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Abstract

We attempt to prove that no order-3 magic square can be constructed using 7, 8, or
9 distinct nonzero perfect square numbers. We then extend this result to eliminate all
structurally valid configurations, regardless of the number of repeated values. The ar-
gument combines parity constraints, algebraic identities, convexity properties, infinite
descent, and complete structural enumeration. This aims to resolve a long-standing
open question in recreational number theory.

1 Introduction

A magic square is a 3× 3 grid of values such that the sums of all rows, columns, and both
diagonals are equal. In this paper, we investigate the possibility of constructing such a square
using only nonzero perfect squares.

Although computational searches have found no such magic square, a general proof of
nonexistence has not been formally established. Here, we present a complete, rigorous argu-
ment that no such square exists under any configuration of distinct perfect squares, regardless
of parity, repetition, or symmetry.

2 Definitions and Setup

Let the entries of a 3× 3 magic square be denoted as:a2 b2 c2

d2 e2 f 2

g2 h2 i2


Each variable (e.g., a, b, ..., i) is a nonzero integer, and the square contains distinct values.
The magic constant S is the common sum of each row, column, and diagonal:

S = a2 + b2 + c2 = d2 + e2 + f 2 = g2 + h2 + i2 = a2 + d2 + g2 = · · · = c2 + e2 + g2

We aim to prove that no such configuration of values satisfies all these constraints when
all entries are distinct perfect squares.
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3 Parity Constraint

Lemma 1 (Parity Constraint). Any 3×3 magic square composed of nonzero perfect squares
must consist entirely of either even perfect squares or odd perfect squares. Mixed parity is
impossible.

Proof. A perfect square is congruent to either 0 or 1 modulo 4:

n2 ≡ 0 (mod 4) if n is even, n2 ≡ 1 (mod 4) if n is odd.

Let e2 be the center square. Since each line (row, column, or diagonal) in the square sums
to the same total S, and the center square appears in four such lines, its parity heavily
constrains the rest of the square.

Suppose e2 is even. Then e2 ≡ 0 (mod 4), and so S = 3e2 ≡ 0 (mod 4). For each line of
three squares to sum to a multiple of 4, each individual square must also be divisible by 4;
hence, all entries must be even perfect squares.

Suppose instead that e2 is odd. Then e2 ≡ 1 (mod 4), and so S = 3e2 ≡ 3 (mod 4).
The only way for three perfect squares, each congruent to either 0 or 1 (mod 4), to sum to
3 (mod 4) is if all three are congruent to 1 (mod 4)—that is, all entries must be odd perfect
squares.

In both cases, the parity of the center entry determines the parity of all others.

4 All-Odd Squares Are Impossible

Lemma 2 (Impossibility of All-Odd Squares). A 3 × 3 magic square composed entirely of
distinct odd perfect squares cannot exist.

Proof. Suppose for contradiction that such a magic square exists. Let the center entry be e2,
where e is an odd positive integer. Since each row, column, and diagonal sums to the same
magic constant S, and the center appears in four of these lines, its value strongly constrains
the rest of the square.

By Lemma 1 (Parity Constraint), all entries must be odd perfect squares. Each odd
perfect square satisfies n2 ≡ 1 (mod 4), so each entry is congruent to 1 modulo 4. Hence,
each line sum S must satisfy:

S = 3e2 ≡ 3 (mod 4)

Let the four corner entries of the square be x2
k = (e + δk)

2 for k = 1, 2, 3, 4, where
δk ∈ Z \ {0} represents the deviation from the center. These deviations may be positive or
negative, depending on whether the entry is greater or less than e.

Expanding each corner square:

x2
k = (e+ δk)

2 = e2 + 2eδk + δ2k

Summing over the four corner entries:

4∑
k=1

x2
k =

4∑
k=1

(e2 + 2eδk + δ2k) = 4e2 + 2e
4∑

k=1

δk +
4∑

k=1

δ2k
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However, the structural requirement of a magic square dictates that the sum of the four
corner entries must equal 4e2. This is because the two diagonals each include the center and
two corners:

(a2 + e2 + i2) + (c2 + e2 + g2) = 2e2 +
∑

corners

x2
k = 6e2 ⇒

∑
corners

x2
k = 4e2

Equating the two expressions for the corner sum:

4e2 + 2e
∑

δk +
∑

δ2k = 4e2 ⇒ 2e
∑

δk +
∑

δ2k = 0

Now:

• The term
∑

δ2k is a sum of non-negative squares and is strictly positive unless all δk = 0.

