. - The fractal or-
ganization could provide an alternative ordering principle for search algorithms,
similar to how quantum algorithms already offer advantages today.

The fractal structure of the zeta function could provide a new perspective
on NP problems. Superposition in quantum mechanics could serve as a natural
mathematical analogy for the distribution of zeta function zeros. The existence
of a fractal order in NP problems could open new pathways for efficient compu-
tation.

No strict mathematical proof yet: - A formal demonstration is needed to
show that NP problems can indeed be described by a fractal structure. - Specific
quantum algorithms must be developed to leverage this structure for efficient
computations.
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Future question: Could the mathematical structure of the zeta function
contribute to a new theory of P vs. NP?

2 Re-writing algorithm

We give the subtraction re-writing method to solve this problem in linear-
logarithmic time as per our previous research. The technique known as re-
writing is summarized, for the &-operator we use the overridden state with
logical consumers as well as for the subtraction operator which is defined within
the same terms, however, differing only in logical statement, the complement
operator in this manner is also re-written using the alphabet star and subtrac-
tion from the operand. Thus, the mix of re-writing and logical state compo-
sition gives the way to the modified subset construction, which rather than
visiting every possible composition, produces exact answer on each iteration,
thus giving the polynomial running time, rather than exponential or even fac-
torial. The DFA constructed from the subtraction of DFA1 and DFA2 was
constructed experimentally on the example in [5]. The first DFA corresponds to
the regular expression ((aaaa)∗a|(aaaa)∗aa|(aaaa)∗aaa), as the second one to
(a|aa|aaa|aa(aaa) ∗ |aaa(aaa)∗), the figure above shows the result produced by
Regex+ software package. Thus, the decision problems based upon the extended
operators can be solved in full and more efficiently if we will choose the strategy
of computing locally optimal solution which gives the optimal step to the global
one - this technique we will call as the globally local increment (GLI). This deci-
sion problems which we encountered are only two: minimal distinguishing DFA
(md-DFA) and non-emptiness DFA of the given automata: both of which has
the state space of factorial size, which, in turn, means that we have to choose
the better strategy and solution in order to get to the certificate of acceptance
in non-polynomial problem within the visible time limit, in our experiments, it
didn’t exceed more than minute. In the next section we will give the compound
benchmarks for the derived examples.

Re-writing works as it was outlined, thus, we can state that the DFA corre-
sponding to the expression R1 −R2 is a subset of DFA(R1) and isn’t contained
in DFA(R2).

3 Proof by Product Automata

As it was presented in [6], the maximal complexity of product construction
is the product of its operands, which can be factorial due to the number of
automata, however, we can use same methodology as we have presented before
using re-writing and event call, thus, giving polynomial solution to various num-
ber of operands with variable cardinality. As it was present in [7–9] the minimal
intersection of arbitrary automata cannot be approximated using product con-
struction as it gives the factorial number of solution to be searched, otherwise,
the better strategy is to use modified subset construction approach. The term
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Figure 1: The distinguishing DFA for example in [5]

”minimal distinguishing” can be also viewed from the approach we invented be-
fore as we can compute the minimal possible automaton by simply computing
the shortest path between starting and ending points using Dijkstra algorithm.
The non-emptiness problem which is known to be NP-hard will be also proved
to be solvable by a polynomial algorithm in the next section. Another counter-
example is from [10], where the expression in the form (ab) ∗ &... was studied,
we have shown in the next section that it can be computed in time of several
seconds for the string of length 8000 containing 1000 intersection expressions
- this gives the contrary towards the minimal DFA recognizing this language
which has an exponential complexity. During the review of the present results
we haven’t met other counter examples which could get the running experimen-
tal program to work with errors or in not observable time frame. Another case
we get from [11] for intersection operator, which gives the exponential estima-
tion of the time and space complexity, our results give the reasonable amount
of time not greater than 12 seconds for one thousand intersections. The proof
of correctness of re-writing algorithm and modified subset construction can be
done by viewing the cut, as it was presented much more earlier. We also point
the regression of complexity to almost linear and quadratic with respect to
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Figure 2: Example md-DFA for the expression ((aaaa) ∗ a1, 4)4000 −
(a1, 3(aaa)∗)4000

the back-referencing problem in extended regular expressions, one can see that
number of decompositions decreases as we proceed further with the given search
and, thus, certificate of acceptance is achieved almost ”on the fly”. The co-NP
complete problem [12] can be by analogy solved in reasonable time as of our ex-
perimentation procedure, which states that co-NP classes lie within polynomial
P classes.

4 Benchmarks and Experimentation

In table 1 there is a summary of the tests on the expression in the form of
((ak) ∗ a1..k)k − (a1..k(ak)∗)k.

On the next figure there is a visualization of the data in Table 1, as it can
be seen results converge to quadratic polynomial function.

With respect to the term fixed-parameter tractability (FPT) as our alphabet
before in tests consisted of only letter, we have run tests for arbitrary alphabet
”abcd” for cases in form ((a|b|c|d)∗)k(a|b|c|d)k − ((a|b|c|d)k((a|b|c|d)∗)k:

In the other test we will use the regular expression in the form ak ∗&.., k =
1..n, the results are as follows.
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Figure 3: The results of expression tests using re-writing algorithm

5 Discussions

5.1 On Effective Algorithms and Cook’s Conjecture

This section is a review of the advancement methods in modern combinatorial
optimization within some major results in usage of dynamic programming on
trees as well as main conjectures in graph theory and theory of computational
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Figure 4: Visualization of the benchmarks in first table

complexity, which in recent time is studied more as we get in time within modern
trends like social networks and publicly available hubs, most of which rely on
artificial intelligence, however, this work won’t deal with AI, better we will
propose several fundamental approaches, conjectures and questions as per which
we can give a clear and positive answer that this problem isn’t an ending case
and, thus, can be probed on the particular basis which include the deep review
of the newest papers on graph theory and other conforming topics, which are, in
turn, become popular during the past decade of the research within tractability,
application and generalization progress, we also give the important relation to
chromatic numbers in graphs.

