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Abstract

Cepheid variable stars are among the most important standard candles in observa-
tional cosmology, exhibiting periodic variation in brightness. In this work, we propose
a novel geometric model to explain their pulsation using a time-periodic spacetime with
modulated causal structure. Specifically, we introduce a time-dependent metric coeffi-
cient gtt(t) driven by a brightness-inspired function that mimics asymmetric Planck-like
emission. This leads to oscillating light cones, whose angles encode the gravitational
basis for observed Cepheid variability, as a consequence of causal dynamics in the
spacetime geometry.

1 Introduction

Cepheid variable stars exhibit a well-defined relationship between their pulsation periods and
luminosities, making them crucial tools in measuring extragalactic distances and calibrating
the Hubble constant [2, 3, 4].

Traditionally, this variability is attributed to stellar interior dynamics governed by fluid
mechanics and ionization fronts. In this paper, we explore an alternative, geometric view-
point rooted in general relativity. By embedding a time-dependent, asymmetric function into
the temporal part of the metric gtt(t), inspired by Planck-like emission, we explore causal
variations in line with general relativity [5, 6, 7].

We propose that this dynamic geometry encodes brightness modulation, offering a com-
pelling mechanism behind the Cepheid variability. The resulting framework links periodic
time, gravitational causality, and astrophysical observations into a single geometric model.
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2 Embedding Asymmetric Brightness into the TPM

Metric

We now embed the asymmetric brightness function into the temporal component of a time-
periodic Minkowski (TPM) metric. The original TPM metric is given by:

ds2 = gtt(t) dt
2 − dr2 − r2dθ2 − r2 sin2 θ dϕ2. (1)

We propose to model gtt(t) using the asymmetric brightness function inspired by a Planck-
like distribution. Define:

x(t) =

{
X · sin2

(
π(t−δ)

T

)
if 0 ≤ t− δ ≤ T

0 otherwise
(2)

Then, the modulated temporal metric component becomes:

gtt(t) = A · [x(t)]α

eβx(t) − 1
, (3)

where:

• T = 2π is the time periodicity,

• δ controls the phase shift (early peak),

• X is the domain ceiling of x(t),

• A is a normalization constant (maximum brightness),

• α controls the steepness of the rise,

• β controls the tail decay after the peak.

This model introduces time-asymmetric causal structure while preserving periodicity,
making it suitable for exploring pulsating cosmologies and analogies with stellar behavior
such as Cepheid variables.

3 Light Cone Angles and Causal Structure

The dynamic temporal metric component gtt(t) leads to time-varying causal structure in the
spacetime. Specifically, the slope of light cones changes with time, resulting in a pulsating
geometry.

For a radial null trajectory (ds2 = 0) in the metric

ds2 = gtt(t) dt
2 − dr2,

we find that light rays satisfy (
dr

dt

)2

= gtt(t).
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Hence, the angle θ(t) that the light cone makes with the time axis is given by:

tan θ(t) =
√
gtt(t) ⇒ θ(t) = tan−1

(√
gtt(t)

)
. (4)

Substituting our model:

gtt(t) = A · [x(t)]α

eβx(t) − 1
, x(t) = X · sin2

(
π(t− δ)

T

)
,

the light cone angle becomes:

θ(t) = tan−1

(√
A · [x(t)]α

eβx(t) − 1

)
.

This allows us to visualize how the light cone opens and closes over each time cycle.
Where gtt(t) is large (near the brightness peak), the light cone widens; where gtt(t) is small
(early and late in the cycle), the light cone narrows.

Such modulated cone structure is reminiscent of causal horizons that fluctuate with en-
ergy emission, providing a geometric analogy to pulsed astrophysical sources such as Cepheid
variables.

