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Abstract:  

In order to strictly prove the conjecture in Riemann's 1859 paper on the Number 

of prime Numbers Not Greater than x from a purely mathematical point of view, 

and strictly prove the correctness of Riemann's conjecture, this paper uses Euler's 

formula to prove that if the independent variables of ζ(s) function are conjugate, 

then the values of ζ(s) function are also conjugate, thus obtaining that the 

independent variables of ζ(s) function are also conjugate at zero. And using the 

conjugation of the zeros of the Riemann ζ(s) function and the zeros of ζ(s)=0 and 

the zeros of ζ(1-s)=0, s and 1-s must also be conjugated, The nontrivial zero of 

Riemann function ζ(s) must meet s= 
 

   
+ti(t R        ) and s= 

 

   
-ti(t R        ). 

And the symmetry of the zeros of Riemann ζ(s) function is the necessary 

condition that the nontrivial zeros of Riemann ζ(s) function are located on the 

critical boundary. According to the symmetry property of the zeros of Riemann ζ 

(s) function s and the zeros of Riemann ζ(s) function 1-s, combined with the 

conjugated property of the zeros of Riemann ζ(s) function s and Riemann ζ(s) 

function 1-s, It is shown that the real part of the nontrivial zero of the ζ(s) 

function must only be equal to 
 

   
. And by Riemann set s=

 

 
   (t C        ) and 

auxiliary function      
 

 
s(s-1)  

 

 
    

 

                  , Get  
 

 
(s-1)  

 

 ζ( )= ξ(t) 

=0, combining the nontrivial zeros of Riemann function ζ(s) must meet s =
 

   
+ti 

(t R and t 0) and s =
 

   
-ti (t R and t 0), Thus it is proved equivalently that the 

zeros of the Riemann ξ(t) function must all be non-zero real numbers, and the 

Riemannian conjecture is completely correct. 
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I. Introduction 

The Riemann hypothesis and the Riemann conjecture is an important and famous mathematical 

problem left by Riemann in his 1859 paper "On the Number of primes not greater than   ",  

which is of great significance to the study of the distribution of prime numbers and is known as  
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the greatest unsolved mystery in mathematics. After years of hard work, I solved this problem 

and rigorously proved that both the Riemann conjecture and the generalized Riemann 

conjecture are completely correct. The Polignac conjecture, the twin prime conjecture, and 

Goldbach's conjecture are also completely correct. It would be nice if you understood Riemann's 

conjecture thoroughly from the outset of his paper "On Prime Numbers not Greater than  " and 

were completely convinced of the logical reasoning behind it. You need to do this before you 

read my paper. The following is about the first half of Riemann's paper "On the Number of 

primes not Greater than   ", which I have explained and derived, which is the premise and basis 

for your understanding of Riemann's conjecture.In 1859, Riemann was admitted to the Berlin 

Academy of Sciences as a corresponding member, and in order to express his gratitude for the 

honor, he thought it would be best to use the permission he received immediately to inform the 

Berlin Academy of a study on the density of the distribution of prime numbers, a subject in which 

Gauss and Dirichlet had long been interested. It does not seem entirely unworthy of a report of 

this nature. Riemann used Euler's discovery of the following equation as his starting point: 

 

  
 

     

 

   

   
 

  

 

   

 

Where p on the left side of the equation takes all prime numbers, n on the right side takes all 

natural numbers, and the function of the complex variable s represented by the two series above 

(when they converge) is denoted by (s). That is, to define a function of complex variables: 

                                
 

  
 
   =  

 

     
 
    。 

The two series above converge only if the real part of s is greater than 1,is also say when 

Re(s)>1,      
 

  
 
        

 

     
 
                   if s=1,then  

 

  
 
   =

 

 
 

 

 
+

 

 
 

 

 
+... , It's 

called a harmonic series, and it diverges.If Re(s)<1,   
 

  
 
   =

 

   
 

  +
 

   
 

  +... , it's more 

divergent.Because if Re(s)<1,then 
 

   
 

 
 

 

   
 

 
 

 

   
 

 
 

 

   
 

 
, ... , .But if s is a negative 

number, for example s= -1,then it does not satisfy the condition that Re(s)>1. So you need to find 

an expression for (s) function a that is always valid for any s. In modern mathematical language, 

that is, to carry out an analytical extension of a complex function     , and the best way to analyze 

the extension is to find a more extensive and effective representation of the function such as an 

integral representation or an appropriate function representation.Therefore, we want to define a 

new function, this new function also  (s) to represent, this new function of the independent 

variable s is not only full Re(s)>1, but also satisfy Re(s)≤1(s≠1), and the function image is smooth, 

every point on the function image can find its tangent slope, that is, the function everywhere can 

find the derivative. However, it is no longer called the Euler       function, but the 

Riemann   function. Riemann used the integral to express the function   (s). In this paper, I have 

added another complex variable to express the Riemann function  (s). 

Because (s)  (s  1)  s(s) , where (s) is the factorial function , (s) is the Euler gamma  
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function,(s)=       

 
    d , Let the variable       (n   ) in the integral symbol,then 

         

 
    d     =       

 

 
        =        

 

 
    =(s)= (s-1),so 

      

 

 

      
     

  
 

That's exactly what Riemann says in his paper, he says he's going to use 

       

 

 

      
     

  
 

Since n is all positive integers, we need to assign   to      and 
 

  on both sides of the equation, 

so 

                                                
   

 
   

 

       - =
     

     =
 

      
 , 

The common ratio q satisfies 0<q=     |<=1(0<=     )，
     

   
     

                
 , 

and  
 

  
 
    

 

                
     ，so according  

  

          
 

 

 
     

  
 

 

,can get          = 
        

     
 

 

 
, this is exactly what Riemann found in his paper. 

Now consider the following integral 

 
           

     
 

 

 

 

According to modern mathematical notation, the integral should be denoted as  
           

     

 

 
, or 

considering that the complex number is generally represented by Z, the integral should be 

denoted as  
         

    

 

 
 , Its integral path proceeds from +  to +  on the forward 

boundary of a region containing the value 0 but not any other singularities of the 

integrable function, where the integral path C is shown in Figure 1 below. 
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Figure 1 

The forward boundary of a region that contains the value 0 but does not contain any other 

singularities of the integrand (such as s=1). Easy the integral value is: 

(          ) 
       

    

 

 
 , 

Where we agree that in the many-valued function        , the value of ln( ) is real for 

negative  , thus obtaining 2sin(  )             
              

     
 

 

 
     .This equation 

now gives the value of the function      for any complex variable s, and shows that it is 

single-valued analytic, and takes a finite value for all finite s except 1, and zero when s is 

equal to a negative even number.The right side of the above equation is an integral 

function, so the left side is also an integral function , (s 1)  (s),and the first-order 

poles of (s) at s  0,1,2,3,... cancels out sin(s)'s zero. Riemann zeta function      is a 

series expression  

of     
 

  
 
   (                                                     on the complex plane 

analytical continuation. The reason for the analytical extension of the above series expression is 

that this expression only applies to the region of the complex plane where the real part of s 

Re(s)>1 (otherwise the series does not converge). Riemann found an analytical continuation of 

this expression (of course Riemann did not use the modern term "analytic continuation" in 

complex function theory). Using the circumchannel integral, the analytically  

extended Riemann zeta function can be expressed as: 

     
      

   
 

     

    

 

 

  

 
 

 

(4) 
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The integral in the above formula is actually a circumchannel integral around the positive real  

axis (that is, starting from + , integrating above the real axis to near the origin, integrating 

around the origin to below the real axis, and then integrating below the real axis to +  - the 

distance from the real axis and the radius around the origin are all approaching 0); The Γ 

function Γ(s) in the equation is an analytical extension of the factorial function in the 

complex plane, for positive integers s>1:Γ(s)=(s-1)! . It can be shown that the integral 

expression for ζ(s) above resolves everywhere over the entire complex plane except for a 

simple pole at s=1. Such an expression is an example of a so-called meromorphic function - 

that is, a function that resolves everywhere over the entire complex plane except for the 

existence of poles on an isolated set of points. This is the complete definition of the Riemann 

ζ function. 

To obtain the value of this integral, we assume that there is a complex number of arbitrarily 

small moduli δ, and that the moduli  δ  of δ , δ|→0,Because               ,and ln(- )= 

ln( )+                     ,    

 
         

    

 

 
  

         

    

 

 
  

         

    

 

 
   

         

    

 

       
= 

       

       

 

  
  

       

       

  

 
 

   
       

        

 

      
 =     -       

         

       

 

 
+  

       

        

 

      
 ,                  

The definition of trigonometric functions of complex variables is given by Euler's formula 

 

sin(z)=
        

  
， if  z=  ，then sin(  )=

          

  
.so     -     =2isin(  ), i=

          

        
 .so 

 
         

    

 

 
      -       

         

    

 

 
+  

       

        

 

      
， if δ  is a real number and the 

absolute value |δ | of δ , |δ | →0, 

then 
       

        

 

      
        

 –  
   

  

    

 

 
=2isin(  ) 

       

     
 

 

 
     .then 

 

         
 

 –  
   

  

    

 

 
= 

          

       
 

 

 
     .We got   

           
        

     
      

 

 
         so 2sin(  )             

        

     
 

 

 
.When 

the real part of s is negative, the above integral can be performed not along the region positively 

surrounding the given value, but along the region negatively containing all the remaining complex 

values.See Figure 2 below, where the radius of the great circle C' approaches infinity and thus 

contains all poles of the integrand, i.e. , all zeros of the denominator      , nπi (n is an integer),  

 

(5) 

 



The proof of the Riemann conjecture 

and the following calculation applies Cauchy's residue theorem. 

 

Figure 2 

Since the value of the integral is infinitesimal for modular infinite complex numbers, and in this 

region the integrand has a singularity only if   is equal to an integral multiple of 2i , the 

integral is equal to the sum of the integrals negatively around these values, but the integral 

around the value n2i       is equal to                     .The residue of the 

integrand  
       

          at n2 i(   ) is equal to  

 
        

        
       = 

        

           =         (   ). 

So we get 

2sin(πs)      ζ(s)=          ((      +    ) [1] (Formula 3), 

It reveals a relationship between ζ(s) and ζ(1-s), using known properties of the function (s), 

that is, using the coelements formula of the gamma function (s) and Legendre's formula. It 

can also be expressed as: Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s. 

based on euler's    =                     can get     

    
 

 
 =cos(

  

 
) +isin(

  

 
) =0-i= -i ,    

   
 

 
 =cos(

 

 
)+isin(

 

 
)=0+i=i ,       

then 

                        +         =          
 

 
           

 

 
  =  

i    
 

 
  -i   

 

 
   i(cos

   

 
+isin

   

 
)-i(cos

  

 
+isin

  

 
)=icos(

  

 
)-icos(

  

 
)+sin(

  

 
)+sin(

  

 
) 

=2sin(
  

 
) (Formula 4) 

According to the property of Π(s-1)=Γ(s) of the gamma function,and  

      
   =ζ(1-s)                                                    ), 

(6) 
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Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=                
  

 
 (Formula 5), 

according to the double Angle formula sin(πs)=2Sin(
  

 
)cos(

  

 
), we Will get  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s C and s  ) (Formula 6), 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  ) (Formula 7), 

This is the functional equation for ζ(s)              . To rewrite it in a symmetric form, use 

the residual formula of the gamma function 

Γ(Z)Γ(1-Z)= 
 

       
 (Formula 8)  

and Legendre's formula Γ(
 

 
)Γ(

 

 
+

 

 
)=     

 

 Γ(Z) (Formula 9) , 

Take z= 
 

 
 in (Formula 8) and substitute it to get 

sin(
  

 
)= 

 

  
 

 
      

 

 
 
 (Formula 10) , 

In (Formula 9), let z=1-s and substitute it in to get 

Γ(1-s)=     
 

 Γ(
   

 
)Γ(1- 

 

 
) (Formula 11) 

By substituting sin(
π 

 
)= 

π

Γ 
 

 
 Γ    

 

 
 
 (Formula 10) and Γ(1-s)=   π 

 

 Γ(
   

 
)Γ(1- 

 

 
) (Formula 11) 

into ζ( )=  π   sin(
π 

 
)Γ(1-  )ζ(1-  ) s C and    ) (Formula 7), can get 

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s C and s  ) (Formula 12), 

Also 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s, 

And that's exactly what Riemann said in his paper.That is to say: 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s , 

Also 

  
 

 
     

 

 ζ(s)=   
   

 
     

   

 
 ζ(1-s) s C and s  ), 

or  

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s)             (Formula 2), 

Then ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  )(Formula 7) . 

 

(7) 



The proof of the Riemann conjecture 

 

This property of the function induces me to introduce (
 

 
1) instead of (s 1) into the general  

term of the series  
 

  
 
    , from which we obtain the function a very convenient expression 

forζ(s), which we actually have                       

                                             
 

    
 

 
     

 

           
 

 
   

 

 d  . 

To derive the above equation, let's look at (
 

 
1)=( 

 

 
)=   

 

 
   

 
    d ，in  

(
 

 
1)=(s)=    

 

 
   

 
     d , replace          as follows, then 

(
 

 
1)=(s)=        

 

 
   

 
       d =        

 

              
 

 
   

 

 d(    )= 

         
 

                   
 

 
   

 

 d =    
 

          
 

 
   

 

 d ，so 

 

    
 

 
     

 

           
 

 
   

 

 d  . 

So, if we call          
   =    , get immediately 

 

    
 

 
     

 

  =         
 

 
  

 

 d  =           
   

 

 
   

 
 

  d =       
 

 

 
 

 
d . 

According to the Jacobi theta function 

                
    =       +2          

   =1+2(                             ), 

Easy to see                
    

      

 
 . 

The transformation formula of theta function is derived as follows:  
 

  
 =         . 

Let the first class of complete elliptic integrals k,k' is called modulus and complement of Jacobi 

elliptic functions or elliptic integrals, respectively. 

k = k(k)= 
  

            

 

 
 

 , 

k'= k(k') = 
  

              

 

 
 

 , 

let   k'/ k ,then get 

 
  

 
 =   =1+2(                         ), 

The modulo k and the complement k' are interchangeable 

 
    

 
 =  

 


 =1+2(                             ), 

Compare the two formulas to obtain   
 


 =      . It was first obtained by Cauchy using Fourier 

analysis, and later proved by Jacobi using elliptic functions. 

Apply the integral expression above 
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can also prove Riemann  function satisfy the above algebraic equation - also called zeta function  

equation  ( )=      sin(
  

 
)Γ(1-  ) (1-  ) s C and    ) (Formula 7), is not hard to 

find in this relation, The Riemann   function takes zero at s=-2n (n is a positive integer) , because 

sin(
  

 
) is zero. The point on the complex plane where the value of the Riemann   function is 

zero is called the zero of the Riemann   function.So s=-2n (n is a positive integer) is the zero of 

the Riemann zeta function. These zeros have a simple and orderly distribution and are called 

trivial zeros of the Riemann     function. In addition to these trivial zeros, the Riemann    

function has many other zeros whose properties are far more complex than those trivial zeros, 

and are rightly called nontrivial zeros.  

Riemann described it in his paper as follows: 

  
 

 
     

 

              
  

 
 

 

 
  d  +   

 

 
  

  

 
 

   

  d  + 
 

 
   

   

 
 

 
- 

 

 
  )d  

=
 

      
 +       

  

 
( 

 

 
  +  

   

 )d ， 

Let's look at the last part of the equation, if s→1-s, then 

 

      
 

 

             
 = 

 

          

 

       
， 

 
 

 
  + 

 
   

   
   

 
    

 
       

 = 
    

   
  

   

 = 
 

   

   
 

 
      

  
 

 
    

 
 

       is invariant under the transformation s→1-s. 

Riemann then derived the function equation for ζ    again, which is simpler than the previous 

derivation using the circum-channel integral and residue theorems. 

If we introduce auxiliary function function  (s)=   
 

 
   π 

 

  ζ   . 

This can be succinctly written as  (s)  (1 s), But it is more convenient to add the factor s(s 1) 

to  (s), which is what Riemann does next, i.e. (To keep with Riemann's notation, the number  

factor 
 

 
 is introduced):    = 

 

 
s(s 1)   

 

 
     

 

   
 

 
     . 

Because factor (s 1) cancels out the pole of (s) at s1, factor s cancels out the pole of (
 

 
) 

at s  0, and  (s)'s trivial zeros -2, -4, -6,... cancel out the rest of the poles of (
 

 
) , so  (s) is an 

integral function and is zero only at the nonnormal zero points of  (s). Note that since sub s(s 1) 

obviously does not change under s 1 s, there is a function equation (s)  (1 s). The zeros 

of       are all zeros of (s) except the trivial zero s=-2n(n is a natural number), which, since it  

happens to be the pole of Γ(
 

 
+1) in ξ(s)= Γ 

 

 
   (s-1)π 

 

  (s), is not the zero of ( ), and thus the  

(9) 
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zeros of ( ) coincide with the nontrivial zeros of the Riemann ζ function. In other words, ( )  

separates the nontrivial zeros of the Riemann ζ    function from the total zeros. 

Now Riemann suppose s=
 

 
+ti              ，  

 

 
 (s1)   

 

      =   
 

 
   (s 

1)  
 

      =(t), thus get (t) =
 

 
 -(   

 

 
)     

 

 
  

 

     
 

 
     d  

Or 

(t) = 4 
   

 
        

  

 

 
  

 

     
 

 
    )  . 

The function   
 

 
 (s1)π 

 

  ζ   =(t) defined by Riemann is essentially the same as the function 

(s)= 
 

 
s(s 1)  

 

 
   π 

 

    
 

 
 ζ   commonly used today. Because  

  
 

 
 =  

 

 
   = 

 

 
  

 

 
 ,so   

 

 
 (s1)π 

 

  ζ   =
 

 
  

 

 
 (s1)π 

 

  ζ   =
 

 
s(s 1)π 

 

    
 

 
 ζ   =(s)。

The only difference is that Riemann takes t as the independent variable, while  (s), which is 

now commonly used, still takes s as the independent variable, and s and t differ by a linear 

transformation: s=
 

 
+ti, that's a 90 degree rotation plus a translation of 

 

 
. This means that 

the complex number t is rotated by 90 degrees counterclockwise and shifted by  in the 

positive direction of the real number line, which is      
 

 
     

 

 
 + 

 

 
. In this way, the line 

Re(s) 
 

 
  in the complex plane of s corresponds to the real axis in the t plane, and the real 

part of the zeros of the Riemann ζ(s)(s C and s≠1)  function on the critical line Re(s) 
 

 
 

corresponds to the real root of (t). Note that in Riemann's notation, the functional equation 

(s)  (1 s) becomes (t)  (t), that is, (t) is an even function, so its power series 

expansion is only an even power, and the zeros are symmetrically distributed with respect to 

t  0.In addition, it is also clear from the above two integral representations that (t) is an 

even function, since     
 

 
      is an even function of t. 

For all finite t, function (t)=
 

 
 -(   

 

 
)      

 

 
  

 

     
 

 
      d  or function (t) = 

4 
   

 
        

  

 

 
  

 

     
 

 
    )   is finite in value, 

And can be expanded to a power of    as a rapidly convergent series, because for an s value 

with a real part greater than 1, the value of   ζ                is also finite.It is same  

true for the logarithm of the other factors of (t), so the function (t) can take zero only if the 

imaginary part of t lies between 
 

 
 and 

 

 
i. That is, A can take a zero value only if the real part of  

s lies between 0 and 1. The number of roots of the real part of the equation (t) between 0  
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and T is approximately equal to N(T)= 
 

 π
ln

 

 π
 

 

 π
       ，approximately to (

 

 π
ln

 

 π
 

 

 π
)(this result of Riemann's estimate of the number of zeros was not strictly proved until 

1859 by Mangoldt).This is because the value of the integral         (after omitting small  

quantities of order 
 

 
                         (Tln

 

 π
  )i. The value of this integral is  

equal to the number of roots of the equation in this region multiplied by 2πi(this is the 

application of the amplitude Angle principle).In fact, Riemann found that the number of real 

roots in this region is approximately equal to this number, and it is highly likely that all the roots 

are real. Riemann naturally hoped for a rigorous proof of this, but after some hasty and 

unsuccessful initial attempts, Riemann temporarily set aside the search for proof because it was 

not necessary for the purposes of Riemann's subsequent studies. What Riemann wrote down is 

the famous Riemann conjecture, the most famous conjecture in mathematics! 

According to Riemann's assumption in the paper : s=
 

 
+ti               then the Riemann 

conjecture is equivalent to that for ζ(s)=0, its complex roots s (except for negative even numbers) 

must all be complex numbers satisfying only s=
 

 
+ti                    

 

 
      

R and t≠0, and they all lie on the critical boundary of the vertical real number axis satisfying 

Re(s) 
 

 
. These complex roots s (except negative even numbers) are called nontrivial zeros of 

Riemannn ζ                                  functions. 

The study of the non-trivial zeros of the Riemann   function constitutes one of the most difficult 

subjects in modern mathematics. The Riemann conjecture that we are going to discuss is a 

conjecture about these nontrivial zeros. Here we first describe its content, and then 

describe its context. Riemann conjecture: All nontrivial zeros of the Riemann   function 

lie on the line Re(s)= 
 

 
 . In the study of the Riemann conjecture, mathematicians call the line 

Re(s)= 
 

 
 in the complex plane a critical boundary. Using this term, the Riemann conjecture can 

also be expressed as: all non-trivial zeros of the Riemann   function lie on the critical boundary. 

This is the content of the Riemann conjecture, which Riemann proposed in 1859 in his paper "On 

the Number of Prime Numbers Not Greater than  ." In its formulation, the Riemann conjecture 

appears to be a purely complex function proposition, but as we shall soon see, it is in fact a 

mysterious piece of music about the distribution of prime numbers. 

How can the distribution of nontrivial zeros of a function over a complex number field, the 

Riemann zeta function, which we sometimes refer to simply as zeros if there is no ambiguity, be 

related to the distribution of prime numbers in the seemingly unrelated natural numbers (which 

in this book refer to positive integers)? It starts with what's called the Euler product formula. We  

know that as early as the ancient Greeks, Euclid proved with a wonderful proof by contradiction 

that there are infinitely many prime numbers. With the deepening of the study of number  

(11) 
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theory, 

people are naturally more and more interested in the distribution of prime numbers on the set 

of natural numbers. In 1737, the mathematician Euler published a very important formula at the 

St. Petersburg Academy of Sciences in Russia, which laid the foundation for mathematicians to 

study the law of the distribution of prime numbers. This formula is the Euler product formula, 

which is     
 =          

  ,The sum on the left of this formula is performed on all  

natural numbers, and the continued product on the right is performed on all prime numbers. It 

can be shown that this formula holds for all complex numbers s with Re(s)>1. The left side of this 

formula is the series expression of the Riemann    function for Re(s)>1, which we have described 

above, and the right side is an expression purely concerning prime numbers (and containing all 

prime numbers), which is a sign of the relationship between the Riemann  function and the 

distribution of prime numbers. So what does this formula tell us about the distribution of prime 

numbers? How does the zero of the Riemann zeta function appear in this relation? 

Euler himself was the first to study the information contained in this formula. He noticed that at 

s=1, the left-hand side of the formula 

 

    

 

 

is a divergent series (this is a famous divergent series, called a harmonic series), which diverges 

logarithmically. None of this was new to Euler. To deal with the continued product on the right 

side of the formula, he took the logarithm of both sides of the formula, so that the continued 

product became a sum, from which he obtained: 

ln(    
 )=      

   

 
 

   

 
    , 

Or, rather, 

    
    lnln(N),  

This result, which diverges in the form of lnln (N), is another important research result on prime 

numbers since Euclid proved that there are infinitely many primes. It is also a novel proof of the 

proposition that there are infinitely many prime numbers (because if there are only finite 

numbers of prime numbers, then the sum has only a finite number and cannot diverge). But this 

new proof by Euler contains much more than Euclid's proof, because it shows that prime 

numbers are not only infinitely many, but that their distribution is much denser than that of 

many sequences that also contain infinitely many elements, such as { n } sequences (because the 

sum of the reciprocal convergences of the latter). 