In this preamble paper we give the definition of some effective algorithms like
subset construction and variable maximum flow problem using potentials which
was better studied before as the analogy by Malhotra-Kumar and Maheshwari;
we will also go further and show that the Stephen Cook’s conjecture of the NP-
complete problem implies the uncertain complexity classes which were classified
by us before as to be impractical while the certificate of correctness remains of
polynomial complexity.
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Figure 5: Tests for the quadratic alphabet

As it was proposed and defined before in a seminal paper the NP-complete
problem is a problem whose verifying certificate is linear, however, it was in-
complete to define the number of possible solutions to form the multiplicative
space over the operator (*).

Dana and Scott also remained many unspecified in their decision of the
subset construction algorithm which was actually superseded by Berry-Sethi al-
gorithm which produces the linear number of states in deterministic automaton
with respect to the preliminary construction algorithm.

Since the definition of the networks and optimal flows on them , number of
many algorithms was proposed – one of them is due to Malhotra, Kumar and
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Figure 6: Visualization for example arbitrary alphabet

Maheshwari which has a polynomial cubic complexity. We also give the notion
to the super string problem as it’s EXPTIME- and EXPSPACE-complete, thus
gives the way of defining it as NP-hard.

As the efficient algorithm which includes both the optimization process as
well as the conversion of non-deterministic automaton to deterministic one can
be viewed as the splice between the initial and accepting states, thus giving
the notion to the cases where the exponential blow of number of states occur
which we have well studied before and gave the unary O(1)-time complexity
check. Thus, this tendency gives the proof of the linear nature of the subset
construction algorithm whose minimal upper bound is O(n ∗ log(n)), however
the minimal one is O(n). In this method we make the choice by the divide-and-
conquer strategy from beginning to the end of the state graph describing the
automaton – this gives the possibility of avoiding variety of optimization tech-
niques which doesn’t pass the dead point of the exponential growth of spaces,
however, rather our algorithm makes it possible “on-the-fly” which predominant
viewing on the combined techniques of construction and optimization applied
together. On the figure below the basic idea is depicted which shows how the
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algorithm works on non-deterministic finite automaton while making it deter-
ministic. The super string problem can be viewed from the minimal bound of
exponential complexity as there is the minimal string of variable length n = 2f(s)

– for each s in the set of all string S as the any minimal string containing all
the strings in S as sub-string can be viewed on the other hand as a minimal
string along the “trie” for which the dynamic optimization is applied and, thus,
the correct composition is sought on the every node of the string forrest. Also
Malhotra-Kumar-Maheshwari algorithm is a good sense of creating the variable
algorithm with potentials defined for each of the element of the flow network,
where the optimization is applied according to the hierarchical order. At least,
this is true, for variety of networks and lead to the exponential blow-up for the
networks of finding maximal pair whose algorithm uses maximal flow algorithm
along the augmentation paths.

We have defined the optimal cases for the subset construction algorithm
which was proved to be linear in complexity, also we have shown that the def-
inition of NP-complete problem originally has to be expanded to the class of
the uncountable spaces which cannot be realized in time of the arbitrary poly-
nomial function. From the above it follows that DFA has same power as NFA
and can be used practically in the testing or membership problem. Also, we
have revisited the maximum-flow problem with the definition of arbitrary po-
tentials of each of the vertex which is defined as its minimum of the incoming
and outgoing flow. Also the superstring problem is actually is NP-hard as we
have shown shortly in this paper due to the variable complexity of the string
to encompass any other defined set of strings to be checked against the correct
answer.

5.2 Argument towards Cook-Rabin-Scott Conjecture in

Complexity Theory

We give the full proof of the equivalence of complexity classes like polynomial
(P) and non-polynomial (NP) according to Cook-Rabin-Scott conjecture and
our prior results of the subset construction which were first proposed by Berry-
Sethi. The “P versus NP” has a long-lasting history of its interpretation and
first appearance and definition . As it follows from the original paper the prob-
lem can be classified as NP-complete if there’s a defined subset of certified words
in language DL(M), where M is a Turing tape automaton or non-deterministic
finite automaton (NFA) as they are isomorphic due to our prior objective find-
ing. As it was well presented and discussed by Scoot and Rabin in , the NFA
can be well converted to deterministic finite automaton (DFA) encoding arbi-
trary set of accepting words over the language L(M), also: DL(M) is a subset of
L(M). Berry-Sethi gave the definition of the linear size automaton and the un-
defined complexity of the pre-computation stage on the abstract syntax trees of
the input regular expression . Also it was shown before that complexity classes
have the barriers of their weight along the computational space . It was shown
before that linear programming (LP) can be used to solve NP-hard problems
with the given customization of constraints .
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Cook-Rabin-Scott conjecture can be obtained as a theorem proving the
equivalence of P and NP-classes along the full proof of the linear pre-processing
and main algorithm complexities when converting the sub-automaton DL(M)
to deterministic.

As we have shown before the complexity of converting NFA to DFA is linear
in time and space, also any DL(M) can be represented by the regular language
and, thus, we have that P equals NP for the subset of the certificate language.

5.3 Homomorphism of Regular Languages is NP-complete

We consider the problem of homomorphism on regular languages by defining the
mapping over the set of alphabets on two difference language, we will also show
that this problem is actually NP-complete and can be solved by polynomial
algorithm.

The Cook’s statement of “P versus NP” still remains actual to the present
day as many researchers tend to get the argumentative response on the practical
meaning of the open problems which can give the open to the new applications
of regular languages theory . The partial proof of the existence of the semiring
homomorphism on the account of alphabet substitution problem was given in
– this problem is to find the mapping between two regular languages for their
alphabets, so that they are homomorphic. We solve this NP-complete problem
by using maximal bipartite matching algorithm , which can be even parallel .

