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Abstract

In this paper, we will propose to generalize the Dirac delta impulse to sev-
eral dimensions. This generalization will be done by taking into account the one-
dimensional version of the Dirac delta impulse. From a projection of the variance-
covariance matrix, located inside the cone of positive semi-definite matrices, onto
the boundary of the cone of positive semi-definite matrices having only the last
eigenvalue equal to zero, we will make the transition from Gaussian probability
theory to determinism.
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1 Introduction

In this paper, we will recall the notion of Dirac delta impulse in the one-dimensional
case. This classical definition is made from a limit computed from a one-dimensional
Gaussian. We will then generalize this concept to several dimensions from a projection
of a variance covariance matrix ΣX2 , initially located inside the cone of semi-definite
positive matrices, onto the boundary of the cone of semi-definite positive matrices hav-
ing only the last eigenvalue equal to zero: ΣX2 Ð→ ∂S +

0 .

We will also explain the reason why we have generalized the notion of Dirac delta
impulse to several dimensions. From the result obtained in paper [1] page 4, this pro-
jection will show the transition between the domain of Gaussian randomness and the
determinism.
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2 Classical Dirac delta impulse obtained from a Gaus-
sian

Before introducing the generalized Dirac delta impulse, we need to recall the approach
to the Dirac delta impulse made by the one-dimensional Gaussian in order to make
the analogy later. Recall that the one-dimensional Dirac delta impulse is made by the
following limit of the Gaussian:

δ(x) = lim
σÐ→0

[ 1√
2πσ2

exp{− x2

2σ2
}]

In what follows we will generalize this concept to several dimensions.
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3 Generalized Dirac delta impulse obtained from the
multivariate Gaussian

We define the generalized Dirac delta impulse δ(X⃗−µ⃗X) from the multivariate Gaussian
N (µX ,ΣX2) as follows:

δ(X⃗ − µ⃗X) = PΣX2Ð→∂S+0
[N (µ⃗X ,ΣX2)] = PΣX2Ð→∂S+0

[(2.π)− n
2 ∣ΣX2 ∣− 1

2 exp−
(X⃗ − µ⃗X)tΣ−1

X2(X⃗ − µ⃗X)
2

]

To understand the generalized Dirac delta impulse, we must initially consider a random
Gaussian vector following the probability law N (µX ,ΣX2).

PΣX2Ð→∂S+0
then corresponds to the projection of the variance covariance matrix, located

inside the cone of positive semi-definite matrices, onto the boundary ∂S +

0 of the cone
of positive semi-definite matrices having only the last eigenvalue equal to zero. This
projection of the matrix is done by performing the spectral decomposition of the
matrix ΣX2 = P.Λ.Pt, by canceling the last eigenvalue of Λ and by returning to the
starting basis.

Onto the boundary of the cone ∂S +

0 , the determinant of the matrix is zero (∣ΣX2 ∣ =
0), the matrix ΣX2 is therefore singular and not invertible. By making the smallest
eigenvalue λmin(ΣX2) of the matrix ΣX2 tend towards 0, we will show that we have
indeed generalized the Dirac delta impulse to several dimensions.(see the analogy)

As we demonstrated in the paper ([1] page 4) the boundary of the cone of positive
semi-definite matrices having only the last eigenvalue equal to zero ∂S +

0 contains the
predictability and the determinism. The projection PΣX2Ð→∂S+0

therefore expresses
the transition from Gaussian probability theory to determinism.

The vector X⃗ of the multivariate Gaussian N (µ⃗X ,ΣX2) therefore infers randomness
while the vector X of the generalized Dirac impulse δ(X⃗ − µ⃗X) infers determinism.

For the multivariate Gaussian, the transition from randomness to determinism is
made with the projection PΣX2Ð→∂S+0

or by the limit lim
λmin(ΣX2)Ð→0

.
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4 Integration for the generalized Dirac delta impulse

Consider the multivariate Gaussian Y = N (µY ,ΣY2) projected onto the boundary ∂S +

0
with the spectral decomposition of its variance covariance matrix: ΣY2 = P.Λ.Pt.

If we consider the vectors X⃗ and µ⃗X in the normalized eigenvector basis of ΣY2 :

X⃗ = P−1Y⃗ and µ⃗X = P−1µY

then we obtain the following equality:

∫
∞

−∞

δ[P.(X⃗ − µ⃗X)]d⃗X = 1

The Dirac delta impulse in the initial basis therefore passes into the normalized eigen-
vector basis of the matrix ΣX2 Ð→ ∂S +

0 , then it is transformed with the linear application
matrix P into another Dirac delta impulse whose the integral of [−∞,+∞] gives 1.

Proof

Consider the Gaussian N (µ⃗Y ,ΣY2):

The projection PΣY2Ð→∂S+0
will be put in the form of a limit in which we make tender

the smallest eigenvalue λmin(ΣY2) of the matrix ΣY2 towards 0.