Moreover, if we further note that the right end of     
    lnln(N) can be rewritten as an 

integral expression: 

lnln(N)  
   

     

 

 
d  ,  

By introducing a density function ρ( ) for the distribution of prime numbers, which gives the 

probability of finding prime numbers in the unit interval near  , the left end of 

    
    lnln(N) can also be rewritten as an integral expression: 

 

(12) 
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    d  , 

Comparing these two integral expressions, it is not difficult to guess that the distribution density  

of the prime numbers is ρ( )～1/ln  , so that the number of prime numbers within  , usually 

represented by π( ), is 

π( )~   ( ), 

among 

     = 
 

   
d  ,  

It's a logarithmic integral function.This result is the famous prime number theorem - although  

this crude reasoning does not constitute a proof of the prime number theorem. So this result 

that Euler discovered is a secret door to the prime number theorem. Unfortunately, Euler himself 

did not follow this line of thinking and missed this secret door, and the time for mathematicians 

to develop the prime number theorem was delayed by several decades. 

The credit for developing the prime number theorem eventually fell to two other 

mathematicians: the German Friedrich Gauss (1777-1855) and the French Adrien-Marie Legendre 

(1752-1833).Gauss's work on the distribution of prime numbers began between 1792 and 1793, 

when he was only fifteen years old. During that time, whenever he was "doing nothing," the 

precocious genius mathematician would pick a few natural number intervals of length 1,000, 

count the number of primes in these intervals, and compare them. After doing a lot of 

calculations and comparisons, Gauss discovered that the density of the prime distribution can be 

approximately described by the reciprocal of the logarithmic function, ρ( ) ~ 1/ln , which is the 

main content of the prime number theorem mentioned above. But Gauss did not publish the 

results. Gauss was a mathematician who pursued perfection, and he rarely published results that 

he thought were not perfect, and his mathematical ideas and inspiration were like a vast and 

surging river, which often made him start a new research topic before he had time to beautify a 

research result. As a result, Gauss did far more mathematical research in his lifetime than he 

officially published. On the other hand, Gauss often revealed some of his unpublished work 

through other means, such as letters, which caused considerable embarrassment to some of his 

contemporaries. One of the hardest hit was Legendre. The French mathematician was the first to 

publish the least square method for linear fitting in 1806, but Gauss mentioned in a work 

published in 1809 that he had discovered the same method in 1794 (that is, 12 years before 

Legendre), much to Legendre's dismay. 

As the saying goes, friends don't get together. In the formulation of the prime number theorem, 

poor Legendre once again had the misfortune to collide with the mathematical giant Gauss. 

Legendre published his research on the distribution of prime numbers in 1798, which is the 

earliest document on the theorem of prime numbers in the history of mathematics. Since Gauss 

did not publish his results, Legendre was the rightful author of the prime number theorem. 

Legendre maintained this priority for a total of 51 years. But in 1849, Gauss, in a letter to the 

German astronomer Johann Encke (1791-1865), mentioned his work on the distribution of prime 

numbers in 1792-93, thus taking the half-century-old priority out of Legendre's pocket. On top of 

his already bulging pockets. 

Fortunately, by the time Gauss wrote to Enke, Legendre had been dead for 16 years, and he had  
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avoided another cruel blow in the most helpless way. 

Both Gauss's and Legendre's studies of the distribution of prime numbers were presented in the 

form of guesses (Legendre's study had a certain element of inference, but it was still far from 

proving). Therefore, to be sure, the prime number theorem was at that time only a conjecture, 

that is, the prime number conjecture, and what we mean by the formulation of the prime 

number theorem is only the formulation of the prime number conjecture. The mathematical 

proof of the prime number theorem was not given until a century later, in 1896, by the French 

mathematician Jacques Hadamard (1865-1963) and the Belgian mathematician Charlesde la  

Vallee-Poussin (1866-1962), independently of each other. Their proof has a deep connection 

with the Riemann conjecture, and the timing and occasion of Hadamard's proof are dramatic, as 

we shall describe later. 

The prime number theorem is concise and elegant, but its description of the distribution of 

prime numbers is still relatively rough, it gives only an asymptotic form of the distribution of 

prime numbers - the distribution of primes less than N as N approaches infinity. From the 

distribution of prime numbers and the prime number theorem, we can also see that there is a 

deviation between π( ) and Li( ), and the absolute value of this deviation seems to continue to 

increase with the increase of   (fortunately, the increase of this deviation is still negligible 

compared to the increase of π( ) and Li( ) itself - otherwise the prime number theorem would 

not hold).Is there a formula that describes the distribution of prime numbers more accurately 

than the prime number theorem? This was the question that Riemann set out to answer in 1859. 

That year, five years after Gauss's death, Riemann, 32, succeeded the German mathematician 

Johann Dirichlet (1805-1859) as Gauss's successor at the University of Gottingen. On 11 August 

of the same year, he was elected a corresponding member of the Academy of Sciences in Berlin. 

In return for this high honor, Riemann submitted a paper to the Berlin Academy of Sciences - a 

short eight-page paper entitled: On the Number of primes Less than a Given Value. It was this 

paper that deciphered the information contained in Euler's product formula, and it was this 

paper that linked the distribution of zeros of the Riemann zeta function to the distribution of 

prime numbers. 
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(The above diagram shows the distribution of prime numbers and the prime number theorem). 

 

This paper pushed the study of the distribution of prime numbers to a magnificent peak, and left 

a great mystery for later generations of mathematicians. 

According to Euler's formula       
 

  
 
   =  

 

     
 
    , this is the basis for studying the 

distribution of prime numbers. Riemann's research also takes this formula as a starting point. In 

order to eliminate the continued product on the right side of this formula, Euler took the 

logarithm of both sides of the formula, and Riemann did the same (even the product is really  

something that one wants to divide quickly), thus obtaining ln                 =  
   

   , 

but after this step, Riemann and euler parted ways: euler proved that sounded after prime 

Numbers have an infinite number not quit; Riemann, on the other hand, continued to walk along 

a thorny road and came out of a new world of prime number research. 

It can be shown that the double summation to the right of the given lnζ            

   )=pnp sn is absolutely converges in the region Re(s)>1 on the complex plane, and can be 

rewritten as the Stielchers integral: 

ln    =    

 
d     , 

Where J( ) is a special step function that takes a value of zero at  =0, increases by 1 for every 

prime passed, and 1/2 for every square passed,... Every time a prime number is raised to the 

NTH power, it increases by 1/n... And at J( ) discontinuous points (i.e.,   equals a prime 

number, the square of a prime number,... Prime number to the NTH power... The function value 

is defined by     =
 

 
[J(  )+ J(  )]. Obviously, such a step function can be expressed by the prime 

distribution function π(   as: 

    = 
    

 
  

   . 

The above Stilchers integral can be obtained by performing an integration by parts: 

ln           
 

 
     d . 

The left side of this formula is the natural log of the Riemann zeta function, and the right side is 

the integral of J( ), a function directly related to the prime distribution function π( ), which can 

be regarded as the integral form of the Euler product formula. The method of this result differs 

from that of Riemann, who did not have Stieltjes integrals when he published his paper - Dutch 

mathematician Thomas Stieltjes (1856-1894) was only three years old at thetime. If the 

traditional Euler product formula is only a vague sign of the connection between the Riemann 

zeta function and the distribution of prime numbers, then the connection between the two is 

unmistakable and completely quantitative in the integral form of the Euler product formula 

described above. The first thing to do is obviously solve for J( ) from the integral above, and 

Riemann solved for J( )： 
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  dz, 

Where a is a real number greater than 1. The above integral is a conditionally convergent integral, 

which is precisely defined as the integral from a-ib to a+ib (where b is a positive real number) 

and then taking the limit of b→ . Riemann says this result is completely universal. The complete 

result, which actually matched Riemann's universal result, was not published until 40 years later 

by the Finnish mathematician Robert Mellin (1854-1933), now known as the Mellin transform. 

Such a statement, written down by Riemann, but which took the mathematical community tens 

or even hundreds of years to prove, has several other points in Riemann's paper. This is one of 

the most striking features of Riemann's paper: it has a lofty vision that far surpasses other  

contemporary mathematical literature. Its highly condensed sentences contain extremely rich 

mathematical results behind, so that later mathematicians into a long reflection. Even more 

admirably, some of the calculations and proofs in Riemann's manuscripts, even when they were 

compiled decades later, were often far beyond the level of the mathematical community at the 

time. There is strong reason to believe that what Riemann says in his paper, in a declarative 

rather than a speculative tone, has a deep calculus and proof background, whether or not he 

gives evidence. 

Ok, now back to the expression for J( ), which gives the exact relationship between J( ) and the 

Riemann   function. In other words, once  (s) is known, J( ) can in principle be calculated from 

this expression. Knowing J( ), the next obvious step is to compute π( ). This is not difficult, since 

the relationship between J( ) and π( ) mentioned above can be inversely solved for π( ) and J( ) 

by a so-called Mobius inversion, which results in: 

π( )= 
    

  J( 
 

 ), 

Here μ(n) is called the Mobius function and takes the following values: 

●μ(1)=1; 

●μ(n)=0(If n is divisible by the square of any prime number); 

●μ(n)=-1(If n is the product of an odd number of different prime number); 

●μ(n)=1(If n is the product of an even number of different prime numbers). 

So knowing J( ) allows you to calculate π( ), the distribution function for prime numbers. 

Connecting these steps together, we see that from  (s) to J( ), and from J( ) to π( ), the secret 

of the distribution of prime numbers is fully and quantitatively contained in the Riemann zeta 

function. This is the basic idea of Riemann's study of the distribution of prime numbers. 

There is a deep correlation between the distribution of prime numbers and the Riemann zeta 

function. At the heart of this relation is the expression for the integral of J( ) :      

 

 π 
 

  ζ   

 

    

    
  , which is also extremely complex due to the extremely complex nature of the 

Riemann  function. To investigate this integral further, Riemann introduced an auxiliary function 

ξ(s): ξ(s)=   
 

 
   (s-1)  

 

  (s). 

But it's better to define (s) as: (s)= 
 

 
s(s 1)   

 

   
 

 
     .  
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Because the factor (s1) elimination first-order pole of ( ) at  1, the factor s elimination pole 

of (
 

 
) at  =0, and  (s)'s trivial zeros -2, -4, -6,... elimination the remaining poles of (

 

 
), so ( ) 

is an integral function that is zero only at the nonnormal zero point of  ( ). 

What are the benefits of introducing such an auxiliary function? First of all, by type ξ(s)=   
 

 
 

  (s-1)  
 

  (s)define the auxiliary function of ξ(s) can be proved to be the whole function,  

namely on all s   indicates in the complex plane up the point of analytic function. Such a 

function would be much simpler in nature than the Riemann zeta function, and much easier to 

process. In fact, of all non-mediocre complex functions, the integral function is the widest 

analytic region (the analytic region is larger than that, i.e. there is only one kind of function that 

includes s= , and that is the constant function). This is one of the benefits of introducing ξ(s). 

Secondly, using this auxiliary function, the algebraic relation  

ζ( )=      sin(
  

 
)Γ(1-  )ζ(1-  ) s C and    )(Formula 7) for the Riemannian zeta function 

obtained above can be expressed as a simple form symmetric to s and 1-s: 

ξ(s)=ξ(1-s).This is the second advantage of introducing ξ(s). 

Furthermore, it is not difficult to see from the definition ξ(s) that the zero of ξ(s) must be the zero 

of  (s). On the other hand, the zeros of ζ(s) are zeros of ξ(s), except for the trivial zero s=-2n (n is 

a natural number), which happens to be the pole of Γ(s/2+1) and therefore not the zeros of ξ(s), 

and thus the zeros of ξ(s) coincide with the nontrivial zeros of the Riemann zeta function. In 

other words, ξ(s) separates the nontrivial zeros of the Riemann zeta function from the total zeros. 

This is the third advantage of introducing ξ(s). 

Here it is necessary to mention a simple property of the Riemann zeta function, namely that ζ(s) 

has no zero in the region Re(s)>1. If there is no zero, of course, there is no nontrivial zero, and 

the latter coincides with the zero of ξ(s), so the above property shows that ξ(s) has no zero in 

the region of Re(s)>1; And since ξ(s)=ξ(1-s), ξ(s) also has no zero in the region Re(s)<0. This 

shows that all zeros of ξ(s) , and thus all non-trivial zeros of the Riemann ζ function - lie in the 

region 0≤Re(s)≤1. An important result about the distribution of zeros of the Riemann ζ function 

is that all nontrivial zeros of the Riemann ζ function are located in the region 0≤Re(s)≤1 in the 

complex plane. 

All right, now back to Riemann's paper. After introducing ξ(s), Riemann decomposes lnξ(s) with 

the zero of ξ(s) : 

(17) 



The proof of the Riemann conjecture 

 

lnζ(s)=lnξ(0)       
 

ρ
  -lnΓ(s/2+1)+

 

 
lnπ-ln(s-1),  

Where ρ is the zero of ξ(s)(that is, the nontrivial zero of the Riemann ζ function). The summation 

in the resolution is performed on all ρ and in such a way that ρ is first paired with 1-ρ. Since 

ξ(s)=ξ(1-s), zeros always occur as ρ paired with 1-ρ. This is important because the series is 

conditionally convergent, but absolutely convergent after pairing ρ with 1-ρ. This factorization 

can also be written as the equivalent continued product relation: 

ξ(s)=ξ(0)    
 

 
  .Such a continued product relation is obvious for finite polynomials(as long 

as the condition ξ(0)≠0 is satisfied), but is by no means obvious for infinite products, which  

depend on the fact that ξ(s) is an integral function. Its complete proof was not given until 1893 

by Hadamard in his systematic study of infinite product expressions of integral functions. 

Hadamard's proof of this relationship was the first important advance in the field after Riemann's 

paper. 

It is obvious that the convergence of the above series decomposition is closely related to the 

zero distribution of ξ(s). For this reason, Riemann studied the zero distribution of ξ(s) and 

proposed three important propositions: 

Proposition 1: in 0＜Im(s)＜T area, the number of zero of ξ(s) is about (T/2π)ln(T/2π)-(T/2π). 

Proposition 2: in 0＜Im(s)＜T area, factor ξ(s) is located in the Re(s)=1/2 of the number of zero 

point on the line is about (T/2π)ln(T/2π)-(T/2π). 

Proposition 3: ξ(s) all zeros lie on the line Re(s)=1/2. (I will prove this proposition strictly later.) 

Of these three statements, the first is needed to prove the convergence of the series 

decomposition (although Riemann's statement based on this statement is too brief to constitute 

a proof). Riemann's proof of this statement is that the number of zeros in ξ(s) in the region 

0<Im(s)<T can be obtained by integrating dξ(s)/2πiξ(s) along the boundary of the rectangular 

region {0<Re(s)<1,0<Im(s)<T}. For Riemann, this small integral was not a big deal, so he simply 

wrote down the result (i.e., proposition 1). Riemann also gave this result a relative error of 1/T. 

But Riemann obviously greatly overestimated the level of his audience, because it was not until 

1905, 46 years later, that the result he wrote was proved by the German mathematician Hansvon 

Mangoldt (1854-1925) (hence the Riemann-Mangolt formula). In addition to completing a small 

proof in the Riemann paper, it also established that there are infinitely many non-trivial zeros of 

the Riemann zeta function. 

Comparing Riemann's second statement with the previous one shows that this second statement 

actually shows that nearly all zeros of ξ(s) - and thus almost all non-trivial zeros of the Riemann  

  function - lie on the line Re(s)=1/2. This is a surprising proposition, because it is much stronger 

than anything that has been achieved so far - that is, in the century and a half since Riemann's 

paper was published - on the Riemann conjecture! And the tone in which Riemann describes this  
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proposition is completely certain, which seems to suggest that when he wrote it down he 

thought he had a proof for it. Unfortunately, he does not mention the details of the proof at all, 

so how on earth does he prove this proposition? Is his proof right or wrong? None of us will 

know. In addition to his 1859 paper, Riemann had mentioned this proposition in a letter, saying 

that it could be derived from a new expression of the ξ function, but that he had not yet reduced 

it to a point where it could be published. This is all that posterity has learned about this 

proposition from the fragments left by Riemann. 

Riemann's three propositions are like three rising mountains, each taller than the last and each 

more difficult to climb. His first proposition kept mathematics waiting for 46 years; His second 

proposition has kept mathematics waiting for more than a century and a half; And his third 

proposition must have been seen by everyone, it is the famous Riemann conjecture! Today, the 

Riemann conjecture has been conquered by me, and it really does hold true, and I'm going to  

prove it rigorously later. 

Riemann, who used to make theorems go up in smoke in conversation and laughter, finally 

changed his lighthearted style and adopted an uncertain tone like "very likely" when it came to 

expressing this third proposition, the Riemann conjecture. Riemann also wrote: "We would 

certainly like to have a rigorous proof of this, but after some quick and futile attempts I have set 

aside the search for such a proof, as it is not necessary for the immediate object of my study." 

Riemann put the proof aside, and the heart strings of the whole mathematical world were lifted. 

The validity of the Riemann conjecture is not necessary for Riemann's "immediate goal" of 

proving the convergence of the series factorization of lnξ(s) (since the first statement above is 

sufficient), but it is of vital importance to the mathematical community today. A rough count 

shows that there are more than a thousand mathematical statements or "theorems" in the 

mathematical literature today that presuppose the existence of the Riemann conjecture (or its 

generalized form). The fate of the Riemann conjecture is bound up with the "immediate goal" of 

all the mathematicians who developed these propositions or "theorems," and through those 

propositions or "theorems," it is inextricably linked to many branches of mathematics. On the 

other hand, Riemann's way of expressing the Riemann conjecture also shows from one side that 

Riemann distinguishes whether the propositions he writes are speculative or positive. 

Now let's go back to the calculation for J( ). Using the definition ξ(s) and its decomposition, lnζ(s) 
can be expressed as: 

lnζ(s)=lnξ(0)       
 

ρ
  -lnΓ(s/2+1)+

 

 
lnπ-ln(s-1); 

The purpose of this decomposition of lnζ(s) is to calculate J( ). However, every single integral 

obtained by directly substituting this resolution into the integral expression of J( ) is not 

convergent, so Riemann first integrated J( ) by parts before substituting, thus obtaining: 

     
 

   
 

      

 

    

    
  dz,  

By substituting the resolution of lnζ(s) into the above formula, the individual items can be 

multiplied separately. The following table shows the terms in the lnζ(s) decomposition and their 

corresponding integration results: 
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Decomposition of lnζ(s)            The corresponding integral result 

 
 

Among the above results, the integration of the series  

 

      
 

 
 

 

 

is the most complicated, and the result 

is the result of integrating the series term by term. This result  

-                            

is conditionally convergent, Not only must ρ be paired with 1-ρ, as in the series expression for 

lnξ(s), but it must also sum Im(ρ) from smallest to largest. In giving this result, Riemann admitted 

that the validity of term-by-term integrals depended on a "more rigorous" discussion of the ξ 

function, but stated that it was easy to prove. This "easily provable" result was proved 36 years 

later by Mangolt in 1895. It is also worth pointing out that when Riemann integrates the 

individual items of this order, there is an implicit requirement that for all zeros ρ, 0<Re(ρ)<1, 

which is better than 0≤Re(ρ )  1, which we mentioned earlier. This seemingly minor 

reinforcement (which is merely the elimination of the equal sign) is in fact an important 

consequence of number theory, which I shall prove later. Riemann's failure not only to prove this 

result, but also to imply it, should be regarded as a flaw in his paper. This flaw is also present in 

Mangolt's proof. 
However, this loophole is only a loophole in the argument method, which can be filled, and the 

result of the argument itself does not depend on such a condition as 0<Re(ρ)<1.From these 

results Riemann obtained the explicit form of J( ): 

J( )=Li( )-                            
  

          

  

 
 -ln2, 
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Li( )= 
  

   

 

 
      ， 

This result, together with the relationship between π( ) and J( ): 

π( )= 
    

  J( 
 

 ), 

This is the complete expression of the distribution of prime numbers obtained by Riemann, and 

is the main result of his 1859 paper. Riemann's result gives an exact expression for the 

distribution of prime numbers, the first term of which (given by the first term of J( ) and π( ) 

together) is precisely the result Li( ) predicted by the then-unproven prime number theorem. 

Since Riemann has given an exact expression for the distribution of prime numbers, he has not 

been able to directly prove a prime number theorem that is much coarser than this result. Why? 

The mystery lies in the Riemann zeta function of nontrivial, zero is J( ) the expression of those 

items related to the zero point, namely -                          . In the expression for J( ), 

all the other terms are quite simple and relatively smooth, so that the careful laws of the 

distribution of prime numbers - those careful, dense fluctuations - are chiefly contained in this 

series relating to the nontrivial zeros of the Riemann ζ function. As mentioned above, the series 

is conditionally convergent, that is, its convergence depends on the cancellation of each other by  

the items participating in the summation, that is, the contributions from the different zeros. 

These contributions from the different zeros are like a zigzagging dance, guiding the careful 

distribution of prime numbers. And the exuberance of the dance-the way and degree to which 

these contributions cancel each other-determines how close the actual distribution of prime 

numbers is to the asymptotic distribution given by the prime number theorem. All of this 

depends quantitatively on the distribution of nontrivial zeros of the Riemann ζ function. The 

precise expression given by Riemann for the distribution of prime numbers did not immediately 

make a direct proof of the prime number theorem possible precisely because so little was known 

about the distribution of the non-trivial zeros of the Riemann ζ function (in fact, what was known 

then was 0≤Re(ρ≤1), as we have already mentioned above). Those contributions from zeros 

cannot be efficiently estimated, and hence the deviation from the prime number theorem to the 

actual distribution of prime numbers, which is the exact expression given by Riemann. 

Then what effect does the distribution of nontrivial zeros of the Riemann ζ function have on the 

deviation between the prime number theorem and the actual distribution of prime numbers? 

Mathematicians have achieved a series of results on this question. The proof of the prime 

number theorem is itself one of them. After the proof of the prime number theorem, in 1901, 

the Swedish mathematician von Koch (1870-1924) further proved (this is an example of the 

mathematical statement that presupposes the existence of the Riemann conjecture as we 

mentioned earlier) that if the Riemann conjecture is true, Then the absolute deviation between 

the prime number theorem and the actual distribution of prime numbers is O( 
 

 ln ). The model 

of Li(  )with the increaseof         /ln  increases, so any pair of nontrivial zero ρ and 1-ρ 

asymptotic contributions given by Li(  )+Li(    ), at least, is Li( 
 

 ）～ 
 

 /ln . This result 

implies that the deviation between the prime number theorem and the actual distribution of  
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prime numbers cannot be less than Li( 
 

 ). In fact, the British mathematician John Littlewood  

(1885-1977) proved that the prime number theorem differs from the actual distribution of prime 

numbers by at least Li( 
 

 )  lnlnln . This is very close to Koch's result (the main term is  
 

 . 

Therefore, the Riemann conjecture holds that the distribution of prime numbers is relatively 

ordered; Conversely, if the Riemann conjecture does not holdif a pair of nontrivial zeros ρ and 

1-ρ of the Riemann ζ function deviate from the critical boundary (i.e. Re(ρ)>1/2 or Re(1-ρ)>1/2), 

then the principal term of their corresponding asymptotic contribution will be greater than  
 

 , 

and the deviation between the prime number theorem and the actual distribution of prime 

numbers will be greater.Thus, the study of the Riemann conjecture allowed mathematicians to 

see the strange laws and orders behind the seemingly random distribution of prime 

numbers.This law and order is reflected in the distribution of nontrivial zeros of the Riemann ζ 

function. 