4 Application to Schwarzschild Geometry with Time-

Modulated Light Cones

We now extend our asymmetric brightness-driven causal structure to curved spacetime,
particularly the Schwarzschild geometry. The standard Schwarzschild metric is given by:

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2. (5)

To introduce temporal pulsation analogous to the Time-Periodic Minkowski case, we
multiply the time-time component gtt by the same brightness modulation factor. Let:

gtt(t, r) =

(
1− 2GM

r

)
·
[
A · [x(t)]α

eβx(t) − 1

]
, (6)

where:

x(t) =

{
X · sin2

(
π(t−δ)

T

)
if 0 ≤ t− δ ≤ T

0 otherwise

This generates a time-periodic Schwarzschild spacetime, where the gravitational potential
is modulated over time, analogously to pulsating stars.
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Light Cone Angles in the Modulated Schwarzschild Metric

For radial null trajectories, we impose ds2 = 0 and dθ = dϕ = 0. Then,

0 = gtt(t, r) dt
2 −

(
1− 2GM

r

)−1

dr2, (7)

which implies: (
dr

dt

)2

=

(
1− 2GM

r

)2

·
[
A · [x(t)]α

eβx(t) − 1

]
. (8)

Thus, the light cone angle becomes:

θ(t, r) = tan−1

√(1− 2GM

r

)2

·
[
A · [x(t)]α

eβx(t) − 1

] . (9)

This formulation reveals how spacetime curvature and temporal modulation combine to
dynamically shape the light cones. Near the Schwarzschild radius, the factor 1 − 2GM/r
becomes small, narrowing the cone even during peak brightness, highlighting gravitational
redshift and horizon effects.

5 Extension to Kerr Geometry: Rotating Time-Modulated

Spacetime

We now generalize our model to a rotating black hole by embedding the brightness-modulated
temporal component into the Kerr metric. The standard Kerr line element in Boyer–Lindquist
coordinates (t, r, θ, ϕ) is:

ds2 =

(
1− 2GMr

Σ

)
dt2+

4GMar sin2 θ

Σ
dt dϕ−Σ

∆
dr2−Σ dθ2−

(
r2 + a2 +

2GMa2r sin2 θ

Σ

)
sin2 θ dϕ2,

(10)
where:

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2GMr + a2.

Brightness-Modulated Time Component

To embed time-periodicity and asymmetric brightness structure, we propose modifying the
gtt term as:

gtt(t, r, θ) =

(
1− 2GMr

Σ

)
·
[
A · [x(t)]α

eβx(t) − 1

]
, (11)

with x(t) defined as before:

x(t) =

{
X · sin2

(
π(t−δ)

T

)
if 0 ≤ t− δ ≤ T

0 otherwise
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Light Cone Angle in Kerr Background

In the equatorial plane (θ = π/2), we examine radial null trajectories, setting dθ = dϕ = 0.
The Kerr metric reduces to:

0 = gtt(t, r) dt
2 − Σ

∆
dr2. (12)

Then, the radial speed of light becomes:(
dr

dt

)2

=
∆

Σ
· gtt(t, r, θ = π/2), (13)

yielding the light cone angle:

θ(t, r) = tan−1

(√
∆

Σ
·
(
1− 2GMr

Σ

)
·
[
A · [x(t)]α

eβx(t) − 1

])
. (14)

Interpretation

This result captures how rotation, curvature, and temporal modulation interact to determine
the local causal structure. The combination of a ̸= 0 and gtt(t) breaks both staticity and
spherical symmetry, generating light cone oscillations that depend on both r and t. The
result may be especially relevant to modeling pulsating stars with angular momentum and
modulated emission.

6 Curvature and Matter Analysis of the Time-Periodic

Minkowski (TPM) Spacetime

To understand the geometric origin of Cepheid variable behavior, we investigate the curvature
of the modulated time-periodic Minkowski (TPM) spacetime. We analyze whether time
modulation introduces nontrivial spacetime curvature and whether the associated Einstein
tensor implies a nonzero energy-momentum content.