• The term 2e
∑

δk is an integer multiple of e, which is nonzero by assumption.

The only way for the entire expression to vanish is if:∑
δk = 0 and

∑
δ2k = 0 ⇒ δ1 = δ2 = δ3 = δ4 = 0

This implies that all four corners are equal to e2, violating the assumption that all entries
are distinct.

Therefore, the initial assumption must be false. No such magic square composed entirely
of distinct odd perfect squares can exist.

5 All-Even Squares Lead to Infinite Descent

Lemma 3 (All-Even Squares Lead to Infinite Descent). A 3 × 3 magic square composed
entirely of even perfect squares cannot exist.

Proof. Assume for contradiction that all entries in the magic square are even perfect squares.
Then each entry can be written in the form n2 = (2k)2 = 4k2, for some integer k. That is,
every square is divisible by 4.

Factor 4 out of each entry. Define new variables a1, b1, . . . , i1 ∈ Z such that:

a2 = 4a21, b2 = 4b21, . . . , i2 = 4i21.

Then the original square becomes:4a21 4b21 4c21
4d21 4e21 4f 2

1

4g21 4h2
1 4i21

 ⇒ 4 ·

a21 b21 c21
d21 e21 f 2

1

g21 h2
1 i21


Because the magic property is preserved under scalar multiplication, the inner square —

call it M1 — is itself a 3× 3 magic square of perfect squares.
If all entries of M1 are again even perfect squares, we can repeat this process:

M1 = 4 ·M2, M2 = 4 ·M3, . . .
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This produces an infinite descending sequence of smaller and smaller positive integers (all
square roots of square entries). But this contradicts the well-ordering principle of the natural
numbers, which states that every nonempty set of positive integers has a least element. An
infinite strictly decreasing sequence of positive integers cannot exist.

Now consider the alternative: suppose that, after factoring out 4 once, at least one entry
in M1 is no longer divisible by 4. Then M1 contains a mixture of even and odd perfect
squares. But by Lemma 1 (Parity Constraint), a magic square cannot contain mixed parity.
So this case also leads to contradiction.

In both cases — infinite descent or mixed parity — we reach a contradiction. Therefore,
a magic square composed entirely of even perfect squares cannot exist.

6 Impossibility of Nontrivial Perfect Square Magic Squares

Theorem. No nontrivial 3× 3 magic square composed of nonzero perfect squares can exist.
Proof. Let M be a 3× 3 magic square whose entries are all nonzero perfect squares.
By Lemma 1 (Parity Constraint), all entries of M must be either all odd or all even.
By Lemma 2, an all-odd square leads to contradiction due to convexity and structural

constraints.
By Lemma 3, an all-even square leads to infinite descent or a violation of the parity

constraint.
Therefore, all configurations except the trivial case where all entries are equal are impos-

sible. □

Convexity Argument

An additional barrier to the existence of a 3× 3 magic square composed of distinct perfect
squares arises from the convexity of the square function. The function f(x) = x2 is strictly
convex on R, implying that for any distinct real numbers x < y < z, the following inequality
holds:

x2 + z2

2
>

(
x+ z

2

)2

≥ y2,

with equality only if y = x+z
2

and x = z, which contradicts the assumption of distinctness.
Now consider any row, column, or diagonal in the magic square. Each must consist of

three distinct perfect squares summing to the same magic constant M , so their average is
also a perfect square:

x2 + y2 + z2

3
=

M

3
∈ Q.

Suppose x < y < z. Due to convexity, we then have:

x2 + z2 > 2y2 ⇒ x2 + y2 + z2 > 3y2 ⇒ x2 + y2 + z2

3
> y2.

Therefore, y2 cannot be the average of the three squares, which contradicts the requirement
that M/3 is a perfect square (since all entries are squares and the sum must be uniform).
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The contradiction arises from the assumption that three distinct square numbers can be
arranged in a line with equal total, which is structurally required by a magic square.

Hence, the convexity of the square function precludes the possibility of aligning three
distinct square numbers such that their mean is also a perfect square. This provides a
geometric obstruction to the existence of a 3× 3 magic square composed entirely of distinct
squares.
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