In 1885, a young Dutch mathematician named Thomas Stieltjes (1856-1894) publisheda brief at 

the Paris Academy of Sciences in which he claimed to have proved the following:  

M(N)         =O( 
 

 ), 

Here μ(n) is the Mobius function we mentioned earlier, and the function M(N) given by its 

summation is called the Mertens function. The statement seems to be a good one: the Mobius 

function μ(n) is an integer function whose definition is trivial but not complicated, and the 

Meertens function M(N) is just the sum of μ(n), so proving that it grows by O( 
 

 ) does not seem 

too difficult. But this humble proposition is actually a stronger result than the Riemann 

conjecture! In other words, proving the above statement is the same as proving the Riemann 

conjecture (but the reverse is not true, disproving the above statement is not the same as 

disproving the Riemann conjecture). So Stielches' presentation meant claiming to have proved 

the Riemann conjecture. Although the Riemann conjecture was not nearly as hot as it is today, 

and news did not spread nearly as fast as it does today, someone proved that the Riemann 

conjecture was still a big deal. If nothing else, proving the Riemann conjecture would mean 

proving the prime number theorem, which has plagued mathematicians for nearly a century 

since Gauss et al. proposed it, but has yet to be proved. At about the same time as his 

presentation at the Paris Academy of Sciences, Stilchers sent a letter repeating this statement to 

Charles Hermite (1822-1901), a major figure in French mathematics at the time. But Mr. Stilchers 

offered no proof, either in the briefing or in the letter, saying his proof was too complicated and 

needed to be simplified. Today, it would be difficult for a young mathematician to write such a 

blank check and cause any reaction in the mathematical community. But things were different in 

the 19th century, when it was common in academia for scientists to produce results without 

publishing (or publishing only one result), and Gauss and Riemann were among them. So to claim 

to have proved the Riemann conjecture, as Stielches did, without giving a concrete proof, was 

not unusual at the time. The academic response somewhat resembles the presumption of 

innocence in modern Western courts, which tend to believe claims until there is evidence to the 

contrary. 

But to believe is to believe, of course, mathematics cannot be separated from proof, and a proof  
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must be published in detail and tested in order to obtain final recognition. Concrete proof was 

therefore expected of Stilchers, and the most earnest of all was expected of Hermite, who 

received the letter from Stilchers. Hermite corresponded with Stielches from 1882 until his 

untimely death 12 years later. During that time, the two exchanged 432 letters. Hermite was one 

of the leading theorists of complex function theory at the time, and his relationship with 

Stielches is one of the more curious phenomena in the history of mathematics. At the time of his 

correspondence with Hermite, Stillches was only an assistant at the Leiden Observatory, and 

even this assistant position had been secured by the patronage of his father (Stillches's father 

was a prominent Dutch engineer and member of Parliament). Before that, he had failed three 

exams in college. It was not easy to "pull the strings, through the back door" into the observatory, 

but Stielches was doing astronomical observation work, but his heart was thinking about 

mathematics, and wrote a letter to Hermet. It would have been difficult, if not impossible, for 

Stielches, who had no degree and no reputation at the time, to attract the attention of a 

mathematical elder like Hermite. But Hermet was a devout Catholic who happened to have a 

peculiar belief in mathematics, believing that it existed as something supernatural and that 

ordinary mathematicians only occasionally had the opportunity to understand its mysteries. So 

what kind of person has a better chance of understanding the mysteries of mathematics than an 

"ordinary mathematician"? Hermite, with his mystic vision, found one, that is, the unknown 

stargazer Stielches. Hermite believed that Stielches had a God-given eye for the mysteries of 

mathematics, and he trusted it. 

In his correspondence with Stielches, there was even such extreme approval as "you are always 

right and I am always wrong." Under the influence of this peculiar belief and the mathematical  

atmosphere of the nineteenth century, Hermitt believed Stielches's statement. But no matter 

how much Hermite urged him, Stilchez never published his full proof. Five years have passed, 

and Hermite is still "infatuated" with Stielches, and he decides to "entice" the other side. At 

Hermite's suggestion, the French Academy of Sciences set the theme of the 1890 Prize in 

Mathematics as "Determining the number of primes less than a given value." This topic must 

have a sense of deja vu to you, and yes, it is very similar to the title of the Riemann paper we 

have just introduced. In fact, the purpose of the prize was to seek proof of certain propositions 

mentioned in Riemann's paper but not proved (this was explicitly stated in the request). As for 

the statement itself, it can be either the Riemann conjecture or some other proposition, 

provided that its proof helps to "determine the number of primes less than a given value." With 

such a flexible requirement, prizes can be won not only for proving the Riemann conjecture, but 

also for proving results that are much weaker than the Riemann conjecture, such as the prime 

number theorem. In Hermite's view, the mathematical prize would inevitably go to Stilchers, 

because even if Stilchers' proof of the Riemann conjecture remained "too complex and needed 

to be simplified," he could still claim the prize by publishing partial or weaker results. 

Unfortunately, by the time the prize deadline expired, Stilchez was still silent. 

But Hermite was not entirely disappointed, because his student Adama submitted a paper and 

won the grand prize - after all, the fat did not flow to outsiders. The main content of Hadamard's 

prize-winning paper is the proof of the continued product expression of the auxiliary function ξ(s) 

in Riemann's paper mentioned above. This proof, while not only failing to prove the Riemann 

conjecture and even falling some way short of proving the prime number theorem, is still a grand 

prize. A few years later, Hadamard continued his efforts and finally proved the prime number  
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theorem in one fell fell. Hermite's long line failed to catch Stielches and Riemann conjectures as  

he wished, but it did catch Hadamard and the prime number theorem, and it was quite lucrative 

(the proof of the prime number theorem was actually more desirable than the proof of the 

Riemann conjecture at the time). 

What about Stielches? Readers who have never heard of the name might think that he is a 

pompous and incompetent guy, but he is not. Stielches has made important contributions to 

many aspects of analysis and number theory. His research on continued fractions earned him the 

reputation of "Father of continued fraction analysis". The Riemann-Stieltjes integral, which bears 

his name, links him to Riemann (although there is no actual connection between the two 

-Stieltjes was only 10 years old when Riemann died). But his statement about the Riemann 

conjecture did not win him permanent suspense. It is now generally accepted by mathematicians 

that Stilchers' claim that M(N)=O( 
 

 ) is false, if at all. Moreover, the validity of the proposition 

M(N)=O( 
 

 ) itself has been increasingly questioned. 

Since Gauss and Legendre put forward the prime number theorem in the form of empirical 

formula, many mathematicians have done research on it. One of the more important results was 

made by the Russian mathematician Pafnuty Chebyshev (1821-1894). As early as 1850, 

Chebyshev proved that for a sufficiently large  , the relative error between the prime 

distribution π( ) and the distribution Li( ) given by the prime number theorem cannot exceed 

1%. Before Riemann's work in 1859, the study of the distribution of prime numbers was mainly 

limited to real analysis. In this sense, even leaving aside specific results, Riemann's work on 

complex functions was a major breakthrough in the study of the distribution of prime numbers in  

terms of its method alone.This breakthrough paved the way for the final proof of the prime 

number theorem. 

As mentioned earlier, the reason why Riemann's study of the distribution of prime numbers did 

not lead directly to the proof of the prime number theorem is that the distribution of the 

non-trivial zeros of the Riemann   function is still very little known.So, in order to prove the 

prime number theorem, how much do we need to know about the distribution of nontrivial 

zeros of the Riemann   function? The answer to this question became clear in 1895 with 

Mangolt's in-depth study of Riemann's papers.Mangolt, whose work we have already mentioned, 

proved Riemann's formula for J( ).But the value of Mangolt's work goes much deeper than just 

proving Riemann's formula for J( ). 

As mentioned earlier, the reason why Riemann's study of the distribution of prime numbers did 

not lead directly to the proof of the prime number theorem is that so littleis known about the 

distribution of nontrivial zeros of the Riemann zeta function. So, in order to prove the prime 

number theorem, how much do we need to know about the distribution of nontrivial zeros of 

the Riemann zeta function? The answer to this question became clear in 1895 with Mangolt's 

in-depth study of Riemann's papers. Mangolt, whose work we have already mentioned, proved 

Riemann's formula for J( ). But the value of Mangolt's work goes much deeper than just proving 

Riemann's formula for J( ). 

In his research, Mangolt used an auxiliary function Ψ( ) that is simpler and more efficient than 

Riemann's J( ), which is defined as:  
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Ψ( )=         , 

Where Λ(n) is called the von Mangoldt function, which takes the value ln(p) for n=pk(p is a prime 

number, k is a positive integer); For other n, the value is 0. Applying Ψ( ), Mangolt proved a 

formula that is essentially equivalent to Riemann's formula for J( ): 

Ψ( )=  - 
  

  -
 

 
ln(1-   )-ln(2 ), 

The sum of ρ, like the sum in Riemann's J( ), pairs ρ with 1-ρ first and then Im(ρ) in the order 

from smallest to largest. 

Obviously, Mangolt's Ψ( ) expression is much simpler than Riemann's J( ). Nowadays, Ψ( ) has 

almost completely replaced Riemann's J( ) in the study of analytic number theory. Another 

major benefit of the introduction of Ψ( ) is that several years earlier, the aforementioned 

Chebyshev had already proved that the prime number theorem π( ) ~ Li( ) was equivalent to 

Ψ( ) ~  . In honor of Chebyshev's work, the Mangolt function is also known as the second 

Chebyshev function. 

Linking this to Mangolt's formula concerning Ψ( ), which is essentially equivalent to Riemann's 

formula concerning J( ), it is not difficult to see that the prime number theorem holds: 

                =0,this condition suggests that we consider the case where      

approaches zero as  → . For      to approach zero at  → , Re( ) must be less than 1. In 

other words, the Riemann zeta function must have no nontrivial zeros on the line Re(s)=1. This is 

what we need to know about the distribution of nontrivial zeros of the Riemann   function in 

order to prove the prime number theorem. 

Since the nontrivial zeros of the Riemann  function occur as   paired with 1- , this information 

is equivalent to 0<Re(s)<1. 

As mentioned earlier, all non-trivial zeros of the Riemann zeta function lie in the region 0≤Re(s)

≤1. Thus, in order to prove the prime number theorem, we needed to know slightly more about 

the distribution of nontrivial zeros of the Riemann zeta function than we knew (and was known 

to mathematicians at the time) (but still much less than the Riemann conjecture required). Thus, 

after the remarkable efforts of Chebyshev,Riemann, Hadamard, and Mangott, we are at last only 

one small step away from the proof of the prime number theorem: the removal of the little 

equal sign from the known law of the distribution of zeros. Although this small step is by no 

means easy, ithas been difficult to climb the Riemann Peak for more than 30 years, and 

mathematicians have waited for a century for the arrival of the complete proof of the prime 

number theorem. (Note; In 1896, the year after Mangolt's results were published, Hadamard and 

Posen independently gave proof of this last small step almost simultaneously, thus fulfilling one  

of the great ambitions of mathematics since Gauss. By then Stilchez had been dead for two 

years. 
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After the proof of the prime number theorem, the understanding of the distribution of 

non-trivial zeros of the Riemann   function is further advanced, that is, it is proved that all 

non-trivial zeros of the Riemann   function are located in the region of 0<Re(s)<1 on the complex 

plane. In the study of the Riemann   conjecture, mathematicians refer to this region as the 

critical strip. 

The proof of the prime number theorem - especially in a way so closely related to Riemann's 

paper - led the mathematical community to pay more attention to the Riemann conjecture. Four 

years later, on a summer day in 1900, more than two hundred of the best mathematicians of the 

day gathered in Paris, and a thirty-eight-year-old German mathematician took the podium and 

gave a lecture that will go down in the annals of mathematics. The title of the lecture was 

Mathematical Problems, and the speaker's name was David Hilbert (1862-1943), who happened 

to be from the star-studded University of Gottingen, the academic home of Gauss and Riemann. 

He is the great successor of the mathematical spirit of Gottingen, a mathematical giant as 

famous as Gauss and Riemann. In his speech, Hilbert listed 23 mathematical problems that had a 

profound impact on later generations, and the Riemann conjecture was listed as part of the 

eighth problem, which has since become one of the problems that the entire mathematical 

community has focused on. 

The curtain of mathematics in the 20th century opened slowly in the sound of Hilbert's speech, 

and Riemann conjecture ushered in a new journey of one hundred years. 

Let's call the prime counting function π         , the name of this function has nothing to do 

with PI. According to the prime number theorem,      
 

   
      .The number of primes 

less than or equal to 1 is 1, the number of primes other than 1 is 0,so        The primes less 

than or equal to 2 are 1 and 2, the number of primes other than 1 is 1,so 

      ,                                                                       

                    so        The primes less than or equal to 4 are 1, 2, 3, and the number of 

primes other than 1 is 2,so       .The primes less than or equal to 5 are 1, 2, 3,5, and the 

number of primes other than 1 is 3,so       .So       ，      ，       ，

       ， … , and so on. If we get a simple expression to calculate the prime number 

counting function, it will lead to amazing results, which will have great significance for the 

theory and application of mathematical distribution and the development of the 

mathematical discipline. 

Riemann improved the prime counting function, and the prime counting function Riemann 

obtained was called             The relationship between            and       

 

   
       is as follows: 
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 )-… 

            ,  

The relationship between            and                   is as follows: 
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ln    =           

 
d ,μ(n) is called the Mobius function.  

The Mobius function μ(n) has only three values, which are 0 and plus or minus 1, if n is ok 

Divisible by the square of any prime number, that is, an exponent of one or more prime factors 

other than 1 in the prime factorization of n. If the power is raised to the second or higher power, 

then μ(n)=0. If n is not divisible by the square of any prime number, that is to say, the exponent 

of any prime factor other than 1 in the prime factorization of n has the degree 1, then let's count 

the number of prime factors. If there are an even number of prime factors, then μ(n)= 1. If the 

number of prime factors is odd, then μ(n)=-1. This also includes the case of n=1, since 1 has no 

prime factors other than 1, then the number of prime factors of 1 other than 1 is 0, and 0 counts 

as an even number, so μ(1)=1. In the above expansion, as n       increases, 
 

 
       

becomes smaller and smaller,  
 

        also gets smaller and smaller, The n   

Z+         th term is going to get smaller and smaller. It shows that the largest 

contribution to the value of π( ) is the first term J( ). 

Now let's look at the following formula from Riemann: 

       ( )-        
 + 

  

           
    

  

 
      , among，Li( )= 

  

   

 

 
      , J( ) can 

also be described as: 

     
 

   
 

      

 

    

    
  dz,J( ) is called a step function, it equals zero where   equals zero, 

that is, J(0)=0, and then as the value of   increases, every time it passes through a prime number 

(such as 2,3,5,...). The value of J( ) increases by 1. Every time it square a prime number (4,9,25), 

the value of J( ) increases by 
 

 
. Every time it pass through the third square of a prime number 

(such as 8,9,25,...) The value of J( ) increases by 1/3. Every time it pass 4 squares of a prime 

number (say, 16,81,256,625,...) , the value of J( ) increases by 1/4. And so on,every time it 

passes a prime number to        ，                         , the value of J( ) 

increases 
 

 
               .You can think of it as that every time it passes a prime 

number to        ，                         , J( ) increases  

 

 
                                                                                       

         If you look at the right-hand side of the equation, the first term is called the 

logarithmic integral function        
  

   

 

 
      , When   is sufficiently large, 

      
 

   
      ,            

 

   
                               .Let's look at the  
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second item   (  )     ，    ,ρ                                                  

         is called the nontrivial zero of the                               function by 

Riemann. ρ                 ρ  σ    σ          On the real number line, the 

Riemann                                   function has no zeros except for negative 

even numbers, So   is definitely not a real number other than a negative even number, so 

                                     is definitely not a real number other than a 

negative even numberas also. So how do we compute   (  )                

              Z+? Just extend the domain resolution of Li( )=0 dtlnt  R+ to all complex 

numbers except divided by 1.Riemann proved that the non-trivial zero ρ  of the 

Riemann                                 function must satisfy 0≤Re(ρ)≤1. The 

vertical strip of width 1 on the complex plane is called the critical strip. and the line 

perpendicular to the real number axis satisfying Re(s)  
 

 
                    

       Z+ is called the critical boundary, that is, the center line of the critical band. Riemann 

guessed that the non-trivial zeros of the Riemann                              

Z+ function all lie on the critical boundary, which is a very surprising conclusion. If the real 

part of the nontrivial zero of the Riemann                                  function 

takes random values between 0 and 1, then the probability that it reaches exactly 
 

 
 should 

equal 0, which Riemann thought was 100%. If the Riemann conjecture is strictly true, then the 

occurrence of prime numbers or the distribution of prime numbers is not random at all, but 

occurs in a definite way, and there must be a deep reason behind this. The proof of the prime 

number theorem is an intermediate product in the process of studying Riemann conjecture. In 

1896, Hadamar and De la Vabsan proved that the nontrivial zero ρ of the Riemannn        

                      Z+ function has no zero when Re(ρ)=0 and Re(ρ)=1, thus easily 

proving the prime number theorem      
 

   
      . 

proving the prime number theorem      
 

   
      . 

The prime number theorem      
 

   
      holds, showing that for the prime counting 

function π( ), the largest part of its value comes from the logarithmic integral function 

Li( )= 
  

   

 

 
       while the minor part of its value comes from   (  )      ，  

                       Z+,since the calculation of  ln  ∈Z+ is simple, but for  

 

(28) 



The proof of the Riemann conjecture 

 

the accurate calculation of the prime counting function π( ), the calculation of the non-trivial 

zero ρ  of the Riemann                                    function is very 

important, and the strict proof of the Riemann conjecture is very important. In 1921, the British 

mathematician Hardy proved that the Riemann                              

Z+ function has infinitely many nontrivial zeros on the critical boundary. But this conclusion is 

actually quite different from the Riemann conjecture, because the fact that there are infinitely 

many nontrivial zeros on the critical boundary does not mean that all zeros are on the critical 

boundary. Just as a line segment has an infinite number of points, but a line segment has an 

infinite number of lines, the percentage of Hardy's proof is almost zero compared to the number 

of all nontrivial zeros. It wasn't until 1942 that mathematicians pushed this percentage 

significantly higher than zero. That year, the Norwegian mathematician Selberg proved that the 

percentage was greater than zero, but did not give a specific value. In 1974, the American 

mathematician Liesen proved that at least 34% of nontrivial zeros lie on the critical boundary. In 

1980, Chinese mathematicians Lou Shituo and Yao Qi proved that 35% of nontrivial zeros lie on 

the critical boundary. In 1989, the American mathematician Conrey proved that 40% of nontrivial 

zeros are located on the critical boundary. The calculation of the nontrivial zeros of the Riemann 

  s)                              function is more complicated. Graham calculated 

the first 15 nontrivial zeros of the Riemann  (s) function, As shown below (six of them are listed, 

including the modern value to its right) : 

 

 
 

and after 25 years, another 138 nontrivial zeros were calculated. Since then, the calculation of 

the nontrivial zeros of the Riemann ζ(s) function has stalled because of the clumsy methods and 

the lack of computers to assist it. After the calculation was halted for seven years, the deadlock 

was broken, and German mathematician Siegel found in Riemann's manuscript that Riemann 

was far ahead of the time 70 years of clever algorithm, so that the calculation of non-trivial zero 

points was suddenly bright. In honor of Siegel, this algorithm formula is also known as the 
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Riemann-Siegel formula, and Siegel himself won the Fields Medal for it. 

A mathematician's manuscript is worth far more than an antique. Since then, the non-trivial 

zeros of the Riemann ζ(s) function have been computed much faster. Hardy's students pushed 

the calculation of the non-trivial zeros of the Riemann ζ(s) function to 1041, the father of 

artificial intelligence Alan Turing pushed the calculation of the non-trivial zeros of the Riemann 

ζ(s) function to 11,041, and later with the application of computers, the calculation of the 

non-trivial zeros of the Riemann ζ(s) function from 3.5 million to 300 million, 1.5 billion. 850 

billion, and now 10 trillion, These nontrivial zeros are located on what Riemann calls the critical 

boundary. But the ten trillion zeros on the critical boundary is nothing compared to an infinite 

number of zeros on the critical boundary, and no matter how large the number of zeros on the 

critical boundary is calculated, it is not enough to prove that the Riemann conjecture is correct. 

The correctness of the Riemann conjecture requires rigorous theoretical proof. People guess that 

the non-trivial zero of Riemann                                    function is 

symmetric with respect to the real number axis based on the ten trillion zeros located on the 

critical boundary, but the guess is still a guess, which needs strict proof, otherwise such a guess 

has no meaning. In the following paper, I give a strict proof of this conjecture, and give a strict 

proof of Riemann conjecture, which is indeed true. 

Equation for Euler  (s) function,        
 

     
 
      

 

  
 
   (s          )and 

       
 

     
 
      

 

  
 
   (s   ，                ),they evolve into the  

Riemann   (s) function equations        
 

     
 
      

 

  
 
   (s           )，so I'm 

going to use Euler's formula,First of all, there are:     =cos( )+isin( )(  R) and 

   =cos(Z)+isin(Z)(Z C)，the exponents in the power operation of the trigonometric 

expression of complex numbers are extended from positive integers to general real 

numbers. Riemann conjecture is equivalent to     =    =0                and     

s= s=0(s       s  ) were established.    = s=0 can be given by 

 (s)=      sin(
  

 
)Γ(1-s)  (1-s) s   and s  ) when     =0 s       s  ),     =    =0 can 

be surrounded by     =     when     =0 s       s  ).     =     must be rigorously 

proved by using Euler's formula    =cos( )+isin( )(  R) and  

   =cos(Z)+isin(Z)(Z C), and by generalizing the exponents in the power operation in the 

trigonometric expressions of complex numbers from positive integers to general real 

numbers. If you want to solve the Riemann conjecture, its proof must follow such principles  
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and methods, otherwise it may not be correct.The prime number theorem       

 

   
       was independently proved by Hadamard and dela Valee Poussin in 1896. But one 

expects a prime number theorem with a precise error term. Under RH, it can be shown 

that                       . Conversely, RH can also be derived from this formula. 

Therefore, this formula can be seen as the arithmetic equivalent of RH. This shows the 

extreme importance of RH. Riemann's paper also included several propositions that had not 

been rigorously proved. All except RH were proved by Hadamard and Mangoldt, leaving only 

what is now known as RH. Ordering N(T) to represent the number of zeros of  ζ    in the 

rectangle 0≤σ≤1,0 < t < T, Riemann made the following conjecture: N(T) 
 

 π
ln

 

 π
 

 

 π
, this 

result has been proved by Mangolt. Hypothesis N(T) represents the number of zeros of  ζ(s) 

on the line segment σ=
 

 
, 0 < t < T.Selberg proved that if there are normal numbers c and T, 

then   (T)>cN(T). Theresult is quite striking. It shows that the number of zeros of  (s) on the 

line segment σ=
 

 
, 0 < t < T, has a positive density compared to its number on the rectangle 0

≤σ≤ 1, 0 < t < T, and the two-dimensional measure of the line segment is zero. The 

Riemann ζ function and RH are both "prototypes", and there are many similarities and 

generalizations of ζ(s) and RH. These analogies and generalizations have a strong mathematical 

background, there are many RH generalizations of some kind, and their mathematical 

background is extremely important. For example, the plane algebraic curve on a finite field F  

corresponds to RH, that is, every algebraic curve satisfying certain conditions  

corresponds to an L function, and their zeros are located on the line σ=
 

 
. This proposition has 

been proved by Weil, who also conjecture RH of a higher dimensional algebraic variety.This 

conjecture was proved by Deligne. These are undoubtedly some of the greatest mathematical 

achievements of the 20th century. As far as I know, the results of Weil and Deligne gave a great 

boost to analytic number theory. For example, the RH proved by Weil can derive the best order 

estimate of the Kloosterman sum of the modular prime p with the complete triangular sum. 

Here is the equation of the Riemann ζ(s) function: 

For Euler ζ(s) function equation： 

       
 

     
 
      

 

  
 
   (s          )and 

       
 

     
 
      

 

  
 
   (s                  ) evolve into the Riemann       

function equation        
 

     
 
      

 

  
 
   (s             ), So we use Euler's 

formula    =cos( )+isin( )(  R) and    =cos(Z)+isin(Z)(Z C)，The exponents in the  
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poweroperation of the trigonometric expression of complex numbers are generalized from 

positive integers to general real numbers, and thus the Euler series a and b are generalized. 