TPM Metric

We recall the TPM metric:

ds2 = gtt(t) dt
2 − dr2 − r2dθ2 − r2 sin2 θ dϕ2, (15)

where

gtt(t) = A · x(t)α

eβx(t) − 1
, x(t) = X · sin2

(
π(t− δ)

T

)
. (16)

Only gtt depends on time, and the spatial part of the metric remains flat.
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Christoffel Symbols and Riemann Tensor

The only non-zero Christoffel symbols involving time are:

Γt
tt =

1

2gtt

dgtt
dt

. (17)

As all spatial components are flat, the only potentially non-zero curvature arises from
the time variation of gtt.

Ricci Tensor and Scalar

The only non-zero component of the Ricci tensor is:

Rtt = −1

2

[
g′′tt
gtt

− 1

2

(
g′tt
gtt

)2
]
. (18)

This arises purely due to the time-dependence of gtt(t). All other components vanish.
The Ricci scalar becomes:

R = gttRtt =
1

gtt
Rtt. (19)

Einstein Tensor and Effective Matter Content

Using the Einstein tensor:

Gµν = Rµν −
1

2
gµνR, (20)

we find that Gtt ̸= 0, and all other components vanish. Thus, the spacetime has an
effective energy-momentum tensor:

Tµν =
1

8πG
Gµν , (21)

with non-zero Ttt interpreted as a time-localized energy density.

Interpretation

While the spatial geometry remains flat, the time-varying gtt induces a nonzero Ricci cur-
vature and Einstein tensor. This implies the existence of a non-zero energy density, concen-
trated in time. The TPM spacetime thus represents a scenario where periodic brightness is
a manifestation of localized geometric energy pulses, offering a geometric and gravitational
analog of stellar pulsation in Cepheid variables.
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7 Curvature and Effective Matter in TPS and TPK

Geometries

We now extend our curvature and matter analysis to the Time-Periodic Schwarzschild (TPS)
and Time-Periodic Kerr (TPK) geometries, which embed the same asymmetric brightness
modulation into the temporal metric components of curved spacetimes.

TPS Metric and Curvature

In the TPS spacetime, the Schwarzschild metric is modified as:

gTPS
tt (t, r) =

(
1− 2GM

r

)
·
[
A · x(t)α

eβx(t) − 1

]
, (22)

while the spatial components remain those of the Schwarzschild geometry.
Because both gtt and g′tt now depend on time and radius, the curvature is no longer purely

static. Differentiation reveals:

∂gtt
∂t

̸= 0, (23)

∂gtt
∂r

̸= 0. (24)

Thus, the Riemann tensor gains additional components. More importantly, the Ricci
tensor Rµν becomes non-zero, signaling a departure from the vacuum condition of the
Schwarzschild solution.

The corresponding Ricci scalar R and Einstein tensor Gµν also become non-zero. Hence,
the modified metric supports an effective energy–momentum tensor:

TTPS
µν =

1

8πG
Gµν , (25)

representing a matter distribution sourced by the time-periodic modulation.

TPK Metric and Curvature

In the TPK geometry, the Kerr metric is modified similarly:

gTPK
tt (t, r, θ) =

(
1− 2GMr

Σ

)
·
[
A · x(t)α

eβx(t) − 1

]
, where Σ = r2 + a2 cos2 θ. (26)

The resulting metric varies both in time and angular direction. Consequently, the metric
exhibits non-trivial dependence on all spacetime coordinates:

∂gtt
∂t

̸= 0,
∂gtt
∂r

̸= 0,
∂gtt
∂θ

̸= 0.
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This leads to a highly dynamic Riemann tensor and a fully non-zero Ricci tensor. The
Einstein tensor Gµν becomes complex and angle-dependent, suggesting that the spacetime
supports an anisotropic and time-dependent energy–momentum distribution:

TTPK
µν =

1

8πG
Gµν . (27)

Physical Interpretation

Unlike in the static Schwarzschild or Kerr cases (which are Ricci-flat), the TPS and TPK ge-
ometries possess time-modulated curvature arising from the embedding of periodic brightness-
like functions. The Einstein tensor is no longer zero, implying the presence of matter or
energy encoded in spacetime geometry. This reinforces the central thesis: that geometri-
cally encoded time-periodicity can manifest as effective stellar pulsation behavior, offering a
gravitational basis for observed Cepheid variability.