Obviously the certificate of acceptance of the Homomorphism Problem on
Regular Languages (HPRL) stands against the undefined, infinite or arbitrary
set of input, moreover the possible measure of matchings is of factorial com-
plexity, thus we proof that HRPL, or HOM, is NP-complete.

We give the set of measures on the bipartite matching graph, where the left
side is of one alphabet and right side is of another alphabet: at each time of
iteration the matching weight is increased according to the relation difference
function between two symbols in both set of symbols. As we know the algorithm
complexity in this case is at most cubic for the relatively small set of letters.

5.4 Differentiating between Complexity Notation within

Upper and Lower Classes

We present the final outcome on the account of upper and lower bounds for
complexity classes like polynomial and non-polynomial, including exponential
and factorial growth as per subset sum problem or classical Travelling Salesman
Problem, the further distinguished relation can be used further in particular
domains of application of complexity theory like Applied Mathematics and pure
Mathematical way of expressing relations between Cook’s main 3SAT-theorem
and its partial cases like functional divergence and other related theorems and
foundations.

When the “P versus NP” was first introduced , it was still unclear if there
is at most a connection between complexity classes, their big-O notation and
asymptotical complexity in mathematics , which states that there exist a limit
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between the complexity and its first definition by Cormen et al. Recent research
also showed that even linear programming within additional constraints gives
the profound solution to TSP and 3-SAT problems. We will show further the
full relation between O-notation and asymptotics in terms of pure mathematics
for its further application.

Thus, we get the following statement for P and NP complexity classes and
their classification function like O(f(n)), where f is a function: N+ → N+:

O(f(x)) = {f(x), f(x) ∈ NP ;xk, f(x) ∈ P ∧ f(x) < xk}
While we have already classified the class of NP-complete functions to be

starting from exponentiation and factorial, including Ackermann’s function ,
which is a super potentials over others. Polynomial functions are actually solv-
able functions and can be computed in the observable amount of time.

As it was presented in the partial function O(ln(ln(x)) is polynomial of the
order 1, while o(ln(ln(x)) = 0, the middle and actual theta-function will be as

follows – theta(ln(ln(x)) = (O(f(x))+o(x))
2 = 1

2 , thus it’s obvious that series S
converge to Rhiemann’s complex number z.

5.5 Algorithm Deciding Automata Ambiguity Problem

We give the proof of NP-completeness of arbitrary automata ambiguity problem
which shows that according to our functional hypothesis, there’s a function
spawning the polynomial algorithm to solve it, we will also show that it’s of
affordable complexity.

We start from well-known “P versus NP” theorem , which proves the full
invocation impractical content in order to decide any NP-hard problem, we will
use further the final version of subset construction algorithm . Also it’s known
that first definition of derivatives and extended operators was well-studied by
Berry-Sethi . Orna Kupferman et al., later gave a cubic algorithm for the
decision of extended operators like intersection, subtraction and complement .
The problem itself is stated in .

The problem is to decide if the given set of initially non-deterministic finite
automata (NFA) are equivalent, as well as their subsets like deterministic ones
(DFA). Obviously, the problem lies in recurrent relation which leads to the
undefined behavior of acceptance and search of the accepting states defined as
certificates – this gives the full proof of the NP-completeness of this problem.
In order to solve it we use the Modified Subset Construction (MSC) by using
the subtraction operators in extended finite automata (EFA), the algorithm
complexity, as it was shown, before is linearly logarithmic, O(n ∗ log(n)) – to
be exact.

5.6 On Account of Regular Automata Separability Prob-

lem

The recent research showed the new problems coinciding with our algorithm for
extended operators including intersection, we will use it in order to solve the
separability problem as it was stated before.
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As we already know there’s a set decidable and non-solvable problems . The
subset construction algorithm gives the determinisation of non-deterministic
finite automata (NFA to DFA), also intersection operator was well studied in
along the regular sets or, in other words, sets produced by any regular language.
The separability problem was first presented in , the problem is coNP-complete
which is by definition the both sides of non-decidable or non-polynomial prob-
lems, we will give the polynomial method of computation which gives the answer
of the verification against separability of arbitrary number of sets on the au-
tomata for extended regular expressions.

As we can conclude the only relation of intersection of the sets K and L
in spawns arbitrary language which can be non-regular as regular languages
are actually subsets of any language as a set of words by definition, thus we
can simply test the intersection operator using Modified Subset Construction
(MSC) with state activators in the way it was presented in our seminal paper.
The complexity of algorithm lying in P-class is linear and constitutes the number
O(|K|+|L|) - this is by the way the lowest bound for any coNP-hard separability
problem on regular sets or other non Parikh automata.

5.7 Disproof of Unsatisfiability of Boolean Circuits

We give the full disproof and shade the light towards generalized MAX-SAT
problem, also classically known as 3-SAT, which cannot be solved on any Turing
automata in observable amount of time even if there is a tie between polynomial
and non-polynomial complexities.

In this preamble we follow the certain source of the foundations of Compu-
tational Complexity Theory by Stephen Cook , who also showed that 3-SAT
problem and its general case MAX-SAT on boolean circuits cannot be handled
by Turing tape automata or their isomorphisms like non-deterministic finite au-
tomata and deterministic one. For the past time the SAT problem was well
applied and studied in-depp , however the main ridiculous challenge is about to
build the universal SAT automata – the author of this work shows that there
could be boolean function which can make the automata producing positive
answer on some set of inputs and their co-variants.

Yes, the problem is still open and innovative as any boolean function on
the mirror circuit can produce either positive or negative answer, however, this
problem is a case of the generalized MAX-SAT problem which is known to be
NP-complete and, thus, unable to be solved in reasonable amount of time using
computational materials like present day hardware.