Then we extend the domain analysis of Euler series         
 

     
 
      

 

  
 
   (s 

         ) and        
 

     
 
      

 

  
 
   (s   ，                 ) to the 

whole complex plane, so that it resolves everywhere except s=1, and the 

resulting    functionis equivalent to Riemann's    function.Riemann guess is equivalent 

to      =    =0              and       =    =0 s       s  ) were established. 

      =    =0 can be made by   (s)=      sin(
  

 
)Γ(1-s)  (1-s) s       s  )export, 

    =    =0 can be obtained when  (s)=0 is given by      =    , In order to get the     =    , 

must use euler's formula    =cos( )+isin( )(  R) and    =cos(Z)+isin(Z)(Z C),the 

exponent of the power operation in the trigonometric expression of complex 

number is extended from positive integer to general real number. If you want to 

solve the Riemann conjecture, its proof must follow such principles and methods, 

otherwise it may not be correct. 

Let's see how   
 

     )= 
 

   is obtained. When Euler first came up with this formula, it was 

clear that both sides of the formula were series, and Euler discovered that there was this  

 

series.This is a formula of Euler, in which n is a natural number and p is a prime number. Euler 

has already proved it, and I will repeat it below. If you are familiar with Euler's formulas and 

know exactly that they are correct, you can omit them. 

Turn this Euler formula around and get: 

 

       
 

   =  
 

     ), 

 

When Euler first proposed this formula, s only represented a positive integer more than 1. 

Obviously, both sides of this formula are series. Euler found that there is such a series: 

           
 

  =1+
 

  +
 

  +
 

  +
 

   
 

  +…(equation 1). 
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The above equation is multiplied by 
 

   on both sides, 
 

   on the left and 
 

   on the right. we can 

get: 

 
 

  
 

 

  =
 

  +
 

   
 

   + 
 

   + 
 

     + 
 

   +…(equation 2). 

By subtracting the left and right sides of the two equations (equation 1) and (equation 2), the 

following results can be obtained:     

   
 

    
 

   =1+ 
 

   + 
 

   + 
 

   + 
 

   
 

    + 
 

    +
 

    +… (equation 3) 

It can be observed that the product term on the left side increases by    
 

    as the left term 

of equation 3 relative to equation 1. When the items on the right side of equation 1 are 

multiplied by 
 

  , the items whose denominator is even are eliminated, and the remaining items 

are regarded as the items on the right side of equation 3. 

By multiplying the left and right sides of equation 3 by 
  

    , we can get: 

 
 

  (1- 
 

  ) 
 

   = 
 

   + 
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    … (equation 4) 

By subtracting the left and right sides of the two equations (equation 3) and (equation 4), we can 

get: 

(  
 

    (1- 
 

  ) 
 

   = 1+
 

   + 
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

     
 

    + 
 

     

 … (equation 5) 

Similarly, multiply the left and right sides of equation 5 by 
 

  ,we can get: 

(
 

  )(  
 

    (1- 
 

   ) 
 

   = 
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

      
 

      …  

(equation 6) 

By subtracting the left and right sides of the two equations (equation 5) and (equation 6), the 

following results can be: 

 (  
 

  )(  
 

    (1- 
 

   ) 
 

  =1+
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

     
 

    

 … (equation 7) 

Referring to this method, in equation (2k-1) (k is a positive integer),we multiply the items on the 

left by 
 

  
  and the items on the right by 

 

  
 (i is a positive integer).  

   is the nearest prime number of the prime number      in the first item    
 

    
   on the 

left side of equation (2k-1) . The "nearest prime" here refers to the one closest to     .There is 

no other prime between them, and   >    , equation (2k-1) add 
 

  
  to the left. equation (2k-1)  
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the right side becomes: item 1 is 
 

  
  , item 2 is 

 

  
  

 

  
  
, item 3 is 

 

  
  

 

    
    item 4 is 

 

  
  

 

    
  , item 5 is  

 

  
  

 

    
  , ... , 

 

  
  

 

      
 ，…，k is a positive integer. So go on and add 

them up, where   、   、   、 ，    、    、    、     、 ，        It is an infinite 

sequence of prime numbers arranged in the order of numerical size from small to large, 

and                 In this way, we get the expression on the right side of equation 

(2k-1) and mark the whole equation as equation (2k) . By The coefficient of  
 

  
        on its 

left side is a continuous product of some forms such as     
 

  
  . n is a natural number and p 

takes all prime numbers. In order to write conveniently, the symbol is introduced and the left 

side is written as:  

referring to this method and doing it over and over again, we will eventually get such an 

equation: 

On the right is 1, plus a score:  
 

  
      

  The values of   
  and      are two infinite prime 

numbers, so the value of is zero, which can be omitted. So, the right side is 1.So you can get it: 

    
 

   =
 

    
 

   
 = 

 

   
 

   
 = 

 

      

Riemann extends Euler's definition of positive integer s analytic to complex number, that is, the 

variable s is defined as complex number. And we use a function  (s) constructed by Euler himself 

to record the two series on both sides of the above equation： 

         
 

   = 
 

      . 

Secondly, there is another Euler formula:          +i      ,   is a real number, representing 

the radian of an angle.This formula has been proved by Euler and can be used directly. Let me 

prove it again in my own way:  

If we have a function   ( )=  , we derive   ( )=  (  R), " ' " means derivative, then    )’=  , 

the derivative of    is itself. So if we make the independent variable c (c is constant)of function  

  ( )=  , we will get function   (c )=   , and derivative of function [  ( )]‘=(   )’= c   ,then 

[   ( )]‘=(   )’=c   ,If the function   (c )=   ,c=i(i is also constant), then    (i )=   , then 

[   (i )]'= [   ]'= i   . Suppose that    ( )=cos( )+isin( )=s, then s is a complex number. Now 

the derivative of function    ( ) is obtained:  

[   ( )]‘=[cos( )+isin( )]’=[cos( )]’+[isin( )]’=-sin +icos  (equation 1),If   (i )=   =cos +isin  

is correct, then suppose that    = cos(  )+isin(  ) is correct based on the above 

[   ( )]‘=[  ]’=i   ,[   (i )]'=[   ]'=i   (equation2), replacing    with cos +isin , then: 

[  (i )]‘=[   ]’=i   =i(cos +isin )=-sin +icos (equation 2),By comparing (equation 1) and  
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(equation 2), it can be found that the derivatives of   (i ) and   ( ) are equal, and since both 

  (i ) and   ( ) have no constant terms, the expressions of   (i ) and   ( ) should be 

consistent. We found   (i )=    cos +isin =  ( ),The expressions of   (i ) and   ( ) are 

exactly the same,which shows that the Euler’s formula           +i           is correct. 

prove           +             , a better method is the following, but more 

complex.Everyone First of all, look at the function y =  . If we find the derivative of this function, 

we will get y'= (  )'=   . That is to say, the derivative of y =    is itself. This is a very special 

exponential function.Let y’=
  

  
，when 

  

  
  , then y=  ，when 

  

  
  ,then y=    + ,when 

  

  
       y=      +

 

 
  ,when 

  

  
    +

 

 
  ,then y=      +

 

 
  +

 

 
  ,when 

  

  
       +

 

 
  +

 

 
  ,then y=       +

 

 
  +

 

 
   

 

  
  ,when 

  

  
      

 +
 

 
  +

 

 
   

 

  
  ,then y=      +

 

 
  +

 

 
   

 

  
   

 

   
  ,by analogy, this is a 

preliminary proof : y=      +
 

 
  +

 

 
   

 

  
   

 

   
  ,+…，But what about the series 

y=          in general? What about the series of y =   When   is treated as e and n as  , y 

=   is obtained, which requires the introduction of the concept of power series. 

This is the introduction of the concept of power series:1+  +  +  +  +  +…(  R),Every 

item is a power in the form of         . Let function f( )=1+  +  +  +  +  +…(  R),  

Equivalent to the sum of the items, if some numbers are used as the coefficients of the items, if 

these numbers are                                 They are derivatives of order 0     ( ) of 

the function f( ) =          the derivatives of order 1     (0) of the function f( ) =      

Z+,the derivatives of order 2  (2)(0) of the function f( )=    Z+，the derivatives of order 3 

    (0) of the function f( ) =          ... ,the derivatives of order n     (0) of the function f( ) 

=          They are:        (0),                                  ….,      

         ,               If f(  ) =          is taken as n times derivative, we will 

get:     (0)=n(n-1)(n-2)(n-3)…2 1    so that     (0)=n!，For a paivarticular function f ( )=  , 

the values of all these derivatives at   =0:     (0)     (0)     (0)     (0)  …       (0)     (0)    

 …,they must be 1, because the derivative of any order of    is itself. But the value of 

derivatives of order           are:     (0)=n(n-1)(n-2)(n-3)…2 1   =n!,therefore  

                               have to divide one by n!, can make:  

    (0)=1,    (0)=1     (0)=1，    (0)=1，…，      (0)=1，    (0)=1，In order to satisfy the 

coefficients of the series expression of function f( )=    

correctly:                                Namely   =
 

  
=1   =

 

  
   =

 

  
   =

 

  
   =

 

  
   … ,     

=
 

      
 ,   =

 

    
 , … , 
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For a particular function f( ) =  , the method here is to multiply the n power of   by the values 

of the derivative functions of the function          at the independent variable  = 0, and 

then divide by the factorial of n. 

So for a particular function f( ) =  ,   =
 

  
=1   =

 

  
   =

 

  
   =

 

  
   =

 

  
   … , 

    =
 

      
 ,   =

 

    
 , … ,So you can write the series of the function f( )=    again:   == 

1+  
 

 
  +

 

 
  +

 

  
  +

 

   
  +…+

 

      
    +

 

  
    +… , 

Let's assume f( ) = cos( ) to find the power series of cos( ). The 0-th derivative of function f ( ) = 

cos ( ) is     ( )=cos( )(the 0-th of a function is itself).The 1-th derivative of function f( )=cos( ) 

is     =-sin( ) the 2-th derivative of function f( )=cos( )        ( )=-cos( )  the 3-th derivative of 

function f( )=cos( )           =sin( )                                  

                                 the n-th derivative of function f( ) =cos( )            =…,  

If  =0 is substituted, the value of the derivative function of each order at 0 will be obtained. 

Because the series is derived by dividing the value of the derivative function at the independent 

variable  = 0 by the factorial of N and multiplying by the expansion of         . Therefore, 

at  = 0, it is easy to get the value of each derivative function at   = 0 by assigning the 

independent variable of each derivative function to zero:     (0)(0)=cos(0)=1,    (0)=-sin(0)=0, 

    (0)=-cos(0)=-1,     (0)=sin(0)=0 ，     (0)=cos(0)=1,     (0)=                   

                (0)=sin(0)=0,…,according to  1, 0, - 1, 0, 1, 0, - 1, 0,... In the form of 1,0, -1,0, 

the cycle section goes on indefinitely. The function value of the derivative function of order f( ) = 

cos( ) at 0 of its independent variable can be used to construct the coefficients needed for the 

power series of cos( ). They are divided by the factorial of n, which is the coefficients of the 

powers of  . Now we can construct the power  series of cos( ) by referring to the power series 

of    above, n is the order of the derivative function of order f(  =cos( ), and is also the n-th 

power of  . So the power series of cos( ) expansion is:It starts with 
       

  
  =

      

  
  =

 

  
  =1  

 

as the zero term,the constant term. 

Next is: 
       

  
  =

       

  
  =

 

  
  = , The result is zero, which means that there is no 1-th term, 

or that there is no first order term of  . 

Next is: 
       

  
  =

       

  
  =

  

  
   = 

 

 
  , which means that there is no 2-th term. 

Next is: 
       

  
  =

      

  
  =

 

  
   =  The result is zero, which means that there is no 3-th term, 

or that there is no 3-th power term of  .  

Next is: 
       

  
  =

      

  
  =

 

  
   which means that there is no 4-th term.  

…，If we go on doing this, we will find that n-order derivative of f( )=cos( )，n is a nonnegative  
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positive number. Starting from zero, if n is an even number, then the value of     (0) is either + 1 

or - 1, according to 1, - 1, 1, - 1, 1, - 1,... The regular arrangement of, So for the power series 

expansion of cos( ), the sign of the value of the coefficients in front of the even power term of   

is as follows: +, -, +, -, +, -, -, -,... regularly arranged.The coefficients are:
        

  
=

 

  
 or

        

  
= 

 

  
,If 

n is an odd number, the value of its coefficient is: 
        

  
  ,So for the expansion of power 

series of cos( ), there is no odd term of  . So the power series of the function f( ) = cos( ) is:  

cos( )=
 

  
  - 

 

  
  + 

 

  
  - 

 

  
  + 

 

  
  - 

 

   
   + …=1- 

 

 
  + 

 

  
  - 

 

  
  + 

 

  
  - 

 

   
   + … 

Let's assume f( )=sin( ) to find the power series of sin( ). The 0-th derivative of function 

f( )=sin( ) is      ( )=sin( )(the 0-th derivative of a function is itself),The 1-th derivative of 

function f( )=sin( ) is     ( )=cos( ),The 2-th derivative of function  

f( )=sin( )        ( )=-sin( )  The 3-th derivative of function f( )=sin( )         ( )=-cos( )  The 

4-th derivative of function f( )=sin( )         ( )= sin   The n-th derivative of function f( ) 

=cos( )         ( )=…, If  = 0 is substituted, the value of the derivative function of each order at 

0 will be obtained. Because the series is derived by dividing the value of the derivative function 

at the independent variable  =0 by the factorial of N and multiplying by the expansion of 

        . Therefore, at  = 0, it is easy to get the value of each derivative function at  = 0 by 

assigning the independent variable of each derivative function to zero:     (0)=      =0, 

    (0)=      =1,    (0)= -        =0,    (0)=       =-1,    (0)=             (0)=       

1,f60=          f(7)(0)=cos(0) = -1,… According to 0, 1, -0, -1, 0, 1, 0, -1,... In the form of 0,1, 

0,-1, the cycle section goes on indefinitely. The function value of the derivative function of order 

f( ) = sin( ) at 0 of its independent variable can be used to construct the coefficients needed for 

the power series of sin( ). They are divided by the factorial of n, which is the coefficients of the 

powers of  . Now we can construct the power series of sin( ) by referring to the power series of 

   above, n is the order of the derivative function of order f( ) =sin( ), and is also the n-th 

power of  . So the power series of sin( ) expansion is: 

It starts with 
       

  
  = 

      

  
  =

 

  
     as the zero term, the constant term, 

Next is:   
       

  
  = 

      

  
  =

 

  
    , as 1-th term, 

Next is:   
       

  
  = 

       

  
  =

 

  
     ,which means that there is no 2-th term, 

Next is:   
       

  
  = 

       

  
  =

  

  
     

 

  
  ,as 3-th term,  

Next is:   
       

  
  = 

      

  
  =

 

  
      which means that there is no 4-th term. 

…，If we go on doing this, we will find that n-order derivative of f( )=sin( )，n is not a 

nonnegative positive number. Starting from zero, If n is an odd number, then the value of      (0) 

is either + 1 or - 1, according to 1, 0, 1, - 1, 1, - 1, - 1, - 1,... Regular arrangement, if n is an even  
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number, then the value of     (0) is either + 1 or - 1, according to 0，1，0，-1，0，1，0，-1，…， 

the regular arrangement of, so for the power series expansion of sin( ), the sign of the value 

of the coefficients in front of the odd power term of  f( )  is as follows: +, -, +, -, +, -, -, -,... 

regularly arranged.Th e coefficients are: 
        

  
=

 

  
 or 

        

  
= 

 

  
   If n is an even number, the 

value of its coefficient is: 
        

  
   So for the expansion of power series of sin(  , there is 

no even term of  .  So the power series of the function f( )=sin( ) is:  

sin( )==
 

  
  - 

 

  
  +

 

  
  - 

 

  
  +

 

  
  -…= – 

 

  
  +

 

  
  - 

 

  
  +

 

  
  -…, 

Previously obtained 

   1+  +
 

  
  +

 

  
  +

 

  
  +

 

  
  +…+

 

  
  =1+  +

 

 
  +

 

 
  +

 

  
  +

 

   
  +…+

 

  
  (  R)  

If we change   to i , We can get: 

    1+    +
 

  
     +

 

  
     +

 

  
     +

 

  
     +…+

 

  
     =(1-

 

  
  +

 

  
  -

 

  
  +

 

  
   

 
 

   
    …     

 

  
   

 

 
   

 

  
   

 

  
     (  R), 

because cos( )= (1-
 

  
  +

 

  
  -

 

  
  +

 

  
   

 

   
    …  sin( )=    

 

  
   

 

 
   

 

  
   

 

  
   

 , therefore   = cos( )+isin( )(  R),So this is another Eulerian formula. 

In the formula above, if   equals pi, we will get:    =cos( )+isin( )=-1+0=-1，therefore    +1=0，

It's also called Euler's formula. It puts all the most important things in mathematics, 0, 1, e, i and 

pi, into one formula. It is a special case of Euler formula    = cos( )+isin( )(  R).when 

Z C,then    = cos(Z)+isin(Z)( Z C).Let me summarize the above: 

Let me summarize the above: Riemann conjecture: The real part of all nontrivial zeros is 1/2. 

First of all, it is surrounded to Riemann zeta function (s) is a complex variable function, defined as 

s= +ti(  R,t R), when the Re(s)>1,   function can be surrounded by series       
 

  
 
    to 

say, but this series in Re(s)  , So it needs to be extended by analytical continuation to the 

entire complex plane, except for a simple pole at s=1. The analytic extension of the zeta function 

is analytic in the complex plane except for s=1. 

The zeros of the Riemann zeta function are the values of s that make   (s)=0. The zeros of the 

Riemann   function are of two kinds: trivial and nontrivial. Trivial zeros are negative even 

numbers, such as s=-2,-4,-6,... These turned out to be zeros of the Riemann   function. The 

non-trivial zero lies in the so-called "critical band", that is, the region where the real part is 

between 0 and 1，is also to 0<Re(s)<1. The Riemann conjecture says that the real part of all these 

nontrivial zeros is 1/2, that is, they are all located on the critical boundary Re(s)=1/2. 

Riemann proposed this conjecture in his 1859 paper, but did not prove it, only through  
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calculation and observation to support the conjecture, and later many mathematicians through 

numerical calculations to verify that billions of nontrivial zeros are located on the critical 

boundary, but of course, this is not yet a proof, because numerical calculations can only cover a 

limited number of cases. 

We should understand why this conjecture is so important, because the Riemann conjecture is 

closely related to the distribution of prime numbers in number theory. For example, the prime 

number theorem tells us that the number of primes less than x is approximately  /  , and the 

proof of this theorem takes advantage of the fact that the Riemann zeta function has no zero 

near Re(s)=1. When the Riemann conjecture is true, then we can get a more accurate estimate of 

the distribution of prime numbers, such as a smaller error term. In addition, the Riemann 

conjecture has applications in cryptography and other areas of mathematics, so its solution could 

lead to many breakthroughs. 

Why does the position of nontrivial zeros affect the distribution of prime numbers? This required 

further study, such as understanding the connection between the function and prime numbers, 

such as the Euler product formula, or explicit formulas for prime numbers, such as the one 

proposed by Riemann involving the zeros of the   function. 

If the real part of the nontrivial zeros is 1/2, then their positions are in a straight line on the 

complex plane at 1/2, in which case the symmetry of the zeta function is also relevant, because 

the zeta function satisfies the functional equation  (s)=      sin(
  

 
)Γ(1-s) (1-s) s C and 

s  ), the equation may make zero symmetrical about point (1/2, 0i) or the real number axis, if s 

is a zero, then 1-s is also a zero. So if a zero isn't on the critical line,then the point where it is 

symmetric about the point (1/2,0i) is not on the critical boundary. It is possible that this would 

result in symmetric pairs of zeros, but according to the Riemann conjecture, such zeros do not 

exist, and all nontrivial zeros must lie on the line Re(s)=1/2. 

However, it has been shown that there are infinitely many nontrivial zeros on the critical 

boundary of Re(s)=1/2, but of course infinite does not mean that all of them are. There may be 

ways to exclude the possibility of zero points that exist outside the critical boundary. In addition, 

there are some results that the zero satisfies the condition in some proportion, for example, 

what percentage of the zero is on the critical boundary, but the 100% result is not yet available, 

and what I will prove in this paper is that 100% of the zero is on the critical boundary of 

Re(s)=1/2. 

There have been many attempts in history, such as Hardy's proof that there are infinitely many 

zeros on the critical boundary, which was later improved by Selberg. It proves that there are 

directly proportional zeros on the critical boundary. But these are partial results. Recent 

developments, such as Deligne's proof of the Weil conjecture, may be indirectly related, but the 

specific connection needs further study, but I can ignore these considerations in my proof of the 

Riemann conjecture in this paper. 

In addition, there are many equivalent descriptions of the Riemann conjecture, such as the error 

term involving a number theoretic function, or the properties of other mathematical structures, 

such as some properties in a random matrix, that may be related to the zeros distribution of the 

zeta function, but my proof does not have to solve the Riemann conjecture from this perspective, 

and it is possible to attack the problem from multiple perspectives. 
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We need to delve into these and understand the fundamental statement and importance of the 

Riemann conjecture. Here I review the fundamental properties of the Riemann ζ, such as its Euler 

product formula, which shows a direct connection between the zeta function and prime numbers. 

Because euler product is for each of the product form of prime number p, namely 

the  (s)=  
 

     ), the in Re(s)>1. This product form means that the zeros of the Riemann zeta 

function may be associated with some distribution of prime numbers, especially if the real part 

of s is less than or equal to 1, the product no longer exists converges, but the analytically 

extended zeros of the zeta function may carry information about the distribution of prime 

numbers. 

Again, when the Riemann conjecture holds, then we can use the fact that the zeros are all on the 

critical boundary to more accurately estimate the error between the prime counting 

functions               , i.e.           <C        , which is important in cryptography 

The application of prime numbers may have practical significance. For example, the RSA 

encryption algorithm relies on the generation of large prime numbers. 

Why does zero on the critical line improve error estimation? This is because in the explicit 

formula, the position of the zeros affects the size of the remainder terms, and if the real part of 

all zeros is no more than 1/2, then the contribution of each nontrivial zero to the error term is 

controlled within a certain range, and the overall error term can be accurately estimated. 

The Riemann conjecture was part of the eighth of Hilbert's 23 problems, the solution of which 

required new mathematical methods and a greater understanding of the symmetric and 

conjugated properties of the zeros of the Riemann zeta function. In this paper, I will show this 

method and understanding. 

Others have tried quantum mechanics or statistical mechanics in physics to study the zeros of 

the Riemann zeta function because they there appear to be similarities with the distribution of 

energy levels in some quantum systems, such as the distance between energy levels predicted by 

random matrix theory, and the distance between nontrivial zeros of the Riemann zeta function, 

which may hint at some deep mathematical structure. However, this seems to be more of a 

comparison than a direct mathematical proof path. 

Returning to the question itself, the Riemann conjecture asks whether the real parts of the 

non-trivial zeros of the Riemann zeta function are all 1/2. At present, a large number of 

numerical calculations have verified that this conjecture is valid for a very large range of zeros, 

for example, the ZetaGrid project has verified that more than one billion zeros are on the critical 

boundary. But the mathematical proof obviously cannot rely on numerical calculations. 