8 Linking Light Cone Opening to Brightness Variabil-

ity in Cepheid Stars

A central hypothesis of our model is that the brightness modulation observed in Cepheid
variable stars is a macroscopic manifestation of an underlying geometrical mechanism: the
periodic opening and closing of the light cone in a time-dependent spacetime.

Light Cone Geometry and Visibility

In general relativity, the local causal structure of spacetime is encoded in the light cone,
determined by the metric. For radial null geodesics in a time-periodic geometry, such as:

ds2 = gtt(t) dt
2 − dr2,

we find the condition for light propagation:(
dr

dt

)2

= gtt(t), ⇒ θ(t) = tan−1(
√

gtt(t)),

where θ(t) is the angle between the time axis and the light ray in spacetime diagrams.
As gtt(t) increases, the light cone opens up, allowing light to travel more freely across spatial
slices — enhancing visibility from the source.

Standard Brightness Equations

Cepheid variables obey the classical period-luminosity relation:

MV = a log10(P ) + b,
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where MV is the absolute magnitude, P the period of pulsation, and a, b empirical con-
stants. The observed (apparent) magnitude m is then connected to MV via the luminosity
distance dL:

m−MV = 5 log10(dL/10 pc).

We hypothesize that the luminosity distance dL is affected by the dynamics of light cone
opening via:

dL(t) ∝
1√
gtt(t)

∝ 1

tan θ(t)
. (28)

This expresses how light cone narrowing (smaller θ) corresponds to longer effective dis-
tance — dimmer observation — while opening (larger θ) shortens the path, enhancing bright-
ness.

Asymmetric Light Curves from Geometry

By embedding an asymmetric time function into gtt(t) — such as a Planck-distribution-
inspired profile — the opening and closing of the light cone itself becomes asymmetric. This
naturally leads to asymmetric light curves, such as those seen in Cepheid variables:

- Steep rise in brightness Rapid cone opening - Gradual decline Slow cone closure

Interpretation

Thus, the light cone dynamics provide a geometric interpretation for both the time varia-
tion and asymmetry of brightness in Cepheid stars. Our framework directly links this to
classical observables like magnitude and distance, implying that such variables might have
a geometric-causal origin in modulated spacetime itself.

9 Hubble Tension and Geometric Interpretation of Cepheid

Variability

A major outstanding problem in modern cosmology is the Hubble tension, a persistent dis-
crepancy between early-universe and late-universe measurements of the Hubble constant
H0. Measurements from the cosmic microwave background (CMB), notably by the Planck
satellite, suggest a value of H0 ≈ 67.4 ± 0.5 km/s/Mpc [4], while direct distance lad-
der measurements using Cepheid-calibrated supernovae yield a significantly higher value
of H0 ≈ 73.2± 1.3 km/s/Mpc ...

The root of this tension may lie in our assumptions about the underlying physics of
standard candles such as Cepheid variable stars. In most current treatments, their pulsation
and brightness variation are modeled as classical thermodynamic or fluid dynamical processes
internal to the star [1]. However, these models do not explain why such variability obeys
precise periodicity or links cleanly to luminosity.
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In our geometric framework, we interpret the periodic variation in brightness of Cepheid
variables as arising from an underlying time-periodic spacetime metric. By embedding an
asymmetric Planck-like function into the temporal component of the metric, gtt(t), we con-
struct a causal model where the observed brightness modulation arises from variations in
light cone angle and redshift over time.

This perspective introduces a geometric origin for the period–luminosity relation, poten-
tially recalibrating the intrinsic distances assigned to Cepheid variables. If the luminosity is
modulated not only by thermodynamic processes but also by spacetime geometry, then dis-
tance ladder estimates based on these stars may require revision. Such a shift could resolve
part of the Hubble tension by reducing the inferred late-universe expansion rate.

Key Insight: Our model provides a natural physical mechanism for asymmetric light
curves and introduces corrections to the Cepheid luminosity calibration, offering a novel path
to address the Hubble constant discrepancy.
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