5.8 Full Proof of Universality of Regular Languages

We give the fool proof of the universality of regular languages, which states that
any language is regular and every regular language can be arbitrary.

The proof problem of regular languages is actually NP-complete as there is
no state automata which could be deterministic and descriptive at the same
time – this fact is well-stated for any regular language and for any arbitrary
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language . We will show further that these languages are actually equivalent
using Aho-Corasick algorithm .

Obviously, Aho-Corasick tries are linearly deterministic and can form a log-
arithmic regular language – this fact shows that both regular and arbitrary
languages are equivalent.

5.9 Star Packing Problem Algorithm in Linear Time

We give the full exact algorithm to star packing problem.
The problem is considered to be NP-hard and obviously NP-complete due

to the reduction to classical Vertex Cover Problem which has a parameterized
invariant . Star packing graphs were studied before in and the actual statement
of the problem is given in .

We build the tree from the graph and optimize it linearly using the leaf
traversal strategy which gives full and exact answer.

5.10 On Consensus of Cardinality of Complexity Classes

We give the notion towards Louiz’s partial conjecture about inequivalence in
classical “P versus NP” theorem and other related research.

We are all well-known about undecidability of 3-SAT problem . The term
‘cardinality’ in computational complexity and its bordering applied sciences
was recently raised upon the necessary level . Dr. Akram Louiz gave all the
necessary partial solution towards axiomatization of non-conforming complexity
classes like polynomials and non-polynomials . The critics behind the scene is
completely wrong and further we will give the full shed of light on the mystery
in science and its application.

Yes, indeed the exponential, factorial or even Ackermann’s complexities can-
not be considered as countable – and this is what gives the strong border of the
non-existent classical solutions, and as we know until the present time none of
the NP-complete problem was solved.

The author of the ‘critical work’ is completely wrong as he sees Louiz’s
conjecture as a first argument towards resolution of “P versus NP” concept and
we show that these classes cannot be even comparable – this shows that Jamell
Ivor Samuels is completely wrong in his critical work.

5.11 Polynomial Solution for Detour Problem

We give the full polynomial solution for finding the detour in graphs in its
general case.

The detour problem is NP-complete , detours were used in many aspects of
science on graphs . The detour problem was first initiated in . We give the full
solution using dynamic programming . Our solution depends on the length of the
detour among any pair vertices as we are using dynamic programming approach
with memoization which gives the recurrence relation along the two connected
vertices and the visited length. We have given the full general solution to graph
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detour problem using dynamic programming which runs in time O(n∗k), where
n is a number of vertices in graph and k is the maximal length of detour.

5.12 Optimization Techniques on Automata and Graphs

We give the profound notion along algorithmic optimization techniques to ma-
nipulate with graph and automata structures.

The automata theory was well defined for the past time , the homomor-
phism of graphs and these automata and the application of this finding was also
presented in the prior works. At the present time publication shows the con-
nection between languages described by automata and their mapping to graph
automata.

We have a novel technique based upon the strongly-connected components on
arbitrary graphs like oriented and non-oriented in general – this technique shows
a strong method of describing any graph by its underlying regular language and
its finite non-deterministic or deterministic automaton.

5.13 Order on Trees and Hierarchical Logical Problem

We introduce the optimized algorithm solving optimization problems in linear
polynomial time, also we give the notion towards the solution of hierarchical
logical problem.

The graph theory remains still actual due to its wide range of applications
, the problem of finding strongly connected components gives the solution to-
wards the existence of the logical order relation between these components and
hierarchy which can be seen on the depth or breadth first search. We are using
Fenwick trees for range min query in order to give the full relation between the
hierarchical logical system consisting of operands and comparison operators like
less, greater or equal.

The optimization towards trees is computed using the directed edge and its
subtree by the preserving dynamical programming and the ordered computation
of not more than two values for the general case with star vertexes.

The hierarchy according to which our algebra can give the answer to the
query in the form of relation between two any operands in a directed graph
can be done using the range min query as of Bender-Farach-Colton method of
finding least common ancestor in a graph before vertex labeling operation – we
are using the same approach which gives the linear-logarithmic complexity of
the solution.

5.14 Isomorphism Problem on Graphs within Regular Lan-

guage Notation

We give the notion towards the algorithm of indentifying isomorphism on graphs
using the finite automata and their regular languages.

The graph isomorphism problem is NP-complete . It has a long-lasting
history and application. Regular languages were introduced previously in . We
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will give the notion towards the automata describing graphs upon their internal
structure with respect to some of the values like degree of vertexes and their
adjacency property.

5.15 Permutation Pattern Waves and Polynomial Solu-

tion

We give fully polynomial solution to the permutation waves problem.
Since Cook’s first statement the problem is considered to be NP-complete

due to the existence of certificate of criteria as per integer sets with permutation
pattern waves. Permutations were well studied before , the first appearance of
the permutation pattern wave problem is given in .

As we can see we can use any notation building the corresponding relation
on an oriented graph and performing the valid labeling.

5.16 Configuration Swap Problem on Describing Trees

We give the definition of the exact and sub-optimal algorithm to the configura-
tion swap problem on graphs.

The graph theory is a theory which has a long-lasting history and its ap-
plication . The swapping problem was introduced in and is of very practical
meaning.

We simply build the tree from the graph after which we apply the oriented
edge optimization as per the given circumstance where all other sets are settled
– this gives exact and optimal solution to the minimal swapping problem.

5.17 On Boolean Circuits and Optimal Prefix Codes

We give the full notion on the boolean circuits and their relation to finite au-
tomata as well as the definition of the optimal prefix codes for the binary en-
coding of the words in text.

The boolean circuits were defined in , with its prior statement on the solu-
tion of the defined function – as it can be seen they can be converted to the
deterministic finite automata defining the language on which the boolean func-
tion will be satisfied or, in other words, equal to “true”. Efficient encoding and
prefix codes is a far more historical problem .