In addition, it is necessary to rule out the absence of zeros outside the critical boundary of 

Re(s)=1/2 in the critical band, and to rule out the absence of zeros elsewhere outside the critical 

band of the complex plane. For example, in the region Re(s)>1,  (s)≠0 due to the existence of 

the Euler product, each factor is 1/(1-1/  ), and each such factor is not zero. So Riemann  (s) has 

no zero for Re(s)>1. Does Riemann  (s) have zero points on the line Re(s)=1? According to the 

proof of the prime number theorem, we know that Riemann  (s) has no zero on the line Re(s)=1,  

 

which helps to prove the prime number theorem. By function 
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 equation  (s)=      sin(
  

 
)Γ(1-s) (1-s) s C and s  ) because if the  (s)= 0, The  (s)= (1-s) 

=0(s C and s≠1 and s -2n and s≠2n, n   ), it is easy to know no nontrivial zero where Re(s)= 

0.All taken together, the non-trivial zeros of the Riemann   function are inside the critical band 

of 0<Re(s)<1, and the Riemann conjecture asserts that they are all on the middle critical 

boundary Re(s)=1/2. The functional equation of the Riemann   function, 

 (s)=      sin(
  

 
)Γ(1-s) (1-s) s C and s  ), shows that if s is zero, then 1-s is also zero, 

and because of the properties of the Γ function, symmetry is involved. For example, if s=1/2+it is 

a zero, then 1-s=1/2-it is also a zero. In this way, the zeros are symmetric about the real number 

axis and the point (1/2,oi) and appear in pairs on the critical boundary. However, for zeros that 

are not on the critical boundary, such as s=σ+ti(σ R,t R), where σ≠1/2, then 1-s=1-σ-ti, and if 

σ is between 0 and 1, then 1-σ is also between 0 and 1, and all such pairs of zeros exist.But 

Riemann didn't think such a zero existed. Riemann was right in this view. In my paper I show that 

the zeros of the Riemann zeta function must be conjugate symmetric in the interior of the critical 

band 0<Re(s)<1 and in other regions of the complex plane. In 0<Re(s)<1 critical internal, 

according to  (s)= (1-s)=0(s C and s≠1 and s -2n and s≠2n, n   ), s and 1-s will surely is a 

conjugate, and when the Re(s) 1/2, s and 1-s are not conjugate, contradict each other, So inside 

the critical band of 0<Re(s)<1, there are no zeros whose real part is not equal to 1/2, and 

naturally, there are no nontrivial zeros whose real part is not equal to 1/2. 

In addition, I have heard some close results before, such as the so-called weak Riemann 

conjecture, that there is a constant c<1 such that the real part of all nontrivial zeros is less than c, 

but this has not been proved. In fact, it has been known before that the real part of a nontrivial 

zero tends to 1/2, and in some average sense, every concrete nontrivial zero has a real part of 

1/2, which is strictly proved in this paper. 

Riemann conjecture: All nontrivial zeros of the Riemann   function have a real part of 1/2, i.e. 

they lie on the critical boundary Re(s)=1/2 in the complex plane. The Riemann conjecture 

involves the distribution of nontrivial zeros of the Riemann zeta function. Specific statements are 

as follows: 

Analysis of key points: 

1. Riemann zeta function: 

- definition: for complex variable s= +ti(  R,t R), when the Re(s) > 1, zeta function by a 

series of        
 

  
 
    definition.Analytic continuation: The zeta function can be analytically 

extended to the entire complex plane (except for the simple pole at s=1). 

2. Zero point classification: 

- Trivial zero: located at the negative even point (s=-2,-4,-6,... ), surrounded by the function of 

the zeta function equation  (s)=      sin(
  

 
)Γ(1-s)  (1-s) s C and s  ) directly. 
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- Nontrivial zero: located in the critical band (0<Re(s)<1), its existence is closely related to the 

distribution of prime numbers. 

3. Importance: 

Reinforcement of the prime number theorem: When the Riemann conjecture is true, the error 

term of the prime counting function π ( ) Li( ) can be greatly optimized, such as π

( )-Li( )<C(  ln ).The intersection of mathematics and physics: The zeta function zero 

distribution is deeply related to phenomena in the fields of quantum chaos and random matrix 

theory. 

4. Research Progress: 

- Numerical verification: more than (    ) nontrivial zeros have been calculated, all located on 

the critical boundary. 

- Partial result: Hardy (1914) proved that infinitely many zeros are on the critical boundary; 

Selberg (1942) proved that the proportional zero lies on the critical boundary. 

- Equivalent statement: There are a variety of equivalent statements related to number theory 

and algebraic geometry, such as generalized forms involving Mertens functions and Dirichlet L 

functions. 

5. Challenges and status quo: 

- Although there is plenty of evidence to support it, rigorous mathematical proof is needed. 

Solving the conjecture may require developing new mathematical methods or revealing deeper 

symmetries of the zeta function. 

Conclusion: 

The central assertion of the Riemann conjecture is that the real part of all nontrivial zeros of the 

zeta function is 1/2. The proof will have a profound impact on number theory, cryptography and 

physics. 

Answer: The Riemann conjecture asserts that the real part of all nontrivial zeros is 1/2, which I 

will prove strictly mathematically below. The mathematical community generally believes that it 

is correct, and many theories have been developed based on it. 

The core of the Riemann conjecture is that the real part of the non-trivial zeros of the Riemann 

zeta function is 1/2. This conjecture is proved to be true by me in this paper. Will greatly 

promote the development of number theory and other mathematical fields, reading my paper 

requires some knowledge of complex analysis and number theory. To gain a deeper 

understanding of the mathematical structure and proof behind the problem. 

 

II .ConclusionReasoning 

Femma 1:  

 

      
   =          

 (     and s  , n        n goes through all the                  , 

         p takes all the prime numbers),this formula was proposed and proved by the Swiss 

mathematician Leonhard Euler in 1737 in a paper entitled "Some Observations on Infinite Series", 

Euler's product formula connects a summation expression for natural numbers with a 

continuative product expression for prime numbers, and contains important information about  

the distribution of prime numbers. This information was finally deciphered by Riemann after a   
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long gap of 122 years, which led to Riemann's famous paper "On the number of primes less than  

a Given Value [1]. In honor of  Riemann, the left end of the Euler product formula was named 

after Riemann, and the notation ζ(s)              used by Riemann was adopted as the 

Riemann zeta function .  

           =         
 

 
 

 
  

 

  
 
    2.7182818284... , e is a natural constant, I use     

for Multiplication, then based on euler's    =cos( )+isin( )(  R) and the principle of amplitude 

Angle,get       =                 =cos(2 3)+isin(2 3)=cos(6)+isin(6), 

because    =cos(6)+isin(6),  

so  

      =    ， 

In general,       =      (b R，c  R) is established,the angle principle is extended to the case 

where the exponent is a real number. 

so when  >0(  R),suppose   =(e=2.7182818284... ,   e is a natural constant,  R and  >0, 

y R),then  =ln( )(  >0),based on euler's    = cos( )+isin( )(  R),will get 

           =        +i        (  R and  >0). 

Suppose t R and    ,                                        (  R and  >0, t R and    ) 

is    =      =      =                          . 

Suppose s is any complex number, and Suppose s= +ti(  R,t R ,s C and s  ),then let's find 

the expression of   (   R and  >0, s  C) ,You can put s=  +ti(   R,t  R) and 

   =      =      =                           into         and you will get  

  =       =     =                       =                                if You put 

s= -ti(  R, t R ) and    =      =      =                           into   ,you will get  

                                                                           . 

Then  

       
 

  

 

   

  
 

  

 

   

  
 

     

 

   

   
 

  
 

 

   
 

 

   

       
 

                         

 

   

                                  

 

   

  

                                 

 

   

 

 

 (   C , n        n goes through all the                  ),or 

       
 

     
 
   )=             

   =               
   =     

 

      
   

   =      
   

     
 

                      
                                       

    

 (   C,          p goes through all the prime numbers).  
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And 

      
 

  

 

   

  
 

  

 

   

  
 

     

 

   

   
 

  
 

 

    
 

 

   

       
 

                        
  

 

   

                                 

 

   

  

                                 

 

   

 

(   C , n        n goes through all the                  ), 

or 
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(   C ,          p goes through all the prime numbers). 

And 

         
 

    
 
     

 

       
 
           

 

                          
 
    

                                  
                                       

     

(   C , n        n goes through all the                  ), 

or 

if k        

        
 

    
 
     

 

       
 
           

 

                          
 
    

                                  
                                       

     

(   C, k  , n        n goes through all the                  ), 

and 

         
 

       
 
   ) 

=             
    =               

                                          
    

(   C,             p goes through all the prime numbers). 

So 

X=   (                        ),  

Y=   (                        ),           

G=                                  , 

H=                                  , 

X and Y are complex conjugates of each other, that is  

X= , and G and H are complex conjugates of each other, that is  

G= , so  
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    =  
 

         
             

   
 
              =  

 

         
           

   
 
   so 

 (s)=          , 

and  only  when    
 

 
             =            and  only  when    

 

 
      

           =                so 

only k=1 then       =                      , 

only k=1        true , and when ζ   =0,  then 

      =           =    =0             

      
 

  
 
     

 

     
 
      

 

   
 

    
 
          

 

                         
 
    

                                  
      

                                 
   =   

 

     
 
   )=             

   =      
   

         =     
 

      
   

   =          
 

                      
   

    

                                    
                    

                                

When  =1, then if    
 

 
           

 

 
           0 then        

 

  
 
      

 

     
 
     

   if   
 

 
                

 

 
                              and 

 

 
           ,then  

  
  

   
 (k                             ) and cos(     )                    , so if 

                                      t 
  

   
(k                             ) and                               

cos(    )    (                p>1), or    , then |t   
  

   
    (k          ) and   

cos(    )                 So if   Re(s)=1 and t 
  

   
(k          ) and  

                                 
 

 
           

 

 
             

   

  
     

   .When s=1+ti(            ) then  

            
 

 
           

 

 
             

   

  
                      when  

Re(s)=1 and p=1(                  ), then          = 

                            
   

  
  

 

                              
 
   = 

=  
 

                              
 
   =

 

 
                  ,then              

            , diverges ,without zero ,so                         . When  =0  if   

                                                and            ,then   
  

   
(k 

         ) and cos(    )   , so                t 
  

   
(k          ) and cos(    )  
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      ,or    ,then      
  

   
    (k           ) and                   

                                           
   

  
                .  

So when Re(s)=0 and p 1,then        =                            
   

  
    And when  

 =Re(s)=0 and p=1  then  

                                    
     

 

                              
 
    

 
 

                              
 
   =

 

 
   ,then                       

      diverges  without zero. So                         . It is a fact that the non-trivial 

zeros of the Riemann  (s) function (meaning zeros other than negative even numbers) exist, 

Riemann proved that the real part Re(s)      of the nontrivial zero s of the Riemann  (s)   

           function must satisfy Re(s) [0,1]. It is not easy to  

calculate the non-trivial zeros of the  (s)              function by hand, and Riemann 

calculated a dozen of them, all of which have a real part Re(s) equal to 
 

 
, so the non-trivial zeros 

of the Riemann ζ(s)              function (meaning zeros other than negative even 

numbers) exist.,and the real part Re(s)              of the nontrivial zero s of the 

Riemann  (s)              function must satisfy Re(s) (0,1).When s=1+ti(            ), 

Rs(s)=  =1, 

then ζ    ζ      =   
 

     
 
   )=             

   =               
   =      

   

     
 

                      
                                       

         
   

 

 
           

 

 
            

  
=  

 

   
 

 
            

 

 
          

 
                      

          ,When the independent variable s is extended from a positive integer to a general 

complex number, in the Euler product formula, the numerator of every product fraction factor is 

1, and the denominator of every product fraction factor is a polynomial related to the natural 

logarithm function.                                                  (1+ti) ≠ 0    

          , indicating that the number of primes not greater than   is finite. From the 

analytic extended Euler product formula, we can see that for positive integers not greater than 

 , every increase of a prime p will increase a fraction factor related to ln(p) in the Euler product 

formula, indicating that the probability that there is a prime p near   (that is,  =p) is about 

 

     
 , that is 

 

     
. If we use π( ) to represent the number of primes not greater than  , then 

for a positive integer p not greater than  , the probability that it is prime is approximately 
    

 
, 

then 
    

 
 

 

     
 , π( )  

 

      
 , π( ) 

 

      
  is the expression for the prime number theorem. 
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As Riemann said in his paper, n takes all the                  , so n=1,2,3... ,Let's just plug in all 

the                       
 

    
. 

Obviously, 

    =ζ( +ti)=  
 

   =  =[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...]-i[   sin(tln

1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...]= U-Vi                  , 

U=[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...] , 

V=[   sin(tln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...] ,  

then 

 ( )= ( -ti)=  
 

   =  =[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...]+i[   sin(tln

1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+ ...]= U+Vi                  , 

U=[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...] , 

V=[   sin(tln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...] , 

                                     =[     cos(tln1)+     cos(tln2)+     cos(tln3)+ 

 

    cos(tln4)+...]+i[                                                            

+...]                 ,  

so ζ(s)=                     ， 

On the basis of     
 =          

 ,the formula on the left side of the sum of all the 

natural Numbers, the right of the product is for all the prime Numbers. This formula holds 

for all complex numbers s with Re(s)>1. The left side of this formula is the series expression 

of the Riemann zeta function for Re(s)>1,which we have described above, and the right side 

is an expression purely concerning prime numbers (and containing all prime numbers), 

which is a sign of the relationship between the Riemann Zeta function and the distribution of 

prime numbers. So I'm going to assume that Re(s)>1. 

Because when Re(s)>1 Euler             is equivalent to the Riemann     function,so 

ζ(s)=                              is true. According to the Euler product 

formula           
  , when Re(s)>1, since every product factor：           in the 

Euler product formula is not equal to zero, so when Re(s)>1, (s) is not equal to zero, and 

according to ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  ) (Formula 7),so the positive even 

number 2n(    ) can make sin(
  

 
) =0, but it is not the zero of Riemann  (s).  

For any complex number s, when                          s= +ti(  R,t R        ,s C),  
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then according to Dirichlet η     then the relationship between the Riemannn  (s)(s C and 

Rs(s)>0 and s≠1) function and the Dirichlet η(s)(s∈C and Rs(s)>0 and s≠1) function is : 

because η   = 
 

   
 

  +
 

   
 

  +
 

   
 

  +…                          ， 

    = 
 

   
 

  +
 

   
 

  +
 

   
 

  +…                          ，so 

η         

  
 

   
 

   
 

     = 
 

  (
 

   
 

  +
 

   
 

  +
 

   
 

  +…)= 
 

                              

1，then ηs=1 22s s=(1−2   ) s          s>0 and     , then 

η (  )=  
       

  
 
                             and η (s)=(1-     )                    

0 and       sis the Riemann Zeta function, η(s) is the Dirichlet η(s) function, 

so               =
η   

        
=  

 

        
 

       

   
       

        
 
             

                

          , n           C，n goes through all the positive integers, p goes through all  

the prime numbers). 

When Rs(s)>0 and s≠1) ,Let's prove that ζ(s) and       are complex conjugations of each 

other. 

 
       

  
 
   =[    cos(tln1)     cos(tln2)+    cos(tln3)    cos(tln4)-...]-i[   sin(tln1)     s

in(tln2)+    sin(tln3)      sin(tln4)+...]= U-Vi, 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   sin(tln1)      

sin(tln2)+    sin(tln3)    sin(tln4)+...]= U+Vi, 

 
       

    
 
   =[      cos(tln1)       cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[   sin(tln1)

     sin(tln2)+    sin(tln3)     sin(tln4)+...], 

 
       

    
 
   =[      cos(tln1)      cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[    sin(tln

      sin(tln2)+     sin(tln3)       sin(tln4)+...], 

                                                          , 

        , 

       

        
 = 

       

        
 ,   

          
 =          

        

(48) 



The proof of the Riemann conjecture 

 

                                                  , 

so 

       

        
=

       

        
 ,    

so 

 
       

        
 

       

    
      

       

        
 

       

  
  

   
 , 

 
 
       

        
          

   
       

        
          

 
 ,  

 (s)=
 

        
 

       

   
       

        
          

   
 , 

    =
 

        
 

       

    
    

       

        
                                                             

                                                                           , 

so 

only ζ(s)=                           , so 

    =         =        =                          =                             

    =          =        =                                     =                 

             

                                                                        , 

then 

       =          =             

                        =                            , 

     =        =                                   

                                        , 

so 

           =1-                            =                                , 

 

         =1-                           =                                

                                        , 

 
       

      
   =[     cos(tln1)      cos(tln2)+     cos(tln3)     cos(tln4)-...]+i[    sin(tln1) 

      sin(tln2)+     sin(tln3)       sin(tln4)+...] , 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   sin(tln1)     

sin(tln2)+    sin(tln3)    sin(tln4)+...] 

                       , 

when  =
 

 
,then 

 
       

    
 
   = 

       

  
 
                                                              , 

            =                                  ), 
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and 

             =                                    ), 

              
 =          

                                                    , 

              
 =           

                         

                                         , 

and 

       

      
 

       

    
 
    

       

        
 

       

  
 
    , 

       

      
              

  
       

        
          

   

                                                              

                                    , 

And 

      =
       

      
              

 , 

    =
       

        
          

  , 

      =
       

      
 

       

    
 
   , 

    =
       

        
 

       

  
 
    

                                                                

                                      , 

so when  =
 

 
, then only       =                                       . 

 
       

    
 
   =[      cos(tln1)      cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[    sin(tln1)

      sin(tln2)+     sin(tln3)       sin(tln4)+...], 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   Sin(tln1)     si

n(tln2)+    sin(tln3)    sin(tln4)+...], 

    =         =        =                          =                             

    =          =        =                                     =                 

isin(tlnp)) , 

                                                             

                                           , 

then 

       =          =             

                        =                            , 

     =        =                                  , 

       =                            , 

                                                              , 

So 
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           =1-                            =                                , 

       =1-                           =                               

                                                              , 

So when  =
 

 
(k R) then 

 
       

      
 
   = 

       

  
 
                                      

            =                                                       , 

and              =          ( s C                  k R, p∈   and p is a prime 

number , 

            
  

 =        
  

                                                     

                                             ,  

and 

 

          
 

       

    
 
    

 

        
 

       

  
 
     

                                                              

                                           , 

and 

      =
       

          
              

 , 

    =
       

        
           

  , 

      =
 

          
 

       

    
 
    s C        and s     R , 

    =
 

        
 

       

  
 
    s C          and s   , 

                                                             

                                           , 

so when  =
 

 
(k R) then only       =                              . 

According the equation ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                      obtained by  

Riemann,since Riemann has shown that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)                         (Formula 6), ζ(s)=0    

                    is true.  

When     =0                      , then only       =     =0             

          , and  

When     =0                     ,then       =    =                     . 

And because  

 

 

(51) 



The proof of the Riemann conjecture 

 

         =                      , then only       =    =0                   

  , which is                                      ,so only k=1 be true, so only 

ζ(s)=                                 . 

The reasoning in Riemann's paper goes like:  

2sin(πs)      ζ(s)=          ((      +    ) (Formula 3), 

based on euler's    =                    can get     

    
 

 
 =cos(

  

 
) +isin(

  

 
) =0-i= -i ,  

   
 

 
 =cos(

 

 
)+isin(

 

 
)=0+i=i ,       

then 

                        +         =       
   

 

 
  

       
  

 

 
  

=  

i 
   

 

 
  

-i 
  

 

 
  

 i(cos
   

 
+isin

   

 
)-i(cos

  

 
+isin

  

 
)=icos(

  

 
)-icos(

  

 
)+sin(

  

 
)+sin(

  

 
) 

=2sin(
  

 
) (Formula 4). 

According to the property of Π(s-1)=Γ(s) of the gamma function,and  

      
   =ζ(1-s)                                                    ), 

Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=                
  

 
 (Formula 5), 

If I substitute it into (Formula5), according to the double Angle formula  

sin(πs)=2Sin(
  

 
)cos(

  

 
),  

we Will get ζ(1-s)=      – cos(
  

 
)Γ(s)ζ(s) s C and s  ) (Formula 6),because   

   

    

      Γ(
   

 
)   ,so when ζ(s)=0             , then ζ(1-s)=0             , 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  )(Formula 7), 

This is the functional equation for ζ(s)              . To rewrite it in a symmetric form, 

use the residual formula of the gamma function [3] 

Γ(Z)Γ(1-Z)= 
 

       
 (Formula 8)  

and Legendre's formula  

Γ(
 

 
)Γ(

 

 
+

 

 
)=     

 

 Γ(Z) (Formula 9) , 

Take z= 
 

 
 in (Formula 8) and substitute it to get 

sin(
  

 
)= 

 

  
 

 
      

 

 
 
 (Formula 10) , 
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In (Formula 9), let z=1-s and substitute it in to get 

Γ(1-s)=     
 

 Γ(
   

 
)Γ(1- 

 

 
) (Formula 11) 

By substituting (Formula 10) and (Formula 11) into (Formula 7), we get 

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s C and s  ), also 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s, 

And that's exactly what Riemann said in his paper. 

That is to say: 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s , 

also 

  
 

 
     

 

 ζ(s)=   
   

 
     

   

 
 ζ(1-s) s C and s  ), 

or  

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s)             (Formula 2), 

Then ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  ) (Formula 7) , 

under the transformation s→1-s ,will get 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s C and s  ) (Formula 6). Then  

 (1-s)=
    

          
  

 
       

 s C and s  ),           =0 and s   (     )， then if 

 (1-s)=
    

          
  

 
       

 s C and s  ) is  

going to make sense, then the denominator       sin(
  

 
)Γ(1-s) ≠0, Clearly indicates 

    (s C and s  ),       (s C and s  ), Γ(1-s)   (s C and s  ), so sin(
  

 
) can 

not equal to zero, so sin(
  

 
)   (s C and s  ), so So when     =0 and s   (    )，

then             0 s C and s              ，     . 

According to the property that Gamma function Γ(s) and exponential function are nonzero, is 

also that Γ(
   

 
)         

   

   , according to   
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s C and 

s  ) (Formula 12), According the equation ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s C and s  ) 

obtained by Riemann,since Riemann has shown that the Riemann ζ(s) s C and s  ) 

(Formula 6) function has zero, that is, in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  s C and s  )  
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(Formula 6), so ζ(s)=0 s C and s  ) is true. According to the property that Gamma function 

Γ(s) and exponential function are nonzero, is also that Γ(
   

 
)         

   

   , 

So when ζ(s)=0 s C and s  ), then ζ(1-s)=0 s C and s  ), also must ζ(s)=ζ(1-s)=0 s C and 

s  ). 

           =         
 

 
 

 
  

 

    
 
    2.7182818284...,  

and because sin(Z)=
        

  
, Suppose Z=s=  +ti (  R,t R        ), then  

 

sin(s)=
        

  
 = 

                  

  
, 

sin( )=
        

  
 = 

                  

  
, 

according   =       =     =                       =                                

then 

  =       =     =                                         

   =        =                                                          , 

            =                                                            ,                                                                                                                                                                                                                                                                                                                                               

    =         =                                                             , 

              =                                                           , 

  =       =     =                       =                         , 

  =       =      =                         =                         , 

    =         =       =                         =                           , 

    =         =        =                          =                           , 

So 

  =  ,     =     , 

and 

        

  
 =

        

  
 , 

So 

sin(s)=       , 

and 

sin(
  

 
)=    

  

 
   . 

And the gamma function on the complex field is defined as: 

Γ(s)=       

 
   dt, 

Among Re(s)>0, this definition can be extended by the analytical continuation principle to the 

entire field of complex numbers except for positive integers (zero and negative integers). 
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So 

Γ(s)=     ,  

and  

Γ(1-s)=        .When ζ(1-  )=       =0=ζ(s)=ζ(1-s)=0  s  C and s    , and according 

ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s         ), then ζ(s)=       s C and s  ),is also 

say ζ(s)=ζ( )=ζ(1- )=0 s C and s  ). so only ζ( +ti)=ζ( -ti)=0 is true. According the equation  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)             obtained by Riemann,since Riemann has 

shown that the Riemann ζ(s)               function has zero, that is, in 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                        , ζ(s)=0              is true, so 

when ζ(s)=0             , then only ζ(s)=ζ(1-s)=0              is true. 