δ(Y⃗ − µ⃗Y)

= PΣY2Ð→∂S+0
N (µ⃗Y ,ΣY2)

= lim
λmin(ΣY2)Ð→0

N (µ⃗Y ,ΣY2)

= lim
λmin(ΣY2)Ð→0

[(2.π)− n
2 ∣ΣY2 ∣− 1

2 exp−(Y⃗ − µ⃗Y)t.P−t.Λ−1.P−1.(Y⃗ − µ⃗Y)
2

]

We pose :

X⃗ = P−1Y⃗

µ⃗X = P−1µ⃗Y

∣ΣY2 ∣ = λmin.
n−1

∏
i=1
λi

and

(2π)− n
2 = (2π)− n−1

2 .(2π)− 1
2

We obtain:

δ(Y⃗ − µ⃗Y)

= δ[P.(X⃗ − µ⃗X)]

= lim
λmin(ΣY2)Ð→0

[(2π)− n−1
2 .(2π)− 1

2 (λmin.
n−1

∏
i=1
λi)−

1
2 exp−(X⃗ − µ⃗X)t.Λ−1.(X⃗ − µ⃗X)

2
]
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= lim
λmin(ΣY2)Ð→0

[(2π)− n−1
2 .(2π)− 1

2 (λmin.
n−1

∏
i=1
λi)−

1
2 exp−

(X⃗ − µ⃗X)t
1...n−1.Λ

−1
(1...n−1X1...n−1).(X⃗ − µ⃗X)1...n−1

2
− 1

2
(xn − µn)2

λmin
]

= (2π)− n−1
2 .

n−1

∏
i=1
λ
−

1
2

i . exp−
(X⃗ − µ⃗X)t

1...n−1.Λ
−1
(1...n−1X1...n−1).(X⃗ − µ⃗X)1...n−1

2
. lim
λmin(ΣY2)Ð→0

.
1√
2π
.

1√
λmin

. exp−1
2
(xn − µn)2

λmin

As the following multiple integral is equal to 1:

∫
+∞

∞

(2π)− n−1
2 .

n−1

∏
i=1
λ
−

1
2

i . exp−
(X⃗ − µ⃗X)t

1...n−1.Λ
−1
(1...n−1X1...n−1).(X⃗ − µ⃗X)1...n−1

2
dx1.dx2...dxn−1

= 1

because it is a probability density integrated over the entire domain.

The integral of the generalized Dirac impulse therefore becomes:

∫
+∞

−∞

δ[P(X⃗ − µ⃗X)]dX1dX2...dXn

= ∫
+∞

−∞

lim
λmin(ΣY2)Ð→0

.
1√
2π
.

1√
λmin

. exp−1
2
(xn − µn)2

λmin
dXn

We will show in what follows that this last limit is always equal to 1 for all values of λ.

We pose a = 1
√

2λmin
and z = (xn − µn) if λmin tends towards 0 then a tends towards

infinity.

= ∫
+∞

−∞

lim
aÐ→∞

a√
π
. exp{−a2z2}dz

= lim
aÐ→∞∫

+∞

−∞

a√
π
. exp{−a2z2}dz

We put:

t = azÔ⇒ z = t
a

dt = a.dzÔ⇒ dz = dt
a if zÐ→∞ then t Ð→∞

We obtain:

= lim
aÐ→∞∫

+∞

−∞

a√
π
. exp{−a2z2}dz

= lim
aÐ→∞∫

+∞

−∞

a√
π

exp{−t2}dt
a

= 1√
π
∫

∞

−∞

exp{−t2}dt

However: ∫
+∞

−∞

exp{−x2}dx =
√
π

we have therefore demonstrated the following equality:

∫
+∞

−∞

δ[P(X⃗ − µ⃗X)]dX1dX2...dXn = 1
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5 Analogy between the generalized Dirac delta impulse
and the classical Dirac delta impulse

The one-dimensional dirac delta impulse:

δ(x − x0) = { +∞ if x = x0
0 ifx ≠ x0

with

∫
+∞

−∞

δ(x − x0)dx = 1

becomes multidimensional the following definition:

δ(X⃗ − µ⃗X) = { +∞ if X⃗ = µ⃗X

0 if X⃗ ≠ µ⃗X

with

∫
∞

−∞

δ[P.(X⃗ − µ⃗X)]d⃗X = 1

Where P corresponds to the matrix in the spectral decomposition of the variance co-
variance matrix ΣX2 projected onto the boundary ∂S +

0 :

ΣX2 = P.Λ.Pt

and

the vectors X⃗ and µ⃗X are expressed in the normalized basis of eigenvectors of the matrix
projected ΣX2 onto boundary ∂S +

0 .

With several variables, we have another property that is added to the one-dimensional
impulse: we have demonstrated that δ(X⃗ − µ⃗X) infers determinism (see paper [1] page
4) onto ∂S +

0 while the multivariate GaussianN (µ⃗X ,ΣX2) infers randomness inside the
cone of positive semi-definite matrices.
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6 Conclusion

In this paper, the generalization of the Dirac delta impulse was made by taking into
account the classical one-dimensional version and the limit of the one-dimensional
Gaussian. The limit then became, in a multidimensional case, a projection of a strictly
positive-definite variance-covariance matrix onto the boundary of the cone of positive
semi-definite matrices having only the last eigenvalue equal to zero. The generaliza-
tion can also be done by making the last eigenvalue (the smallest) tend towards zeros:

lim
λmin(ΣX2)Ð→0

. This projection, giving the generalized Dirac delta impulse, made the tran-

sition between Gaussian randomness and the determinism. The multivariate Gaussian
in fact infers randomness, while the generalized Dirac delta impulse obtained by pro-
jection infers determinism.
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