The boolean circuits can form a typical non-deterministic model which can
be determined, thus giving the observation towards the solution on a random
function and random configuration.

Optimal encoding prefix codes are to be formed from the assumption of the
division of the sums of occurrences of the symbol in source text, thus together
forming the combinatorial optimization problem, where the division strategy is
due to pivot selection and obeys the certain subset sum problem.

16



5.18 Non-polynomial Complexity of Permutation Automata

We give the full coverage of the notion of the permutation automata deciding
complexity to be NP-complete.

The definition of non-solvable problem was first introduced in , permutation
automata in general were presented in , the problem of permutation automata
acceptance without weighted function was proposed in .

As we have already shown that there is a local bound for permutation au-
tomata which can be re-presented in regular languages with extensions like back-
references, it’s obvious that full optimization network complies with the classical
NP-complete problem as Traveling Salesman Problem (TSP). The above fact
shows that there could be non-countable number of pre-permutations before
visiting the layer on the arbitrary state of automaton.

5.19 Token Sliding Problem on Graphs in Polynomial Time

The quadro-linear polynomial algorithm is given for the token sliding problem
on graphs.

Graph theory has a long history and meaning as a model , the token sliding
problem is well-known also , we will show further that this problem can be
optimized on a produced tree from an arbitrary graph.

At each step of optimization we change the order of independent set series
according to the orientation of the leaf and its sub-tree due to this orientation
– this gives a quadratic worst case method to compute the number of swaps in
order to get the right configuration of independent sets.

5.20 Solving Optimization Problems on Graphs using Au-

tomata Composition

We give the full definition of the optimization problem and its isomorphic trans-
formation to the non-deterministic finite automata as per the order of traversal
and its corresponding settlement as in undirected as well as in directed graphs.

The optimization problems on graphs are known to be NP-complete, since
the optimization function can be easily verified and hard to get to the optimal
point . Graph theory is a model on which even finite automata can be operated
in a pre-defined method. The strongly connected components of directed graphs
give the notion towards the ordered relation between each of the node which
can be optimized as per the sample problem like .

We can construct the correct automaton recognizing the language of the
paths in the graph after which we apply the optimization according to the order
in the strongly connected components of the directed graph, for general case of
undirected graphs we can consider the same option with respect to the search
strategy.
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5.21 Polynomial Algorithm for Clique Problem using Ma-

trix Space

We give a polynomial algorithm in quadratic complexity for finding cliques in
graphs according to the matrix space with single operation like boolean multi-
plication of the adjacency matrix of the given set of vertexes, we will show that
this is a fully polynomial solution with the current lower bound on the number
of operations in order to find the clique in graph of the defined rank.

The hardness of the problem is a key of its classification , graph theory is
described in , the clique problem is known to be NP-complete and, thus, is to
be solved efficiently using conceptual algorithmic approach.

We give the matrix of adjacency an algebra with single closed operation like
boolean multiplication, after forming the maximal independent set and applying
the multiplication of this matrix and its transposition we can devise the sets for
which this can be implied according to the matching within the kernel of the
clique – this operation reduces the size of sought input up to the given order.

5.22 Subgraph Enumeration Problem on Graphs

The polynomial algorithm is presented along which the number of subgraphs of
the given graph can be counted.

The NP-hardness of this problem is defined as there are many subgraphs
and only isomorphic certify for the given subgraph in order to count all its
isomorphisms in the given graph. Graph theory is well-defined during the past
time , subgraphs and their isomorphisms are defined in . The counting problem
is presented in .

We give the solution towards finding the number of subgraphs or simply
enumerating them during the descent on a produced tree for the given graph
and subgraph, thus, we can solve the problem by applying recurrent relation on
the edge which divides the tree in several parts with respect to the structure of
the subgraph.

5.23 Solution to Triangle Finding Problem in Graph

The fully quadratic algorithm in maximal number of edges is presented in order
to find the number or enumerate all subgraph triangles in graph.

Graph theory is presented in , the triangles are discussed in , the problem
of finding triangles in graphs is in .

We use at maximum quadratic space and time and number of edges at most
which is the most optimal exact solution to the stated problem. At first we build
the sub-tree of a graph and the adjacency of any two pairs for the pre-computed
set of vertexes where the third vertex is a middle and, thus, has the adjacent
two vertices in the edge of the tree.
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5.24 Solution to Disjoint Paths Problem on Graphs

The linear algorithm in the number of edges and vertices in graph is given for
finding k-disjoint paths.

Graph theory has a long-lasting history and application . The path or vertex
disjoint set problem in a graph is given in .

We start from the set of each pairs from the left to right and from right to
left by building the fully directed tree ascending in both directions so that there
would be a cut of size more than k, thus, satisfying the condition of disjoint
path on vertexes or edges.

5.25 Solution to Maximum Satisfiability Problem and Min-

imal Vertex Covers on Graphs

We give the solution to partial maximum satisfiability problem on the example
of enumerating minimal vertex covers which coincide and are non-polynomial,
our solution is fully polynomial and exact.

The problem of not more three variables in logical satisfiability problem was
proved to be NP-complete as well as its case on graphs for finding the minimal
vertex cover .

We build the tree in which we descend from the produced tree and use
memory in order to store the bitmap of all satisfied conditions as well as per
model of minimal vertex cover on graphs.

5.26 Solution to Even-Path Problem in Arbitrary Graphs

We give a polynomial solution to even-path problem on graphs between two
given vertices in arbitrary graph as it can be either directed or undirected, our
approach also states the minimal bound of number of edges and vertexes in
graph.

The problem can be seen as NP-complete , graph theory was well described
in , the even-path problem is defined in .

5.27 Solution to Minimal Decomposition Problem on Graph

We give an algorithm and minimal bound for linear decomposition of the graph
with given maximal degree of its vertex.