If ζ(s)=0                         , then ζ(s)=  ( )=0, it shows that the zeros of the 

Riemann ζ(s) function must be conjugate, then there must be  (s)= ( )=0, indicating that the 

zeros of the Riemannian ζ(s) function must be conjugate , and in the critical band of Re(s) (0,1), 

there are no non-conjugate zeros.According ζ(s)=  ( )=0，if s= ，         ，          

                he function  (s)(s C and s≠1) has the value zero                

1 s=i0     d   1           2s    sin  2                      ((Formula  7), so 

a negative even number can be the zero of Riemann ζ(s)(s C and s≠1). If    , then s and   are 

not both real numbers but both imaginary numbers, t R and t≠0. And according to      

          
  

 
                             (          ), if the  (s) = 0 (s   C and s≠1) 

was established, then ζ(1-s)=ζ(s)=0               must be true , because ζ(s)=          

                    ， so when ζ(s)=0                        ,then ζ(s)=  (s)=0        

                , so the two zeros s and 1-s of Riemann ζ(s)(s C and s≠1) must also be 

conjugate. If either of s and 1-s are real numbers other than negative even numbers, since s and 1-s 

are conjugate, then s=1-s, then s=
 

 
. Since     

  

 
      

 

 
 

 

 
      

 

 
   , and because ζ(

 

 
) 

diverge, then neither s nor 1-s are zeros of Riemann ζ(s)(s C and s≠1), that is, Riemann ζ(s)(s C  
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and s≠1) has no real zeros other than negative even numbers. If Re(s)=1, then Re(1-s)=0, then s 

and 1-s are not conjugate, if  Re(s)=0, then Re(1-s)=1, then s and 1-s are not conjugate either, so 

Riemann ζ(s)(s C and s≠1) has no zeros with real parts of 1 or 0. If Re(s)>1, then Re(1-s)<0, then  

s and 1-s are not conjugate, or Re(s)<0, then Re(1-s)>1, then s and 1-s are not conjugate, so the 

real part of Riemann ζ(s)(s C and s≠1) zero s must be 0<Re(s)<1, that is, Re(s) (0,1), which 

shows that the prime number theorem holds. If s and 1-s are both real and imaginary, then s and 

1-s are not conjugated, then s and 1-s cannot both be zeros of Riemann ζ(s)(s C and s≠1), so 1-s 

and s can only be both imaginary and conjugate, and s cannot be pure imaginary, because if s is 

pure imaginary, then 1-s and s are not conjugated. So ζ(s)(s C and s≠1) has no pure imaginary  

zero. And if  Re(s)≠
 

 
, then Re(s)≠Re(1-s), then 1-s and s are not conjugate, so Re(s)≠

 

 
 cannot 

be true. So only 1-s=  is true, that is, only 1- -ti= -ti is true, so only  =
 

 
, t R and t≠0, so the real 

part of the non-real zeros of Riemann ζ(s)(s C and s≠1) can only be , that is, only Re(s)=
 

 
 is true, 

Equivalent to            
 

 
         

 

 
                 ，                  

 

 
 

ti=0                 12 ti=0            . Therefore, in the critical band of Re(s)  (0,1), 

Re(s)≠ 
 

 
 is impossible, and there is no zero whose real part is not equal to 

 

 
 , so the Riemann 

conjecture holds. The symmetries of zeros s and zeros 1-s are not sufficient to prove that the 

nontrivial zeros of the Riemannn ζ(s)(s C, s≠1) function are on the critical line, and zeros s and 

zeros 1-s are symmetric only about the point (
 

 
,i) on the critical line. The conjugacy of s and 1-s is 

the fundamental reason why the nontrivial zeros of Riemann ζ(s)(s C, s≠1) are all located on the 

critical line. According to ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s C and s  ) (Formula 6),so when ζ

(s)=0, then   (s)=  (1-s)=0 is true. Because                           then when 

    =0 or     =0, then it must be true that     =    =0. So when          (s)=0, then s 

and 1-s must also be conjugate. From this we get s=
 

 
+ti(t   and    ), or  
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s=
 

 
-ti(t   and t  ).According to the Euler product formula, when Re(s)>1, since 

every product factor in the Euler product formula is not equal to zero, so when Re(s)>1, 

Euler              is equivalent to the Riemann     function,Since each of the product 

factors in the Euler product formula is not equal to zero, when Re(s)>1, ζ(s) is not equal 

to zero, so the positive even number 2n(    ) can make sin(
  

 
) =0, but it is not the 

zero of Riemann  (s). For real numbers other than negative and positive even numbers, 

in addition to not making sin(
  

 
)=0, it must satisfy that s=1-s, then s=

 

 
, and function  (

 

 
) 

diverge, so real numbers other than negative even numbers are not zeros of Riemann 

 (s). It is also true that  (s)=  (1-s)=0, so when Re(s)>1, then if Re(s)<0, then  (s) is not 

equal to zero. And because when  (s)=0, if Re(s) =0 or Re(s) =1, then s and 1-s are not 

conjugate, so Re(s)=0 or Re(s)=1, then (s) has no zero.So in addition to negative even 

numbers, Riemann  (s) has zero points if the value of Re(s) is in the interval (0,1). It holds 

that  (s)=  (1-s)=0, and we know that the zero of  (s) is symmetric with respect to the 

point (
 

 
,0i). But is it possible to determine that the nontrivial zeros of the Riemann  (s) 

function are all on the critical boundary where the real part is equal to 
 

 
 , just because 

the zeros of   (s) are symmetric with respect to the point (
 

 
,0i)? Obviously not, 

when Re(s) (0,1), if Re(s)=0.54.... ,then Re(1-s)=0.45... ,s and 1-s are symmetric about 

the point (
 

 
,0i), but Riemann argued that such a complex number is not the zero of 

Riemann  (s).Riemann was right, and it is clear that when Re(s) is not equal to 
 

 
, then s 

and 1-s must not be conjugate, and according to the zeros of the  (s) function must be 

conjugate, then if Re(s) is not equal to 
 

 
, then it must not be the zero of the  (s)  
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function. To sum up, the non-trivial zeros of the Riemann  (s) function must all lie on 

the critical boundary where the real part of the complex plane is equal to 
 

 
, and the 

Riemann conjecture must be true.So only when  =
 

 
 and ζ(s)=0             ,then it 

must be true that ζ(1-s)=ζ(s)=0             .ζ(s)              and ζ(                

are complex conjugates of each other,that is ζ(s)=                   , if  ζ(s)=0    

          , then must ζ( )=0             , and so if ζ(s)=0             , then it must 

be true that ζ(s)=ζ( )=0             .  

According to Riemann's paper "On the Number of primes not Greater than  ", we can obtain an 

expression ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                in relation to the Riemann ζ(s) 

             function, which has long been known to modern mathematicians, and which I  

derive later. According ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                           obtained by 

Riemann,so when ζ(s)=0 then ζ(1-s)=ζ(s)=0(s C and s≠1 ), and sin(
  

 
  ), then only s=  or s=1-s 

or  =1-s , and sin(
  

 
  ),so s R and s=-2n(    ),drop s=2n(    ),so only when  =

 

 
, the 

next three equations ζ( +ti)=0, ζ(1- -ti)=0, and ζ( -ti)=0 are all true,so only s=
 

 
+ti (t R and t≠0) 

and s=
 

 
-ti(t R and t≠0) is true.And when ζ(s)=0 then according ζ(1-s) ζ(s)and ζ(s)=    =    

          ,is also say ζ(s)=ζ( )=0 and ζ(1-s)=ζ( )=0             ,then only ζ( +ti)=ζ( -ti)=   

is true.Since Riemann has shown that the Riemann ζ(s)              function has zero, that 

is, in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                          , ζ(s)=0              is 

true, so when ζ(s)=0,In the process of the Riemann conjecture proved about ζ(s)=ζ( )=0 and 

ζ(1-s)=ζ( ) =0             , is refers to the ζ(s)                is a functional numbe. 

Since Riemann has shown that the Riemann ζ(s)              function has zero, that is, 

in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                         , ζ(s)=0              is 

true. 

According ζ(s)=ζ(1-s) =0               and ζ(s)=ζ( )=ζ(1- )=0             ,then s=  or 

s=1-s or  =1-s , and sin(
  

 
  ),so s R and s=-2n(    ),drop s=2n(    ),    +ti=1- -ti ,or 

 -ti=1- -ti,                              =
 

 
 and t=0, or   

 

 
       R and t  , 

so     , or s=
 

 
+0i ,or s=

 

 
+ti   R        ) and s=

 

 
-ti   R        ), because   

 

 
  

          ,  (1) is divergent,  (
 

 
) is more divergent,so drop them.Beacause only when  
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 =
 

 
,the next three equations,       )=  ,         )=0, and    -ti)=   are all true, 

because   
 

 
            ,  (1) is divergent,  (

 

 
) is more divergent, so drop s=1 and 

s=
 

 
, so only s=

 

 
+ti(t R        ,s C) is true.  

If ζ(s)=0                         , then ζ(s)=  ( )=0, it shows that the zeros of the 

Riemann ζ(s) function must be conjugate, then there must be  (s)= ( )=0, indicating that the 

zeros of the Riemannian ζ(s) function must be conjugate , and in the critical band of Re(s) (0,1), 

there are no non-conjugate zeros.According ζ(s)=  ( )=0，if s= ，         ，          

                he function  (s)(s C and s≠1) has the value zero                

1 s=i0     d   1           2s    sin  2                      ((Formula  7), so 

a negative even number can be the zero of Riemann ζ(s)(s C and s≠1). If    , then s and   are 

not both real numbers but both imaginary numbers, t R and t≠0. And according to      

          
  

 
                             (          ), if the  (s) = 0 (s   C and s≠1) 

was established, then ζ(1-s)=ζ(s)=0               must be true , because ζ(s)=          

                    ， so when ζ(s)=0                        ,then  

ζ(s)=  ( )=0                         , so the two zeros s and 1-s of Riemann ζ(s)(s C 

and s≠1) must also be conjugate. If either of s and 1-s are real numbers other than negative even 

numbers, since s and 1-s are conjugate, then s=1-s, then s=
 

 
. Since     

  

 
      

 

 
 

 

 
  

    
 

 
   , and because ζ(

 

 
) diverge, then neither s nor 1-s are zeros of Riemann ζ(s)(s C and s≠

1), that is, Riemann ζ(s)(s C and s≠1) has no real zeros other than negative even numbers. If 

Re(s)=1, then Re(1-s)=0, then s and 1-s are not conjugate, if  Re(s)=0, then Re(1-s)=1, then s and 

1-s are not conjugate either, so Riemann ζ(s)(s C and s≠1) has no zeros with real parts of 1 or 0. 

If Re(s)>1, then Re(1-s)<0, then s and 1-s are not conjugate, or Re(s)<0, then Re(1-s)>1, then s 

and 1-s are not conjugate, so the real part of Riemann ζ(s)(s C and s≠1) zero s must be 0<Re(s)<1, 

that is, Re(s) (0,1), which shows that the prime number theorem holds. If s and 1-s are both real  
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and imaginary, then s and 1-s are not conjugated, then s and 1-s cannot both be zeros of Riemann 

ζ(s)(s C and s≠1), so 1-s and s can only be both imaginary and conjugate, and s cannot be pure 

imaginary, because if s is pure imaginary, then 1-s and s are not conjugated. So ζ(s)(s C and s≠1) 

has no pure imaginary zero. And if  Re(s)≠
 

 
, then Re(s)≠Re(1-s), then 1-s and s are not 

conjugate, so Re(s)≠
 

 
 cannot be true. So only 1-s=  is true, that is, only 1- -ti= -ti is true, so 

only  =
 

 
, t R and t≠0, so the real part of the non-real zeros of Riemann ζ(s)(s C and s≠1) can 

only be , that is, only Re(s)=
 

 
 is true, Equivalent to           

 

 
         

 

 
       

R and     ，                12+ti=0                 12 ti=0            . Therefore, 

in the critical band of Re(s)  (0,1), Re(s)≠ 
 

 
 is impossible, and there is no zero whose real part is 

not equal to 
 

 
 , so the Riemann conjecture holds. The symmetries of zeros s and zeros 1-s are not 

sufficient to prove that the nontrivial zeros of the Riemannn ζ(s)(s C, s≠1) function are on the 

critical line, and zeros s and zeros 1-s are symmetric only about the point (
 

 
,i) on the critical line. 

The conjugacy of s and 1-s is the fundamental reason why the nontrivial zeros of Riemann ζ(s) 

(s C, s≠1) are all located on the critical line. According to ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s C and 

s  ) (Formula 6),so when ζ(s)=0, then  (s)= (1-s)=0 is true. Because             

C  and  s≠1, then when  s=0 or  s=0, then it must be true that  s= s=0. So when 

         (s)=0, then s and 1-s must also be conjugate. From this we get s=
 

 
+ti(t   

and    ), or s=
 

 
-ti(t   and t  ).According to the Euler product formula, when 

Re(s)>1, since every product factor        
  

 in the Euler product formula is not 

equal to zero, so when Re(s)>1, Since each of the product factors in the Euler product 

formula is not equal to zero, when Re(s)>1,  (s) is not equal to zero, and according to 

ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  )(Formula 7),so the positive even number  
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2n(    ) can make sin(
π 

 
) =0, but it is not the zero of Riemann  (s). For real numbers 

other than negative and positive even numbers, in addition to not making sin(
  

 
)=0, it 

must satisfy that s=1-s, then s=
 

 
, and function  (

 

 
) diverge, so real numbers other than 

negative even numbers are not zeros of Riemann- (s). It is also true that  (s)=  (1-s)=0, 

so when Re(s)>1, then if Re(s)<0, then  (s) is not equal to zero. And because 

when  (s)=0, if Re(s) =0 or Re(s) =1, then s and 1-s are not conjugate, so Re(s)=0 or 

Re(s)=1, then (s) has no zero.So in addition to negative even numbers, Riemann  (s) has 

zero points if the value of Re(s) is in the interval (0,1). It holds that  (s)= (1-s)=0, and we 

know that the zero of  (s) is symmetric with respect to the point (
 

 
,0i). But is it possible 

to determine that the nontrivial zeros of the Riemann  (s) function are all on the critical 

boundary where the real part is equal to 
 

 
 , just because the zeros of  (s) are symmetric 

with respect to the point (
 

 
,0i)? Obviously not, when Re(s) (0,1), if Re(s)=0.54.... ,then 

Re(1-s)=0.45... ,s and 1-s are symmetric about the point (
 

 
,0i), but Riemann argued that 

such a complex number is not the zero of Riemann  (s).Riemann was right, and it is clear 

that when Re(s) is not equal to 
 

 
, then s and 1-s must not be conjugate, and according 

to the zeros of the  (s) function must be conjugate, then if Re(s) is not equal to 
 

 
, then it 

must not be the zero of the  (s) function. To sum up, the non-trivial zeros of the 

Riemann  (s) function must all lie on the critical boundary where the real part of the 

complex plane is equal to 
 

 
, and the Riemann conjecture must be true.So only when  =

 

 
 

and ζ(s)=0             ,then it must be true that ζ(1-s)=ζ(s)=0             .ζ(s)   

           and ζ(                 are complex conjugates of each other,that is 

ζ(s)=                  , if ζ(s)=0             , then must ζ( )=0             , and 

so if ζ(s)=0             , then it must be true that ζ(s)=ζ( )=0             .  

According to Riemann's paper "On the Number of primes not Greater than  ", we can obtain an  
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expression ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                in relation to the Riemann ζ(s) 

             function, which has long been known to modern mathematicians, and which I  

derive later. According ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                           obtained by 

Riemann,so when ζ(s)=0 then ζ(1-s)=ζ(s)=0(s C and s≠1 ), and sin(
  

 
  ), then only s=  or s=1-s 

or  =1-s , and sin(
  

 
  ),so s R and s=-2n(    ),drop s=2n(    ),so only when  =

 

 
, the 

next three equations ζ( +ti)=0, ζ(1- -ti)=0, and ζ( -ti)=0 are all true,so only s=
 

 
+ti (t R and t≠0) 

and s=
 

 
-ti(t R and t≠0) is true.And when ζ(s)=0 then according ζ(1-s) ζ(s)and ζ(s)=    =    

          ,is also say ζ(s)=ζ(  )=0 and ζ(1-s)=ζ(  ) =0              ,then only 

ζ( +ti)=ζ( -ti)=   is true.Since Riemann has shown that the Riemann ζ(s)              

function has zero, that is, in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                           , 

ζ(s)=0              is true, so when ζ(s)=0,In the process of the Riemann conjecture proved 

about ζ(s)=ζ( )=0 and ζ(1-s)=ζ( ) =0             , is refers to the ζ(s)                is a 

functional numbe.In the process of the Riemann hypothesis proved about ζ(s)=ζ(1-s)= ζ( )=0, is 

refers to the ζ(s) is a functional number? It's not. Does ζ(s)=ζ(1-s)=ζ( )              mean 

the symmetry of the ζ(s) function equation? Does that mean the symmetry of the equation 

s= =1-s? Not really. In my analyst, ζ(s)、ζ(1-s) and ζ( ) function expression are       
   (n 

       n traves all positive integer,            ), so according  

to                                                             
   ,ζ(s)               

function of the independent variable s, the relationship between   and 1-s only   
 =3 kinds, 

namely s=  or s=1-s or  =1-s. As follows: According ζ(s)=ζ(1-s)=0              and ζ(s)=ζ( ) 

=0             ,so s and 1-s are also conjugate,then only s=  or s=1-s or  =1-s , and 

sin(
  

 
  ),so s R, and s=-2n(n     ),                        +ti=1- -ti ,or  -ti=1- -ti, 

                            =
 

 
and t=0,or   

 

 
       R and t   ,so       or 

s=
 

 
+oi ,or s=

 

 
+ti   R        ) and s=

 

 
-ti   R        ),because   

 

 
            , 

 (1) is divergent,  (
 

 
) is more divergent,so drop them.Beacause only when  =

 

 
 ,the next three 

equations,       )=  ,         )=  , and    -ti)=0 are all true,  

because   
 

 
            ,  (1) is divergent,   

 

 
) is more divergent,so only  
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s=
 

  
+ti(t R        ) and s=

 

  
-ti(t R        ) are true, or say only s=

 

 
+ti t R        ) and 

s=
 

  
-ti(t R        )are true.Since Riemann has shown that the Riemann ζ(s)               

function has zero, that is, in ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)                         , 

ζ(s)=0                      is true. According the  

equation      
 

 
s(s-1)  

 

 
    

 

                                               

          , so     =                                 , because   
 

 
 =  

 

 
 , and  

   
 

 =   
 

  , and because ζ(s)=                 ，so  (s)=                       

                                                So when ζ(s)=0                    

          ,then     =ζ                                         and 

    =      =    =0                            must be true , so the zeros of the 

Riemann (s) function and the nontrivial zeros of the Riemann                   function 

are identical, so the complex root of Riemann  (s)=                

satisfies s=
 

 
+ti t R        ) and s=

 

 
-ti t R        ).According to the Riemann function 

 
 

 
(s-1)   

 

 ζ(s)=ξ(t                                   and he Riemann definded 

s=
 

 
+ti t C         , because s 1 and                , and  

 

 
 o,   

 

   , so 

 
 

 
(s-1)   

 

  o, and when ξ(t)=0, then  
 
 

 
    

 
(  

 

 
+ti)    

 
 
   

   
 

 
    =ξ(t)=0, and 

ζ(
 

 
+ti)=  

    

 
 

 
      

 
 
 

 =
 

 
 

 
      

 
 
 

= ， so t R         . So the root t of the equations 

 
 
 

 
    

 
( 

 

 
+ti)  

 
 
   

   
 

 
    =ξ(t)=0 and 4 

   
 
        

  

 

 
  

 

     
 

 
    )  = 

ξ(t)=0              and ξ(t)=
 

 
 -(   

 

 
)      

 

 
  

 

     
 

 
      =0              must 

be real  and    . If Re(s)=  
 

 
     ,then ζ(k-s)=         cos(

  

 
)Γ(s)ζ(s)            

                      and        
 

 
s(s-k)   

 

 
    

 

                       

                                                                        

          . So when ζ(s)=0                            ,then     =            

                                                                    and  

    =       =     =0                          

                                          must be true , and s=
 

 
+ti  k R,t R        )  
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must be true, then  
 

 
(s-k)   

 

 ζ(  )=   
 
 

 
    

 
(    

 

 
+ti)    

 
    

   
 

 
    =ξ(t)=0         

                                                                      ), 

ζ(
 

 
+ti)=

    

 
 
 
     

 
    

 

 
     

 

 
 
   

 

=
 

 
 
 
     

 
    

 

 
     

  

 
 
   

 

=  k R,t C         ),so t R        . So 

the root  of the equations   
 
 

 
    

 
(   

 

 
+ti)  

 
    

   
 

 
    =ξ(t)=0 k R,t          ) must 

be real  and    . But the Riemann ζ(s) function only satisfies 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)(            ) and      

 

 
s(s-1)  

 

 
    

 

       

                                                           ， is also say that only  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)            ) (Formula 7) is true , so only Re(s)=

 

 
=

 

 
      is 

true, so only k=1 is true.The Riemann conjecture must satisfy the properties of the Riemann 

ζ(s)                 function and the Riemann                          

                                           function, The properties of the Riemann 

ζ(s)                            function and the Riemann                  

                                                     function are fundamental, the  

Riemann conjecture must be correct to reflect the properties of the Riemann ζ(s)     

                                                         function and the 

Riemann                                                                       

function, that is, when ζ(s)                                 the roots of the Riemann 

 (t)              function can only be real, that is, Re(s) can only be equal to 
 

 
, and Im(s) 

must be real, and Im(s) is not equal to zero.So the Riemann Riemann conjecture must be 

correct.Riemann found in his paper that  

                
 

 
     

 

              
  

 
 

 

 
  dx+   

 

 
  

  

 
 

   

 dx + 
 

 
   

   

 
 

 
 - 

 

 
  )dx 

=  
 

      
 +        

  

 
(  

 

 
  +   

   

 )dx             )  s  C and s    ), Because  
 

      
 

and      
  

 
( 

 

 
  +  

   

 )dx are all invariant under the transformation s→1-s If I introduce the 

auxiliary function     =  
 

 
     

 

                                   ,So I can just 

write it as ψ(s)=ψ(1-s). But it would be more convenient to add the factor       to ψ(s) and 

introduce the coefficient 
 

 
 , which is exactly what Riemann did,                       

 

 
s(s-1)  

 

 
    

 

     (s                           Because the factor (s-1) cancels  
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out the first pole of      at s=1, And the factor s cancels out the pole of   
 

 
  at s=0, and s  is  

equal to -2, -4, -6,...,the rest of the poles of   
 

 
  cancel out . So     is an integral 

function.And the factor        obviously doesn't change under the transformation s   

 ,so we also have the function  

    =                                                                       ), 

base on ζ(1-s)=       – cos(
  

 
)Γ(s)ζ(s)(                            At the same time, 

according to ζ(1-s)=    π – cos(
π 

 
)Γ(s)ζ(s)            ), if ζ(s)=0  s C and s  ),then must 

ζ(1-s)=0  s C and s  ), is that to say ζ(s)=ζ(1-s)=0 s C and s  ). According to Riemann 

definded s=
 

 
+ti(t C       ), s and t differ by a linear transformation . It's a 90 degree 

rotation plus a translation of 
 

  
. So line Re(s)= 

 

 
 in the s plane corresponds to the real  

number line in the t plane,the zero of Riemann                              

                                    ) on the critical line Re(s)= 
 

 
 corresponds to the real root of 

ξ(t)(t C        ). In Riemann function                 ), the function equation     =    