Graph theory is described in , the linear arboricity conjecture is stated in ,
according to which there is not more than half of the maximum degree of the
paths.
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6 Recurrent Diversification of Counting Alter-

nation Permutations

We give the recurrence relation towards the counting of alternation permutations
thus providing the exact formula in order to compute the number of alternating
iterations within the insertion operation and the union of the sets.

The permutations are well presented in , alternating permutations are per-
mutations with pre-defined order .

Since implication we give the upper bound using the recurrent relation which
is defined as the oracle function PA(n): PA(n) = f(n) ∗ PA(n− 1).

Where f(n) is a function defined as the error factor for which the alternation
decision holds true, obviously f(0) = 1 and PA(0) = 1.

To define the function f(n), we are using each triplet consideration with
respect to each triplet in the form: ai < ai+1 > ai+2, ai > ai+1 < ai+2,

The above definition is a result of the term alternating permutation in its
canonical sense. As we see from above the second condition cannot hold true
as we cannot insert the biggest element n in any of the position when this fact
is satisfied. Let’s consider this occurrence: ai < n > ai+1 > ai+2 < ai+3 : ai <
n > ai+2 < max(ai+1, ai+3) > min(ai+1, ai+3).

For the second condition we have: n > ai+1 < max(ai, ai+2) > min(ai, ai+2), n >

min(ai, ai+2) < max(ai, ai+2) < ai+1,min(ai, ai+2) < max(ai, ai+2) > ai+1 <

n.
Thus, we have four subsets to devise the function f(n), thus giving us the

following exact relation like: f(n) = 4 ∗ PA(n− 1) : A1 ∪ A2 ∪ A3 ∪ A4.
Obviously: 4n ∗ PA1∪A2∪A3∪A4

≤ f(n) ≤ 4n.
Where in above relation probability is the union of all the cases when the

four insertion conditions hold true, which is recursive and can be counted.

6.1 Reductions of Graph Edge Coloring Problem and Chro-

matic Number

In this short note we are to give the note towards graph edge coloring problem
(ECP) and its reduction to graph vertex coloring problem (VCP), which gives
the significant result in deciding the minimal number of colors for edge coloring
problem.

The graphs are widely studied in , chromatic numbers in VCP denote the
minimal number of colors required to color it so that no two adjacent vertices
bear the same color. The latest research aims also towards Euler’s lattices
problem.

As we can construct the graph for the given graphG(V,E) : G(E, (a, b), (a, i)&(b, i) ∈
E∀i), it follows that the chromatic number can encode the number of edge col-
oring in ECP, so that this number is at least greater than the same number of
the initial graph by induction.
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6.2 Relation between Chromatic Number and Length of

Hamiltonian Paths in Graph

We give the strict computational relation between chromatic number of graph
and sum of lengths of Hamiltonian paths using set exclusion theorem as well as
the addition towards inverse graph.

Graph theory was steadily studied in , the graph coloring problem and its
chromatic number are known to be NP-complete , the partial relation between
these numbers and the length of the maximal path were studied in .

As per the set theory, graph can be considered as a set if we would at each
step of iteration remove some 2-vertex graph with a single edge or not, this will
look like as follows:

|G(V,E)| = |G(V1, E1)|+ |G(V2, E2)| − |G(V1 ∩ V2, E1 ∩ E2)|.
The above relation can be approximated within any path if we would get at

each iteration the pair of nodes (u, v), then our relation will look like:
|G(V,E)| = |G(V − v, E − v)|+ 1, 2− 1.
As in both division operator we divide the parts along the maximal length

and an optional edge in graph, obviously this function is to be minimal, thus
we have to find a path of maximal length in the inverse graph G(V,E).

Thus, we get to the following relation:
χ(G(V,E)) = |V | −max{

∑
p∈H( G) |p|}

WhereH( G(V,E)) is a set of longest paths through the whole set of vertexes
in inverse graph, the paths are to be disjoint.

The proof can be done by induction to the general graph G(V, E) as we
approximate towards minimal possible number. This proof gives an evidence of
the connection between Dirac’s formula for graph containing Hamiltonian and
the chromatic number of the inverse graph.

We have given the strict relation between longest paths which can be either
Hamiltonian of size —V— - 1 or any other maximal possible of all the paths
in inverse graph, thus, giving observation of the Hamiltonian cycle presence for
Dirac’s formula on general graphs. This fact gives us the observation of using
the divide algorithm on inverse graph in order to find the maximal longest
path of the maximal size within Dirac’s equivalence relation. We will use our
equivalence to establish connection between chromatic numbers of the graph
and its inverse, thus we have:

χ( G(V,E)) = |V | −max{
∑

p∈H(G) |p|}
From this point, we get:
χ(G(V,E)) − χ( G(V,E)) = max{

∑
p∈H(G) |p| −max{

∑
p∈H( G) |p|

In addition we give the definition of the complete graphs or cliques Kn: the
paths are actually Hamiltonians in these decomposition.

6.3 Optimal Labeling Algorithm for Vertex Coloring Prob-

lem in Graph

We present the labeling algorithm for Vertex Coloring Problem (VCP) which
runs in product linear time on number of vertexes and edges in graph at mini-
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mum with the chromatic number as parameter.
VCP refers to graph theory , it’s known to be NP-complete and, thus, opti-

mal or approximate algorithm is to be applied .
We start from forming the system of inequalities between each of adjacent

vertexes in graph G(V,E). We start by labeling with choosing the minimal label
index from adjacent vertexes with stabilization principle on the obtained index
which can be reverted in time O(m) using each iteration on maximal chromatic
number with total complexity of O(nm).

We claim that this algorithm is most optimal as to the consensus of simplex
system formed by inequalities and the target function to be minimal possible.
The stabilization, thus, runs, each time the node changes its correct labeling
according to the selection rule.

6.4 Application and Theory of Several Aspects in Opti-

mization

The 3SUM problem was viewed from a singleton point of view for the past
time. In this work the experimental results along with proof are presented: the
state explosion doesn’t occur in specific cases after decomposition of regular
expression into non-deterministic finite automata (NFA), thus, the P-complete
procedure to take turn for converting NFA into deterministic finite automaton
(DFA) with construction according to the De Morgan Law. We give the notion
of the equivalence of the complexity classes due to the recent research accord-
ing to Rabin-Scott subset construction. We also give the linear algorithm for
lookahead and lookbehind assertions in regular expressions by implementing the
intersection operator which was well studied before in our prior research, the
work also includes: the experimental part of research in our investigation of
the ”P versus NP” theorem and the optimization principle within the physical
layout, the full proof of inequivalence of P and NP complexity classes which
can be addressed to the famous ”P versus NP” theorem by Stephen Cook, our
approach summarizes all the results obtained before in our prior research of this
topic and its failure during the decades of its first appearance in the scientific
press, definition of the single operation for giving the output to the new state in
Berry-Sethi approach of building deterministic finite automata (DFA), address
the output, produced by the Turing tape automaton, or Turing Machine, which
is further divided as deterministic and non-deterministic, to the set of regular
languages recognized by finite automata. It’s known that the subset sum prob-
lem lies in the NP-class of complexity, however, due to the integer factorization
of any number it states another argument towards P = NP. The unified system
based upon Ford-Fulkerson maximum flow method for solving the civil engineer-
ing problems like flooding and human evacuation during earthquakes or other
disasters is also presented. According to the present time the normal forms are
consequent to the efficient data manipulation, still there’s no universal method
for solving this problem according to the criteria of data to be small and the
modeled solution provides the sufficient normalization of the source data. The
X + Y sum problem as observed wasn’t solved before, so we provide a fast and
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simple solution to this problem using algebraic properties of the vector as well as
the general case. The recent research and study in the theory of Computational
Complexity gives new perspectives in studying the ”P versus NP” question.

We build the binary tree for each of the elements in binary notation in the
given input array, after which we concord the search according to the valid
combinations. The conversion of NFA to DFA, or subset construction, and its
possibility proof first appeared in has an exponential complexity of O(2n) and
thus is EXP or NP-complete.

Many techniques were done before in order to avoid the effect of state ex-
plosion , however, we present the De Morgan law for rewriting both union and
intersection operators as well as in extended regular expressions, which leads to
P-complete result.

For the past decade the ”P versus NP” problem was well studied with con-
formance that P is a subset of NP. If this happens, then there’s a set of problems
which are strictly in NP and not in P assuming P not equal NP .

We simply close the circuit in our algorithm when converting non-deterministic
finite automata (NFA) to deterministic finite automata (DFA). The same is true
even for NFA constructions which give rise to the question of relation between
regular language algebra and features like lookahead and lookbehind assertions.

As it was stated before the ”P versus NP” question has a long-standing
history in the theory of Computational Complexity and Mathematics as well,
where the symbol of infinity isn’t defined as operand due to the inconvenience
of its relation to the operands in the mathematical expression in the algebra of
numbers .

Thus, by showing that P equals NP we still cannot devise the relation in this
algebra, however, if P not equals NP, we can proceed further with the modern
aspects.

Before we have shown that there’s a functional relation between complexity
classes, i.e. there could exist the function f(x), so that f(P ) = NP .

We will proceed to the above publication further and give the strict proof of
inequivalence of complexity classes and as it follows from this proof the hierarchy
of classes which give consolidated proof of the relations between the variety of
complexity classes in Computer Science and Theory of Computation .

Before our research the Theory of Complexity was well underlined and it
follows that first we have to postulate and only then give the question of the re-
lation between complexity classes, basically polynomial ”P” and non-polynomial
”NP” classes.

The main problem in the Berry-Sethi approach is the conformance of the
new state to the states added before during each iteration of the algorithm. We
use the single test application of our method for the equivalence of the states
to the regular language they represent.

Since each of the Turing machines has a limited set of states during which it
can transit to the next step, or iteration, of processing the input and, thus, going
to the halting or accepting, or rejecting, state, we are to define the set of words
which are written are well-defined as programs produced by this machine. The
regular language is formed from the Deterministic Turing Machine (DTM) or
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Non-deterministic Turing Machine (NDTM) can arbitrarily produce the regular
set of languages, known as programs of this machines according to the finite
state of states in the transition diagram as it can be seen in various sources .
On the account of ”P versus NP” theorem we are to define the proved equality
of P and NP-classes of complexity as Finite Automata (FA) are isomorphic with
to the regular language they accept .

The ”P versus NP” problem is the main problem stated before.
We simply factorize numbers within the prime number factorization algo-

rithm and build on-level tree structure for finding the structure of the method.
As we know the prime factorization is reminiscent of the tractable logic of com-
puter numbers which tend to limit the Ackermann numbers . The prime factor-
ization itself isn’t studied nowadays and is well-known to be P-complete within
the subquadratic algorithm which is still inefficient against big numbers which
are met in cryptography . Still it’s omitted that the subset sum problem can be
devised from the whole set of problems within the multi-cubic trees along prime
factorization and prime number notation system. Still it’s posed that linear
complexity of introduced parameters harms the overall magnitude of complex-
ity, which is well-known and can be factored according to the optimal notation
of consecutive prime numbers to which the parameter tends to grow linearly
with predefined maximal speed of Ackermann numbers. We build the growing
structure of the tree on each level having the prime number in prime notation
of the parameter whose limit is to be deduced from even factorial decomposi-
tion which leads to blow and speed-up and, thus, makes the free parameter less
playing the role.

The normalization problem is to be presented as the mathematical program-
ming problem within the constraints and the main function as the size of data
to be minimized. Earlier we have shown that the factorial number of possible
data in each table depends on the number of columns and number of rows. This
fact makes it possible to seed the data and store them in a fast and efficient
way.