                              becomes equation     =                   is an 

even function, an even function is a symmetric function, it’s zeros are distributed symmetrically  

with respect to t=0 .The function                  designed by Riemann and   
 

 
  

                definded by Riemann and     =                         

                                           are equivalent to     =                  .So 

the function                                                                     

is also an even function.The zero points on the graph of an even function                

                                                   with respect to the coordinates of its 

argument on the real number line equal to some value are symmetrically distributed on the line 

perpendicular to the real number line of the complex plane.          =              ，is 

also that     =     =               the zeros of                  are symmetrically 

distributed with respect to t equals  .          =                          

                                      ,is also that     =       =                    

         ,the zeros of  

                                                                  are  

symmetrically distributed with respect to point (
 

 
,0i) on a line perpendicular to the real 

number line of the complex plane.So when     =      =                          

                                      , s and 1-s are pair of zeros of the function        

                          symmetrically distributed in the complex plane with respect  
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to point (
 

 
,  i) on a line perpendicular to the real number line of the complex plane.When 

ζ(s)=0 s C and s                                                   ), then ζ(1-s)=0 s C 

and s  ) , is aslo that  

ζ(s)=ζ(1-s)=0                                                              . We find 

ζ(s)=ζ(1-s)=0                                                              and  

    =       =                                                                 are 

just the name of the function is idifferent,the independent variable s is equal to 
 

 
+ti(t C and 

   ),that means that the zero arguments of function ζ(s)                          

Z+ and function  s            and s       Z+,n traverses all positive integers are exactly 

the same,so the zeros of the  

ζ(s)                                                                function in the 

complex plane also correspond to the symmetric distribution of point (
 

 
,   i) on a line 

perpendicular to the real number line in the complex plane,                         

                                                           s and 1-s are pair of zeros 

of the function  

                                                                 symmetrically 

distributed in the complex plane with respect to point (
 

 
,  i) on a line perpendicular to the real 

number line of the complex plane.We got     = ( )(s= +ti,    ,   R               

                                                 ) before,When t in Riemann definded   

s=
 

 
+ti(t C        ) is a complex number, then s in     = ( )(s= +ti,    ,   R       

                                                     ) are consistent with s in 

Riemann's appoint s=
 

 
+ti(t C         ) and s=

 

 
-ti(t C         ).If     = ( )=0(  

                       ),Since s and   are a pair of conjugate complex numbers,So s 

and   must be a pair of zeros of the function                                 in 

the complex plane with respect to point   ,0i) on a line perpendicular to the real number line.s 

is a symmetric zero of  1-s, and a symmetric zero of  . By the definition of complex numbers, 

how can a symmetric zero of the same function                                 of 

the same zero independent variable s on a line perpendicular to the real number axis of the 

complex plane be both a symmetric zero of 1-s on a line perpendicular to the real number axis of 

the complex plane with respect to point (
 

 
,   i) and a symmetric zero of   on a line 

perpendicular to the real number axis of the complex plane with respect to point       ? Unless 

  and 
 

 
 are the same value,                 

 

 
, and only 1-s=   is true, and 1-s=s is 

wrong.Otherwise it's impossible,this is determined by the uniqueness of the zero of the function 

                                on the line passing through that point 

perpendicular to the real number axis of the complex plane with respect to the vertical foot 

symmetric distribution of the zero of the line and the real number axis of the complex plane,only  
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one line can be drawn perpendicular from the zero independent variable s of the function 

                                to the real number line of the complex plane, the 

vertical line has only one point of intersection with the real number axis of the complex plane. In 

the same complex plane, the same zero point of the function                       

          on the line passing through that point perpendicular to the real number line of 

the complex plane there will be only one zero point about the vertical foot symmetric 

distribution of the line and the real number line of the complex plane.Because     = ( )(   

                       ), then if       )=0,              )=0,and         

     =       =0                            ,and sin(
  

 
  ),so s  R, and 

s=-2n(    ),                     then except s=-2n(    ) , the next three equations, 

      )=0,       )=0, and   1- -ti)=0, are all true, so except s=-2n(    ) , only 1- =  is 

    , then except s=-2n(    ),only s=
 

 
+ti t R        ) and s=

 

 
-ti t R        )are 

true.Since the harmonic series  (   diverges, it has been proved by the late medieval French 

scholar Orem (1323-1382).The Riemann hypothesis and the Riemann conjecture must satisfy the 

properties of the Riemann ζ(s)                              function and the 

Riemann ξ(s)                             function, The properties of the Riemann 

ζ(s)                             ) function and the Riemann        s C and 

s  ) function are fundamental, the Riemann conjecture must be correct to reflect the 

properties of the Riemann ζ(s)                           ) function and the Riemann 

                              ) function, that is, the roots of the Riemann  (t) t C 

and t  ) function must only be real, that is, Re(s) can only be equal to 
 

 
, and Im(s) must be real, 

and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann conjecture must be 

correct. Riemann  

got  
 

 
(s-1)  

 

 ζ(s)=ξ(t) t R         ,                       ),and ξ(t)=
 

 
 -(   

 

 
)     

 

 
  

 

     
 

 
        (t R        ) in his paper, or  

 
 

 
(s-1)  

 

 ζ(s)    
 
 

 
    

 
( 

 

 
+ti)  

 
    

   
 

 
    =ξ(t)(t R         ,                   

        ） and ξ(t)=4  

   
 
       

  

 

 
  

 

     
 

 
    )                           

               ）. Because ζ(
 

 
+ti)=0(t C        ), so the roots of 

 
 
 

 
    

 
( 

 

 
+ti)  

 
    

   
 

 
    =ξ(t)=  (t C        ) and 4 

   
 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=   

(t C        ) and ξ(t)=
 

 
 -(   

 

 
)      

 

 
  

 

     
 

 
      =0(t C        ) must all be real 

numbers. According to the 2sin(  )            
      

    

 

 
 Riemann got in his paper and the 
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ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)(            ), We know that the Riemann  (s)(s C and s 1) 

function is a two-to-one mapping, or even a many-to-one mapping deterministic universal  

function, or a one-to-two mapping, or even a one-to- many mapping deterministic universal 

function. If we consider the Riemann  (s)(s C and   1) function as a general complex number 

whose domain includes real numbers, then s=-2n(n is a positive integer) is the only class of real  

zeros of the Riemann  (s)(s C and s 1) function at the root, If we consider the Riemann ζ(s)(s C 

and s 1) function as a general complex number whose domain does not include real numbers, 

then s=
 

 
+ti(t R and t 0) is the only class of complex zeros of the Riemann  (s)(s C and s≠1) 

function at the root, so the zero real root of the Landau-Siegel function L( , ✗(n))(  R, ✗(n) 1) 

does not exist. 

When     =                                and ξ(t)=              , the real 

part of the equation ξ(t)=0(t C        ) must be real between   and T. Because the real part 

of the equation ξ(t)=0 has the number of complex roots between   and T approximately equal 

to 
 

  
  

 

  
 

 

  

 [1] ,This result of Riemann's estimate of the number of zeros was rigorously 

proved by Mangoldt in 1895. Then,when     =  s C and s                 ) and 

ξ(t)=0 t           ), the number of real roots of the real part of the equation ξ(t)=0 t  

         ) between 0 and T must be approximately equal to 
 

  
  

 

  
 

 

  
,so when the  

Riemann      s C and s                 ) function has nontrivial zeroes, then and the 

Riemann conjecture are perfectly valid. N=         
 

  
  

 

  
 

 

  
)  , so the Riemann ζ(s)( s C 

and s                ) function in Re(s)=
 

 
 nontrivial critical line zero have an infinite 

number, 1921, The British mathematician Hardy has proved that the Riemann ζ(s)( s C and  

s                 ) function has an infinite number of non-trivial zeros on the critical 

line Re(s)= 
 

 
 , but he did not prove that the non-trivial zeros of the Riemann ζ(s)( s C and 

s                 ) function are all on the critical line Re(s)= 
 

 
.  

Because the number of roots t of     
 

 
         

 

                             
    

    
 

                             
   =0 is the number of roots of  

ξ(t)=
 

 
 -(   

 

 
)       

 

 
  

 

     
 

 
      =0. Because when t=0,         

 

 
  is divergent, when 

       [0,   ] , the numbers of the root t of  

  
 

 
         

 

                             
    

    
 

                             
   =0 is   

 

  
    so when t (0,    , the numbers of the  
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roots  of 

   
 

 
         

 

                             
        

 

                             
   =0 

is N=      
 

  
    

 

  
  ). 

Definition: Assuming that a(n) is a uniproduct function, then the Dirichlet series 

          
                                                                  is equal 

to the Euler product  

    ，                                                               .Where the 

product is applied to all prime numbers p, it can be expressed as: 1+       +         +...，this 

can be seen as a formal generating function, where the existence of a formal Euler product 

expansion and a(n) being a product function are mutually sufficient and necessary conditions. 

When a(n) is a completely integrative function, an important special case is obtained,where 

   ，                                                              is a geometric 

series, and 

      =
 

         
                                                           .When 

    =1,it is the Riemann zeta function, and more generally the Dirichlet feature.  

Euler's product formula: for any complex number s,                            
    

                                                                        

                                                            

                        ζ         
   =          

 (                       , 

n           C，n goes through all the          numbers, p goes through all the prime 

numbers). 

Riemann  function expression: 

ζ(s)=1/  +1/  +1/  +...+1/   (m tends to infinity, and m is always even). 

(1)Multiply both sides of the expression by (1/  ),  

(1/  )ζ(s)=1/  (1/  )+1/  (1/  )+1/  (1/  )+...+1/        =1/  +1/  +1/  +...+1/      

This is given by (1) - (2) 

ζ(s)-(1/  )ζ(s)=1/  +1/  +1/  +...+1/  -[1/  +1/  +1/  +...+1/     ] 

The derivation of Euler product formula is as follows: 

ζ(s)-(1/  )ζ(s)=1/  +1/  +1/  +...+1/      . 

Generalized Euler product formula: 

Suppose f(n) is a functionthat satisfies f(  )f(  )=f(    ) and           
    (   and    are 

both natural numbers), then      
 =                          . 

Proof: 

The proof of Euler product formula is very simple, the only caution is to deal with infinite series 

and infinite products, can not arbitrarily use the properties of finite series and finite products. 

What I prove below is a more general result, and the Euler product formula will appear as a  

special case of this result. 
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   ，so                        absolute convergence.Consider the 

part of p<N in the continued product (finite product),Since the series is absolutely convergent 

and the product has only finite terms, the same associative and distributive laws can be used as 

ordinary finite summations and products. 

Using the product property of f(n), we can obtain: 

                            =      
 .The right end of the summation is performed on all  

natural numbers with only prime factors below N (each such natural number occurs only once in 

the summation, because the prime factorization of the natural numbers is unique).Since all 

natural numbers that are themselves below N obviously contain only prime factors below N, So 

Σ'f(n) =         
   + R(N),Where R(N) is the result of summing all natural numbers that are 

greater than or equal to N but contain only prime factors below N.From this we get:        

f(p)+f(p2)+f(p3)+...]=n<   f(n) + R(N).For the generalized Euler product formula to hold, it 

is only necessary to prove           =0,and this is obvious,because |R(N)| 

           
   ,             

    sign of 

                
   =0,thus           =0.Beacuse                      .=   

    +     +     +...=          , so the generalized Euler product formula can also be written 

as: 

                  
 .In the generalized Euler product formula, take     =   ,Then  

 

obviously            
   corresponds to the condition Rs(s)>1 in the Euler product formula, 

and the generalized Euler product formula is reduced to the Euler product formula. 

From the above proof, we can see that the key to the Euler product formula is the basic property 

that every natural number has a unique prime factorization, that is, the so-called fundamental 

theorem of arithmetic. 

For any complex number s, ✗(n) is the Dirichlet characteristic and satisfies the following 

properties: 

1: There exists a positive integer q such that ✗(n+q)=✗(n); 

2: when n and q are not mutual prime,✗(n)=0; 

3: ✗(a) ✗(b)=✗(ab) for any integer a and b; 

Reasoning 3: 

If          then  

L(s, ✗(n))= 
✗   

  
 
    n           C and s  ，n goes through all the          numbers, 

p goes through all the prime numbers, ✗(n) R  

     ✗      ,         =✗    ),   ，  =
 

          , 

If                 then 

                           =
η   

        
=

 

        
 

       

   
       

        
 
             

    

                     ，n        n goes through all the                           p  
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goes through all the prime numbers). 

So If          then 

GRH(s, ✗   )=L(s, ✗   )=  
✗   

  
 
              

               
 

            n  

        s C and        ，n goes through all the                  , p goes through all the 

prime numbers, ✗(n) R       ✗      ,         =✗    ),   ，  =
 

          .  

       =         

                       
 =                                             

1              , 

           =1-                                =   

                                                             , 

       =         

                       
 =                                           

               , 

           =1-                                                               

    , 

 
       

      
   =[     cos(tln1)      cos(tln2)+     cos(tln3)     cos(tln4)-...]+i[    sin(tln1) 

      sin(tln2)+     sin(tln3)       sin(tln4)+...] , 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   sin(tln1)     

sin(tln2)+    sin(tln3)    sin(tln4)+...] 

                                                         ,  

because 

        =                                                          , 

so 

             =                                                             , 

so 

              
 =              

        

                                                                 . 

becuse L(s,✗   )=          
                  

                  and  

    ✗    =          
                  

                  , 

                                                                     

                                             .  

For the Generalized Riemann function L(s,✗   )= 
✗   
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 ✗ (n) R       ✗     ,         =✗    ),   ，  =
 

         
,                   

                                                  

                                              .so     ✗    =    ✗     

                                                                   . 

        =              =             =                   

isin(lnp)) t=a(p)p   (costlnp isin(tlnp)            s>1               

                                                                         , 

        =              =            =                

                             =                                                  

                                                           

then 

           =          

                       
 =                                    

                                                                           

               =1-                                =   

                                      

                                                                             , 

           =1-                                =   

                                                                   

                                               

When  =
 

 
 , then  

                =                               

                 =            
  

                 , 

So 

                  
 =                                ,becuse  

      ✗    =                   
  and      ✗    =               

 , n       

    s            ，n goes through all the positive integers, p goes through all the 

prime numbers, ✗ (n) R      ✗      ,         =✗        ，  =
 

          ). 

So only       ✗         ✗     

                                                               , 

and 

           ✗    =    ✗                      

                                                           , 

Because     ✗    =✗   ζ(s)    C            , n        n goes through all the  

                  , and       ✗    =✗   ζ(1-s)    C            ,n        n goes 

through all the                   ,  
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so When        =
 

 
, it must be true that     ✗    =     ✗       C            ,n 

       n goes through all the                   ,and it must be true that  

      ✗    =     ✗       C            ,n         n goes through all the 

                  , Suppose k  , 

        =              =             =                   

isin(lnp)) t=a(p)p   costlnp isintlnp      and Res>1             k   , 

        =             =           =                                            = 

                                                                  , 

then 

           =         

                      
  =     

                                                             , 

               =1-                                 =   

                                                                

                                  , 

           =1-                                =   

                                                              

0,p is a prime  numeber) , 

When  =
 

 
(k  ) ,  

then  

                =                                                        , 

                 =           
  

                                              , 

so 

                
  

 =            
  

  

   C                                                               , 

becuse       ✗    =                
  

  , and      ✗    =0 

(                                                                         ）, for 

the generalized Riemann function     ✗       C            ,     n goes through all the 

                 ,          ✗(n) R     ✗     ,          =✗   ),   ，  = 
 

           . 

So 

Only       ✗    =    ✗     

(                                                                              ）, 

and 

Only       ✗    =    ✗    , 
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                                                                          ）, 

   ), 

And because Only       ✗    =     ✗     

(                                                                              ）, 

,so only k=1 be true. 

      ✗         ✗      
✗   

  

 

   

 

(                                                                              ）, 

      ✗         ✗      
✗   

  

 

   

 

(                                                                              ）, 

        ✗           ✗      
✗   

    

 

   

  

(                                                                              ）, 

Suppose 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      Sin(tln1)  ✗      sin(tln2)+ ✗      sin(tln3) ✗      sin(tln4)+...] , 

then  

    ✗    =    ✗     

And n goes through all the          numbers, so n=1,2,3,... ,let's just plug in, so  

    ✗    =  
✗   

  
 
   =[ ✗      cos(tln1)  ✗      cos(tln2)+ ✗      cos(tln3) ✗       c

os(tln4)+...]-i[✗      sin(tln1)  ✗      sin(tln2)+ ✗      sin(tln3)  ✗      sin(tln4)+...]= 

U-Vi  

(                                                                              ）, 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3) ✗      sin(tln4)+...] , 

Then 

    ✗    =  
✗   

  
 
   =[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3)    cos(tln4

)+...]+i[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3) ✗       sin(tln4)+ ...]= U+Vi,  
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(                                                                             ）, 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3)  ✗      sin(tln4)+...] , 

    ✗    and     ✗     are complex conjugates of each other,that is 

    ✗    =    ✗     

(                                                                              ）, 

When  =
 

 
, then    ✗    =      ✗    = U-Vi 

(                                                                              ）, 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3)  ✗      sin(tln4)+...] . 

        ✗           ✗     
✗   η     

          
 

✗   

          
 

       

       
 
    

       

          
 ✗    

 

    

 

     
 
    

       

          
  ✗                                    

   

                                                                              , 

 

W=[ ✗       cos(tln1) ✗       cos(tln2)+ ✗       cos(tln3) ✗        cos(tln4)+...] 

U=[✗       sin(tln1) ✗       sin(tln2)+ ✗       sin(tln3)  ✗       sin(tln4)+...] . 

When  =
 

 
(k  ), then 

Only       ✗    =    ✗         .  

(                                                                 ）, 

which is       =             s  C            ),so only k=1 be true.so only 

Re(s)=
 

 
=

 

 
     .So Only       ✗         ✗     s C                 ) is true, so 

only k=1 is true. 

Because when Re(s)>1 Euler              is equivalent to the Riemann     function,so 

ζ(s)=                                      is true.According to the Euler 

product formula, when Re(s)>1, since every product factor in the Euler product formula 

is not equal to zero, so when Re(s)>1, Since each of the product factors in the Euler  
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product formula is not equal to zero, when Re(s)>1, ζ(s) is not equal to zero, so the 

positive even number 2n(    ) can make sin(
  

 
) =0, but it is not the zero of 

Riemann  (s).Because     ✗    =✗   ζ(s) s C, Re(s)>1,                        

                  , ✗          ✗    ), because when Re(s)>1, ζ(s) has no zero, so when 

Re(s)>1, then     ✗    = ✗   ζ(s)    s  C, Re(s)>1,                          

                 ), so when Re(s)>1,L(s,✗(n)) has no zero. 

If                  

when the Dirichlet eigen function✗(n) is any real number that is not equal to zero,     η

(s)= 
       

  
 
                            ,                            =

η   

        
= 

 

        
 

       

   
       

        
 
             

                         ， 

n        n goes through all the                           p  

goes through all the prime numbers), 

    ✗     
✗   η   

        
 

✗   

        
 

       

  

 

   

 
✗   

        
 

       

     

 

   

 
       

        
 ✗    

 

  

 

   
 

 

   

  

       

        
 ✗        

 

                          

 

   

 
       

        
 ✗                                   

 

   

 
       

        
 ✗                                 
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    ✗     
✗   η   

        
 

✗   

        
 

       

  

 

   

 
✗   

        
 

       

     

 

   

 
       

        
 ✗    

 

  

 

    
 

 

   

  

       

        
 ✗        

 

                         
  

 

   

 
       

        
 ✗                                  

 

   

 
       

        
 ✗                                 
 

   

 

When Rs(s)>0 and s≠1 ,         

       

        
 = 

       

        
 ,   

 
       

    
   =  

    
   

    
    ,   

          
 =          

        

                                                              , 

so 

 
       

        
 

       

    
      

       

        
 

       

  
  

   
 , 

 
 
       

        
          

   
       

        
          

 
 ,  

 (s)=
 

        
 

       

   
       

        
          

   
 , 

    =
 

        
 

       

    
    

       

        
        

  
                                                               

                                                                           , 

So 

only ζ(s)=                  , so 

    =         =        =                          =                             

    =          =        =                                     =                 

isin(tlnp)) ,     and Rs(s)>0 and                    Z+ ) 

then 

       =          =             

                        =                            , 

     =        =                                   
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                                                                           , 

so 

           =1-                            =                                , 

 

         =1-                           =                                

                                                                          

when  =
 

 
,then 

 
       

    
 
   = 

       

  
 
                                                         , 

            =                                    ), 

and 

             =        
  

                                                   ), 

              
 =          

                                                    , 

            
  

 =        
  

  

                                                                    , 

and 

       

      
 

       

    
 
    

       

        
 

       

  
 
    , 

       

      
              

  
       

        
          

   

                                                                 

                                    , 

And 

      =
       

      
              

 , 

    =
       

        
          

  , 

      =
       

      
 

       

    
 
   , 

    =
       

        
 

       

  
 
    

                                                                  

                                      , 

so when  =
 

 
, then only       =                                         .  

 
       

    
 
   =[      cos(tln1)      cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[    sin(tln1)

      sin(tln2)+     sin(tln3)       sin(tln4)+...], 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   Sin(tln1)     si

n(tln2)+    sin(tln3)    sin(tln4)+...], 

(78) 



The proof of the Riemann conjecture 

    =         =        =                          =                             

    =          =        =                                     =                 

isin(tlnp)) , 

                                                                

                                           , 

Then 

       =          =             

                        =                            , 

     =        =                                  , 

       =                            , 

                                                                 , 

so 

           =1-                            =                                , 

       =1-                           =                               

                                                                 , 

So when   =
 

 
(k  R) ,then  

       

      
 
   =  

       

  
 
                              

R, and  n traves all positive integer, 

            =                                                              , 

and              =          ( s C,                ,k∈R, and p is a prime number , 

            
  

 =        
  

  

                       

                                                                          ,  

and 

 

          
 

       

    
 
    

 

        
 

       

  
 
     

                                                                 

                                           , 

and 

      =
       

          
              

 , 

    =
       

        
           

  , 

      =
 

          
 

       

    
 
   , 

    =
 

        
 

       

  
 
    s C            , 

                                                                

                                           , 

so when  =
 

 
(k R) then only       =                                 . 
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According the equation ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                          obtained 

by Riemann,since Riemann has shown that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)                          (Formula 6),  

ζ(s)=0                          is true.  

When     =0             , then only       =     =0             , and  

When     =0             ,then       =    =              . And because  

         =              , then only       =    =0             , which is        

                      ,so only k=1 be true, so only ζ(s)=                        

1,is true. 

 (1-s)=
    

          
  

 
       

 s C                    ),          =0 and s   (    )，

then if  (1-s)=
    

          
  

 
       

 s C                    ) is going to make sense, then 

the denominator       sin(
  

 
)Γ(1-s) ≠0, Clearly indicates     (s C and s  ),      

 (s C and s  ), Γ(1-s)   (s C                    ), so sin(
  

 
) can not equal to zero, so 

sin(
  

 
)   (s C                    ), so So when     =0(s C                    ) 

and s   (    )，then             0 s C(s C                    ,      

   ，     . 

Because      ✗    =✗   ζ(s) 

                                                                           and  

      ✗    =✗   ζ(1-s) 

 s C                      ,                                                 )， 

and according to ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C                      )(Formula 7), So 

only     ✗    =       Sin(
  

 
)Γ(1-s)       ✗                               

                                                           . 

According to the property that Gamma function Γ(s) and exponential function are nonzero, is 

also that Γ(
   

 
)         

   

   , according to   
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s C           

         ) (Formula 12), According the equationζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) 

  s C                    )           obtained by Riemann,since Riemann has shown  
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that the Riemann ζ(s)  s  C                     ) function has zero, that is, in 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  s C and s  ) (Formula 6), so ζ(s)=0 s C                   

 ) is true. According to the property that Gamma function Γ(s) and exponential function are 

nonzero, is also that Γ(
   

 
)         

   

   , 

So when ζ(s)=0 s C                    ), then ζ(1-s)=0 s C                    ), 

also must ζ(s)=ζ(1-s)=0 s C                    ). 