The ”X+Y ” problem is in general still unsolved and plays a role in effective
optimization .

We simply sort the items by the normal vector distance to the line X + Y

going through the given point.
This simply gives the minimal possible running time on average as O(n ∗

log(n)).
As it was pointed out by the modern research the ”P versus NP” question is

to be studied from a different point of view and the broad horizons of its decid-
ability are to be omitted due to the insufficient approach in the formalization
of this theorem.

6.5 Proof

We prove the above fact by the assumption already given in the statement
before: thus, as we know any non-deterministic finite automata (NFA) can be
converted to analogous deterministic finite automata (DFA).
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According to our latest research the subset construction is P-complete and,
thus, there exist no automata with the strict property given above, thus, it
follows that P = NP .

We have devised the parallel computing law as follows: limN→∞
NP
N

= P .
Let’s assume that the above law is correct according to the number of threads

N, which operate on a Non-deterministic Turing Machine (NDTM). Also let’s
assume that P = NP , then it follows:

limN→∞
1
N

= 1 ⇒ 0 = 1 ⇒ P 6= NP .
The output above demonstrates the simplest way of proving the inequiva-

lence of complexity classes according to the parallel computing law.

6.6 Experiment

We build the integral circuit on a board and give the experimental projection of
the abstract processes and processes which are put in a different environment,
or physically. The VLSI devices are used today in many aspects. Hamiltonian
is met in the Traveling Salesman Problem (TSP) where it defines the shortest
possible path visiting each of the city once. TSP by itself was an argument of ”P
versus NP” theory and practice . On the experimental electrical board we build
the layered circuit by using elements for satisfying the ”visit-once” condition.
Thus, the shortest path of a limited number of mediate elements can be found.

We develop the maximum flow network on map using any applicable source
and present each cell with the incoming or outgoing edges as of the each of the
bordering cells on the map.

The maximum flow applied to the above-described model gives the result
of simple prediction scheme according to which the residue flow can be pushed
forward as well as backward, and the possible dangerous zones with blocking
flow can be detected and successfully mapped to the physical map where the
ecological disaster happens.

At each model we give the maximum capacity as the maximum capacity of
the fluid or human factor.

7 Conclusion

We have given a fully polynomial algorithm for the md-DFA problem which is
NP-complete - this fact gives the experimental proof of the equivalence of com-
plexity classes like polynomial ”P” and non-polynomial ”NP” as the benchmarks
above state as the argument as they are almost linear to the size of the expres-
sions and running time depends also linearly, also, the problem described was
proved to be NP-complete before. We have also shown the experimental proof
of tractability of the problems like md-DFA and Non-emptiness-DFA which are
known to lie in NP-class of complexity. We have also concluded that within
the new proof, back-referencing problem can be computed fast within arbitrary
number of capturing groups. Thus, we claim experimental proof of ”P versus
NP” theorem: P = NP , which could be used in solving other problems like
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Rhiemann hypothesis by Akram Louiz . The reader is invited to use Regex+
software package and provide examples. I also have some notes about theories
like fixed-parameter tractability and classification - all these theories and similar
to them are all about the direct solution or final resolution of P-NP theorem
by Cook, while our conjecture of functional hypothesis gives the final outcome
with to the full statement of the problem: are there solution to NP-complete
problem or not.

There could be parallels between the P vs. NP problem and quantum me-
chanics, particularly in relation to the concept of superposition. In quantum
mechanics, a system can exist in multiple states simultaneously until a mea-
surement is made. Similarly, NP problems could be seen as a kind of ”superpo-
sition” of many possible solutions that exist at the same time until verification
or computation collapses them into a final solution.

Thus, we have also proved that subset construction, or powerset construc-
tion, is polynomial, or P-complete, with respect to the prior obtained results.

The common misinterpretation of the ”P versus NP” theorem lies between
the fact that it can be solved effectively, still, it doesn’t follow that from this
consequence we can devise the relationship between two classes.

The potential of the method above gives the main result of the past research
for efficient implementation of lookaround assertions. We have presented the
experimentation theory for which there could be conjectured that each of the
shortest paths found on the simulated integral circuit can form the Hamiltonian
by itself in its decomposed state.

We have shown the inequivalence of complexity classes around our final proof
which is given as a final contribution to the field of Computational Complexity.

The above method is expensive, however, in static mode it can be more
productive.

We have come to the end of the ”P versus NP” continued story and the
positive output of the proof of equivalence of these complexity classes gives the
horizons of the universality of automata and their isomorphic properties as well.

The overall can be considered as the other argument towards ”P versus NP”
theorem and the proof P = NP, as the subset sum is both in P and NP and
NP-complete classes of complexity.

We presented the safe method for detecting possible bottlenecks during flood-
ing and evacuation which can lead to a more humanistic approach in science
and engineering.

As the much earlier works were towards the static structure of the database,
for now we have defined the universal approach towards data normalization.

The above case can be extended to the problem where the normal vector of
a line is given with arbitrary weights which open new horizons to the studying
of the application and theoretical acquisition of this problem.

The sorting problem for dual coords can be solved in minimal possible time
O(n) by converting it to co-NP problem as integer sorting.

Thus, we came through the inequality of the question ”P versus NP” which
clearly gives the argument towards the preliminary axiomatization of the com-
plexity classes which we name as ”decidable” and ”undecidable”.
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Figure 7: Results for non-emptiness test
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Figure 8: The visualization of the performance of the non-emptiness test algo-
rithm
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Figure 9: The non-emptiness DFA for the expression
((a)∗)&((aa)∗)&((aaa)∗)&((aaaa)∗)&((aaa)∗)
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Figure 10: The resulting DFAs for expressions ((ab)∗)&...and(a ∗ a|)&...

Figure 11: The viewing and strategy of optimal subset construction algorithm
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