           =         
 

 
 
 

  
 

    
 
    2.7182818284...,  

and because sin(Z)=
        

  
, Suppose Z=s=  +ti (s C           R,t R ), then  

if s C        ,because 

sin(s)=
        

  
 = 

                  

  
,  

sin( )=
        

  
 = 

                  

  
, 

according   =       =     =                       =                                

then 

  =       =     =                                         

   =        =                                                          , 

            =                                                            ,                                                                                                                                                                                                                                                                                                                                               

    =         =                                                             , 

              =                                                           , 

  =       =     =                       =                         , 

  =       =      =                         =                         , 

    =         =       =                         =                           , 

    =         =        =                          =                           , 

So 

  =  ,     =     , 

and 

        

  
 =

        

  
 , 

So 

sin(s)=       , 

and 

sin(
  

 
)=    

  

 
   . 

And the gamma function on the complex field is defined as: 

Γ(s)=       

 
   dt, 
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Among Re(s)>0, this definition can be extended by the analytical continuation principle to the 

entire field of complex numbers except for positive integers (zero and negative integers). 

So 

Γ(s)=     ,  

and  

Γ(1-s)=        .When ζ(1-  )=       =0=ζ(s)=ζ(1-s)=0  s  C and s    , and according 

ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s         ), then ζ(s)=       s C and s  ),is also 

say ζ(s)=ζ( )=ζ(1- )=0 s C and s  ). so only ζ( +ti)=ζ( -ti)=0 is true. 

According the equation ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)              obtained by 

Riemann,since Riemann has shown that the Riemann ζ(s)              function has 

zero, that is, in ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)                         , ζ(s)=0    

           is true, so when ζ(s)=0             , then only ζ(s)=ζ(1-s)=0              

is true. 

If ζ(s)=0                         , then ζ(s)=  ( )=0, it shows that the zeros of the 

Riemann ζ(s) function must be conjugate, then there must be  (s)= ( )=0, indicating that the 

zeros of the Riemannian ζ(s) function must be conjugate , and in the critical band of Re(s) (0,1), 

there are no non-conjugate zeros. 

So only when   =
 

 
, it must be true that     ✗    =    ✗     s C and s     

                                       ), and it must be true that  

      ✗    =    ✗     s C and s                                             ).  

According       =ζ(s)=0  s  C and s   ) and ζ(s)=ζ(  )=ζ(1-  )=0  s  C and s   ), so 

    ✗    =      ✗    =0 s C and s  ,                                           ) and 

    ✗    =    ✗    =      ✗    =0 s C and s                                      

         ),  

Because     ✗    =✗   ζ(s) s C and s                                             ) and  

      ✗    =✗   ζ(1-s) s C and s                                             ), and the 

Riemann conjecture must be correct.So     ✗         ✗               

s,✗n=Ls,✗n=0,so s=s or s=1-s or s=1-s ,so s R and s=-2n(n∈Z+)),  

    +ti=1-  -ti, or  -  i=1-  -ti,                             =
 

 
 and  =0, or   

 

 
       R and    , so s  , or s=

 

 
+ i ,or s=

 

 
+ i   R        ), 
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                            ✗          

 

 
 ✗     

       ✗                   
 

 
 ✗                                             

          
 

 
                        

 

 
                                     

 

 
 

                       
 

 
                            And beacause only when 

 =
 

 
 ,the next three equations,   

       ✗    =0  t  R and t                                              ),       

ti,✗n=0(t R and t   n∈Z+ and n traverse all  positive integers),and  

       ✗    =0  t R and t  ,                                        ) are all true. And 

because   
 

 
 ✗    >   so only s=

 

 
+ti(  R        ) and s=

 

 
-ti(  R        ) are true. 

The Generalized Riemann conjecture must satisfy the properties of the  

    ✗                                                                    )  

function, The properties of the  

    ✗                                                  positive integers)function 

are fundamental, the Generalized Riemann hypothesis and the Generalized Riemann conjecture 

must be correct to reflect the properties of the  

    ✗                                                                    ) 

function , that is, the roots of  

    ✗    =0                                               positive integers) can 

only be s=
 

 
+ti(t R        ) and s=

 

 
-ti(t R        ), that is, Re(s) must only be equal to 

  

 
 , 

and Im(s) must be real, and Im(s) is not equal to zero.So the Generalized Riemann conjecture 

must be correct.  

According       ✗    =  

    ✗    =0                                               positive integers),so 

the zeros Of     ✗                               

                     positive integers) function in the complex plane also correspond to the 

symmetric distribution of point (
 

 
,0i) on a line perpendicular to the real number line in the 

complexplane, 

           ✗          ✗         

                                                               s and 1-s are pair of 

zeros of the function     ✗     s C and s                                            )  
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symmetrically distributed in the complex plane with respect to point (
 

 
,0i) on a line  

perpendicular to the real number line of the complex plane.We got     ✗     

=    ✗    (and s                                                           positive integers) 

before,When t in s=
 

 
+ti(t C        ) defined by Riemann is a complex number, and then s 

in     ✗    =     ✗    (                          ) is consistent with s in 

s=
 

 
+ti(t C        )defined by Riemann, so only   

 

 
.When     ✗     =    ✗    =  (s C 

and s  ，    ),since s and   are a pair of conjugate complex numbers, so s and   must  

be a pair of zeros of the Generalized function  

    ✗                                                                     ) in the  

complex plane with respect to point  ,0i) on a line perpendicular to the real number line.s is a 

symmetric zero of 1-s, and a symmetric zero of  . By the definition of complex numbers, how  

can a symmetric zero of the same Generalized Riemann function  

    ✗                                                                  ) of the 

same zero independent variable s on a line perpendicular to the real number axis of the complex 

plane be both a symmetric zero of 1-s on a line perpendicular to the real number axis of the 

complex plane with respect to point (
 

 
,0i) and a symmetric zero of   on a line perpendicular to 

the real number axis of the complex plane with respect to point ( ,  i)? Unless   and 
 

 
 are 

the same value,                
 

 
, and only 1-s=  is true, only s=

 

 
+ti t R        ) and 

s=
 

 
-ti t R        ) are true. Otherwise it's impossible,this is determined by the uniqueness of 

the zero of Generalized Riemann function  

    ✗                                            ) on the line passing through that point 

perpendicular to the real number axis of the complex plane with respect to the vertical foot 

symmetric distribution of the zero of the line and the real number axis of the complex plane,Only 

one line can be drawn perpendicular from the zero independent                    ✗       

                                                           )on the real number line 

of  the complex plane, the vertical line has only one point of intersection with the real number 

axis of the complex plane. In the same complex plane, the same zero point of  

    ✗                                                                   ) on the 

line passing through that point perpendicular to the real number line of the complex plane there 

will be only one zero point about the vertical foot symmetric distribution of the line and the real 

number line of the complex plane,so I have proved the generalized Riemann conjecture when 

the Dirichlet eigen function✗(n) n        n traverse all positive numbers) is any real number 

that is not equal to zero,Since the nontrivial zeros of the Riemannian function      s C and  
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s  ) and    ✗                                                                 ) 

are both on the critical line perpendicular to the real number line of Re(s)=
 

 
 and Im(s)  , these  

nontrivial zeros are general complex numbers of Re(s)=
 

 
 and Im(s)  ,so I have proved the  

generalized Riemann conjecture when the Dirichlet eigen  

function✗(n)(                                            ) is any real number that is not 

equal to zero.  The Generalized Riemann conjecture must satisfy the properties of the 

    ✗     s C and s                                             ) function, The properties 

of the     ✗      s C and s                                                     ) 

function are fundamental, the Generalized Riemann conjecture must be correct to reflect the 

properties of the  

    ✗       

                                                               function, that is, the  

 

roots of the 

    ✗    =                                                                 ) can 

only be s=
 

 
+ti(t R       )or s=

 

 
-ti(t R        ), that is, Re(s) can only be equal to 

 

 
 , and  

Im(s) must be real, and Im(s) is not equal to zero.         ✗        s C and s         

                                             n goes through all the positive  

integers, ✗     R     ✗      ,           = ✗  ),     ，  =
 

          ,then the 

Generalized Riemann must be correct, and   
 

 
                      

 

 
      

          . 

because ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  )(Formula 7) .s=-2n(n   ) is the trivial zero 

of the ζ(s)function, so s=-2n(n    ) is the trivial zero of the Landau-Siegel function 

L(β, ✗(n))(β R,✗(n)  R and ✗(n)≠0,n    and n traverses all positive integers). So when the 

dirichlet characteristic function ✗(n)≡1, then s=-2n(n   ) is the zero of landau - siegel function 

L(β,✗(n)) (β R and ✗(n) = 1) . Soif s=β   R) and β=-2n(s C), then L(β,✗(n))=0 and ζ(s)=0.  

For any complex number s,     ✗(n) is the Dirichlet characteristic and satisfies the following  

properties: 

1: There exists a positive integer q such that ✗(n+q)=✗         ; 

2: when n and q are not mutual prime,✗(n)=0      ;  

3: ✗(a)✗(b)=✗(ab)            for any integer a and b; Suppose q=2k      , 

if n and n+q are all prime number, and    ✗                                             

and ✗      ✗    0                                               ,because n(n  
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traverses all prime numbers) and q=2k       are not mutual prime,      ✗(n) 0    

               

                                                                 ✗   ✗    ✗        

                                                                         then the three 

properties described by the Dirichlet  

eigenfunction ✗(n)                                         . above fit the definition of the 

Polignac conjecture, the Polignac conjecture states that for all natural numbers k, there are 

infinitely many pairs of prime numbers (p,p+2k)      . In 1849, the French mathematician A. 

Polignac proposed the conjecture.When k=1, the Polygnac conjecture is equivalent to the twin 

prime conjecture. 
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                                                                       ,because 

ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s C and s  )(Formula 7) ,so if β R and β    (     ,then  

ζ(s)=0. 

So L(β, ✗   )  

 
       

      β 

 ✗      β                              
   =

       

      β 

  ✗     β 
     = 

 

      β 

 ✗     β  ✗     β  ✗     β  ✗     β    ,     is the symbol for 

multiplication, because the real exponential function of the real number has a function value 

greater than zero, because✗          ✗    ✗    ✗    ✗        so  

                                                                            

                                                              

             
 

    
  β 

  , it can be known that if ✗    0(✗               n  
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traverses all positive integers),      β R and β    (      , then L(β, ✗   ) 0(β R and 

β     ,     , ✗    R     n traverses all positive integers) and L(β,  ) 0(β R and β

     ,     ,      n traverses all positive integers), so for Riemann  (s)( s C and 

s                 ) functions, its corresponding landau-siegel function L(β, ✗(n))(β R 

and β     ,     , ✗(n)  R      n traverses all positive integers) of pure real zero does not 

exist, If s≠-2n(    ), the other Landau-Siegel functions L(β,✗(n))(β R and β≠-2n,     ,  

✗(n)  R and n traverses all posite integers) also do not exist pure real zeros, this means that if s

≠-2n(    ),then the Riemann  (s)(s C and s                   ) function does not 

have a zero of a pure real variable s, and this means that if s≠-2n(    ),then the generalized 

Riemannian L(s,✗(n))=0(s C and s                   ✗(n)  R     n traverses all 

positive integers) function also has no pure real zeros of the variable s,then the generalized 

Riemann conjecture L(s,✗ (n))=0(s C and s                   ✗ (n)   R     n 

traverses all positive integers) satisfies s= 
 

 
+ti(t R,t≠0) and s= 

 

 
-ti(t R,t≠0) is sufficient to prove 

that the twin primes, Polignac's conjecture and Goldbach's conjecture are almost true. And if 

✗    0(          n traverses all positive integers) or β  R and β

    (    ), then L(β, ✗   ) 0(β R and β     ,     , ✗    R     n traverses all  

positive integers) and L(β,   ) 0(β R and β     ,      ,       n traverses all positive 

integers), so for Riemann  (s)( s C and s  ) functions, its corresponding landau-siegel  

function L(β,  ✗ (n))( β  R,✗    R ,                       n traverses all positive 

integers) of pure real zero exist, this means that the Riemann  (s)(s C and s   ) function have a 

zero of a pure real variable s, and the generalized Riemann conjecture L(s,✗(n))=0(s C and s    

✗(n)  R ,and                  n traverses all positive integers) is sufficient to prove that 

the twin primes, Polignac's conjecture and Goldbach's conjecture are completely true. 

when ✗ (n) 1(         n traverses all positive integers) and  ✗ (n) 0(         n 

traverses all positive integers), because the real exponential function of the real number has a 

function value greater than zero, so  

                                                                            

                                                              

             
 

        
     it can be known that when ✗(n) 1(n        n traverse all  
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positivel numbers), then L(β,1) 0(β∈R and β     ,      ,✗ (n)   R and ✗ (n)=1,  n 

traverses all positive integers) so for Riemann ζ(s)(s∈C and s  ) functions, its corresponding 

landau -siegel function L(β, ✗(n))(β∈R, ✗(n)∈R and ✗(n)  0,          n traverses all 

positive integers) of pure real zero does not exist, this means that the generalized Riemann 

L(β,✗(n))(β R,✗(n)∈R and          n traverses all positive integers) function does not 

have a zero of a pure real variable s, and the generalized Riemann conjecture L(s, ✗(n))=0(s C 

and s   ✗(n) R and ✗(n) 1 and          n traverses all positive integers) satisfies 

s=
 

 
+ti(t∈R,t≠0) and s=

 

 
-ti(t∈R,t≠0)  is sufficient to prove that the twin primes, 

Polignac's conjecture, Goldbach's conjecture are almost true. 

When ✗    1 (         n traverses all positive integers) and ✗    0 (         n  

traverses all positive integers), because the real exponential function of the real number has a 

function value greater than zero, so  

                                                                            

                                                             

             
 

        
     it can be known that when ✗    1(        n traverses all  

positive integers) and ✗    0(         n traverses all positive integers), 

then L(β, ✗   ) 0(β R and β    ,     , ✗    R and ✗    1 and ✗    0     n  

traverses all positive integers) ,so for generalized Riemann L(s,✗   ) (s C and s         

             n traverses all positive integers) functions, its corresponding landau-siegel  

function L(β,✗   )(β R and β    ,      ,  ✗    R     ✗    1 and ✗    0,    

       n traverses all positive integers) of pure real zero does not exist, this means that the 

generalized Riemann L(s,✗   )(s C and s                      n traverses all positive 

integers) function does not have a zero of a pure real variable s. and the generalized Riemann 

conjecture L(s,✗(n))=0(s C and s                  ✗(n) R and ✗(n) 1 and  

✗(n)≠0     n traverses all positive integers) satisfies s=
 

 
+ti(t R,t≠0) and s=

 

 
-ti(t R,t≠0)is 

sufficient to prove that the twin primes, Polignac's conjecture, Goldbach's conjecture are all 

almost true. 

When ✗    0 (         n traverses all positive integers), because the real exponential  

function of the real number has a function value greater than zero, so 

                                                       ✗        ✗      

   ✗        ✗         ✗        ✗          ✗              

✗               
 

        
     it can be known that when  ✗    0 (          n 

traverses all positive integers), then L(β,  ✗   ) 0(β R and β     ,      ,  ✗    R 

and ✗    1,           n traverses all positive integers) and L(β,   ) 0(β R and β

     ,     ,     n traverses all positive integers), so for generalized Riemann L(s,✗   )( s C 

and s                      n traverses all positive integers) functions, its corresponding  
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landau-siegel function L(β,0)(β R and β     ,     ,✗(n) R and ✗    0     n traverses 

all positive integers) of pure real zero exists, This means that the generalized Riemann 

L(s,✗   )( s C and s                     n traverses all positive integers) function 

has a zero of a pure real variable s, that means the twin prime conjecture, Goldbach's conjecture, 

Polignac's conjecture are completely true. 

When ✗(p) 0(         p traverses all odd primes, including 1), then L(s,✗(p))=0(s C and 

s                 ✗(p)   R and ✗ (p) 0,          p traverses all odd primes, 

including 1) was established. At the same time L(s ✗(p))( s C and s              

   ✗ (p)  R and ✗ (p)  0,          p traverses all odd primes, including 1) the 

corresponding landau-siegel function  

L(β,0)(β R and β     ,     , ✗(p) R and ✗(p) 0,          p traverses all odd primes,  

including 1) expression as shown as follows: L(β,✗ (p))=
       

        
 ✗               

   

lnp)+isin(0×ln(p)))= 

       

        
  ✗        

   =
       

        
 ✗      - ✗      + ✗      - ✗      + ✗     β + … 

 ✗         (   R,           p traverses all primes, including 1),     is the 

symbol for multiplication. 

When✗(p) 0(         p traverses all odd primes, including 1), then L(s,✗(p)) 0(s C and 

s                 ,✗(n)  R and ✗(p) 0, p trav erses all odd primes, including 1) was 

established. At the same time L(s,✗ (p))(s C and s                   ✗ (p)   R 

and✗(p) 0,           p traverses all primes, including 1) the corresponding landau-siegel 

function L(β,0)=0(β R and β     ,     ,✗(p) R and ✗(p) 0, p    and p traverses all 

primes, including 1), this means that the generalized Riemann L(s,✗   )( s C and s         

             n traverses all positive integers) function has a zero of a pure real variable s, 

that means the twin prime conjecture, Goldbach's conjecture, Polignac's conjecture are all 

completely true. 

Now I summarize the Dirichlet function L(s,✗(n))(s C and s                 , ✗(n)  R, 

    n traverses all positive integers) as follows: 

1: When ✗(n) 1(                               n traverses all positive integers), the 

generalized Riemannian hypothesis and the generalized Riemannian conjecture degenerate to 

the ordinary Riemannian hypothesis and the ordinary Riemannian conjecture, whose nontrivial  

zeros s satisfy s=
 

 
+ti(t R and t≠0), and ordinary Riemann ζ(s)=L(s, ✗(n))(s C and s         

        ,  ✗ (n) R and ✗ (n)  1,          n traverses all positive integers) the 

corresponding Landau-siegel function L(β, ✗(n))≠0(β R,and β     ,     ,  ✗(n) R and 

✗(n) 1     n traverses all positive integers), ordinary Riemann hypothesis and ordinary 

Riemann hypothesis all hold, and for Riemann ζ(s)(s C and s                 ) function, 

its corresponding Landau-Siegel function L(β,1)(β  R and β      ,      ,  ✗ (n) R 

and ✗(n) 1,          n traverses all positive integers) does not exist pure real zero, which 

also shows that Riemann ζ(s)(s C and s                 ) function does not exist zero 

when variable s is a pure real zero. 

2: When ✗(n) 0(         n traverses all positive odd numbers,including 1), then✗  
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(p) 0(         p traverses all odd primes, including 1), a special Dirichlet function L(s, ✗ 

(p))(s C and s                 , ✗(p) R and ✗(p) 0,          p traverses all odd 

primes, including 1) has zero, and when zero is obtained, the independent variable s is any 

complex number. This special dirichlet function L(s,  ✗(p))(s C and s               

  , ✗(p) R and ✗(p) 0,          p traverses all odd prime, including 1) the corresponding 

Landau-siegel function L(β,0)=0(β R and β     ,     , ✗(p) R and ✗(p) 0,          p 

traverses all odd prime, including 1) holds, so for this particular Dirichlet function 

L(s,  ✗ (p))=0(s C and s                  ,  ✗ (p) R and  ✗ (p)  0,          p 

traverses all odd primes, including 1) holds.The existence of a pure real zero of the 

corresponding Landau-Siegel function L(β,0)(β R and β     ,     , ✗(p) R and ✗(p) 0, 

         p traverses all odd prime numbers, including 1) shows that the twin prime numbers, 

Polignac conjecture and Goldbach conjecture are all completely true.  

3: When ✗(n)≠1 and ✗(n)≠0(         n traverses all positive integers), Dirichlet function 

L(s, ✗ (n))(s C and s                  ✗(n)  and ✗(n)≠0 and ✗(n)≠1,          n 

traverses all positive integers) has zero, it's nontrivial zero meet s=
 

 
+ti(t R and t≠0) and 

s=
 

 
-ti(t R and t≠0). For dirichlet function L(s,✗ (n))(s C and s               

   ✗(n) R and  ✗(n)≠0,          n traverses all positive integes),  it's corresponding 

Landau-siegel function L(β, ✗(n))(β R and β     ,     , ✗(n) R and ✗(n)≠0 and ✗(n)≠1, 

         n traverses all positive integers) of pure real zero does not exist, In other words,  it 

shows that the Dirichlet function L(s,✗ (n))(s C and s                  ,✗ (n) R 

and ✗(n)≠0 and ✗(n)≠1,          n traverses all positive integers) does not exist for the 

zero of a pure real variable s, so if ✗(n)≠0 and ✗(n)≠1 (         n traverses all positive 

integers), then both the generalized Riemannian hypothesis and the generalized Riemannian 

conjecture hold and the Generalized Riemann L(s,✗ (n))(s C and s  ,            

   ✗(n) R and ✗(n)≠0 and ✗(n)≠1,          n traverses all positive intege) function of 

nontrivial zero s also .0meet s=
 

 
+ti(t R and t≠0) and s=

   

 
-ti(t R,t≠0).Now we know that merely  

proving that the nontrivial zero s of the Riemann conjecture L(s,1)=0(s C and s        

         ✗ (n) R and ✗ (n)  1,           n traverses all positive integers) and the 

generalized Riemann conjecture L(s,✗(n))=0(s C and s                 ✗(n) R and  

✗ (n)≠1 and  ✗ (n)≠0     n traverses all positive integers) satisfies s=
 

 
+ti(t R,t≠0) and 

s=
 

 
-ti(t R,t≠0) is sufficient to prove that the twin primes, Polignac's conjecture, Goldbach's 

conjecture are all almost true. 

Formula 2 

Let's say I have any complex number Z=  +yi(  R,y R), and I have any complex number 

s= +ui(  R,u R).We use r(r R,and r>0) to represent the module |Z| of complex Z=  +yi  

(  R，y R), and φ to represent the argument Am(Z) of complex Z=  +yi(x R，y R).That is |Z|=r,  
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then r=        
 

 , so Z=r(Cos(φ)+iSin(φ)) and φ=|arccos(
 

       
 
 

)|,and φ (-   ], then φ=Am(Z). 

                       =                       =                         can get 

                                         =                         (r>0), then 

f(Z,s)=  =(                      =(                                      = 

                                                                        

         ui = r                                                           i  

=                                                  . 

Beacuse of   

               =              =       (cos(    ))+isin(Am   )))=r(cos(    ))+isin(Am   ))),so 

lnZ=ln|Z|+iAm(Z)   <Am(Z)<   . 

Suppose a>0,then   =              
，then   =      

.                                  

Suppose any complex Number Q=                 , and Suppose  

the complex ψ= i, then lnQ= ln|Q|+iAm(Q)（  <Am(Q)<   . 

Because 0<=|       |<=1, 

so 

If   <  <  ,then Am(Q)=         <Am(Q)<  ； 

If   > , then Am(Q)=  -2k              <Am(Q)<  ； 

        ,then Am(Q)=  +2k              <Am(Q)<  . Then 

If Am(Q)=  , then 

                             
                 =            =    .then 

f(Z,s)=  =                                                   

=                   +i                  。Substituting 

r=         
 

  into the above equation gives:   

f(Z,s)=  =            
 

                   
 

       
 

 

+i           
 

                   
 

       
 

 

If Am(Q)=   -2k       ,then 

                             
                 =               =       , then 

f(Z,s)=  =                                                   

=                      +i                     . 

Substituting r=        
 

  into the above equation gives:  

f(Z,s)=  =              
 

                   
 

       
 

 

+i              
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If Am(Q)=  +2        , then 

                             
                 =               =         , then 

f(Z,s)=  =                                                   

=                       +i                      . 

Substituting r=        
 

  into the above equation gives:  

f(Z,s)=  =               
 

                   
 

       
 

 

+i               
 

                   
 

        
 

 

 

III. Conclusion 

 

After the Riemann hypothesis and the Riemann conjecture and the Generalized Riemann 

hypothesis and the Generalized Riemann conjecture are proved to be completely valid, the 

research on the distribution of prime numbers and other studies related to the Riemann 

hypothesis and the Riemann conjecture will play a driving role. Readers can do a lot in this 

respect. 
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