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Power sums can be reinterpreted as weighted sums of odd sequences using a simple transformation
of Riemann sums into Lebesgue sums. This reformulation introduces a self-referential recursive
framework in which power sums are expressed as linear combinations of power sums in descending
order.
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I. INTRODUCTION

Consider a sequence of n rectangles on a plane, each
with a base of 1 and heights that increase according
to the powers of the integers: 1k, 2k, 3k, . . . , nk, where
k = 0, 1, 2 . . . . The cumulative area of these rectangles
serves as a visual interpretation of a power sum of powers,
denoted as follows:

Sk
n ≡

n∑
i=1

ik, k = 0, 1, 2, . . . . (1)

In particular, when k = 0, we encounter the simple case:

S0
n =

n∑
i=1

1 = n, (2)

which is the total area of n square units. The sum Sk
n

can be interpreted as the Riemann sum (and integral) of
a step function f(x) = ⌊x⌋k defined in the interval [1, n],
where ⌊x⌋ represents the floor function. Our primary goal
was to derive a closed-form expression for an unknown
power sum Sk

n using a recursive framework. We show
that this problem can be solved by representing Sk

n as a
linear combination of the previously known power sums
Si
n, for i < k. This approach leads to the following final

representation:

Sk
n =

k−1∑
i=0

aiS
i
n, (3)

where ai are either rational numbers or polynomials in
n with rational coefficients. This formula can then be
reduced to the known formulas. Note that we have in-
cluded i = 0 in the sum, as S0

n = n is a known quantity
that may appear in the linear combination. This result
can then be reduced to its ordinary representation.

A. The general case

Our method starts with a formal trick to manipulate
the structure of a generic power sum by decomposing it
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into an equivalent expression. This is a different way of
encoding the information about the power sums in their
sequence of terms. Specifically, we express any power
sum Sk

n in what we call its (k, h)-form:

Sk
n =

n∑
i=1

ik =

n∑
i=1

ihik−h, h = 0, 1, 2 . . . , h ≤ k. (4)

This move favors the possibility of a fractional represen-
tation of the power sum if we look for a polynomial ph(j)
such that:

i∑
j=1

ph(j) = ih. (5)

By the inverse relation between summations and finite
differences, the degree of the polynomial must be (h−1),
so that its summation yields the ih term. By substituting
this into Eq. (??), we obtain the double sum:

Sk
n =

n∑
i=1

i∑
j=1

ph(j)i
k−h. (6)

To simplify this double sum, we have to change the order.
Considering that 1 ≤ j ≤ i ≤ n, we allow j to range
from 1 to n, and for each j, variable i ranges from j
to n. Finally, because ph(j) depends only on j, we can
factor it out of the inner sum, yielding a more manageable
expression:

Sk
n =

n∑
j=1

ph(j)

n∑
i=j

ik−h. (7)

The inner sum,
∑n

i=j i
k−h, can evidently be expressed as

the difference between the power sums Sk−h
n and Sk−h

j−1

(assumed known), and we denote this difference as µk
j :

n∑
i=j

ik−h = Sk−h
n − Sk−h

j−1 ≡ µk
j . (8)

So the power sum Sk
n can now be expressed as:

Sk
n =

n∑
j=1

ph(j)µ
k
j . (9)
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By developing the product in the sum, we get a polyno-
mial pk(j) of order k containing all the decreasing powers
of j. Executing the summation and shifting the jk sum-
mation to the left, we obtain the desired result.

1. The form (k, h) = (1, 1)

To implement the method, one must find the poly-
nomial ph(j), and this obviously requires knowledge of
power sums with exponents less than k. To make the
method is self-referential and recursive, we have to start
from the scratch. For this reason it is essential to ar-
range the form (k, h) = (1, 1) first, without resorting to
the known result. With p1(j) = j0 = 1, Eq. (??) be-
comes:

S1
n =

n∑
i=1

i =

n∑
i=1

1∑
j=1

1 · i. (10)

Reversing the order of summation, we get:

S1
n =

n∑
j=1

n∑
i=j

1 =

n∑
j=1

(n− j + 1) = −S1
n + n2 + n, (11)

from which:

S1
n =

(n+ 1)n

2
=

n+ 1

2
S0
n. (12)

This demonstrates how changing the summation order is
critical to obtaining the correct end result.

2. The form (k, h) = (k, 2)

The next polynomial to determine must to be of the
form p2(j) = aj + b so that:

i∑
j=1

p2(j) = a

i∑
j=1

j + b

i∑
j=1

1 = a
i2 + i

2
+ bi = i2. (13)

This implies that a = 2 and b = −1, and the sum operates
on the first i odd numbers 2j−1, a well known result. It
follows that we can manage the (k, 2)-form of the power
sum with p2(j) = 2j − 1 and get:

Sk
n =

n∑
j=1

(2j − 1)

n∑
i=j

ik−2, (14)

where
n∑

i=j

ik−2 = Sk−2
n − Sk−2

j−1 ≡ µk
j . (15)

So the power sum µk
j can now be expressed as:

Sk
n =

n∑
j=1

(2j − 1)µk
j . (16)

This formulation decomposes the sum of powers of order
k into sums over the sums of lower-order powers Sk−2

n and

Sk−2
j−1 for k ≥ 2, providing a recursive structure for ex-

pressing higher-order sums in terms of lower-order ones.
To go on, we need to arrange the form (k, h) = (2, 2) of
the power sum.

3. The form (k, h) = (2, 2)

The case (2, 2) has a significant interpretation. We
have:

µ2
j = S0

n − S0
j−1 = n− j + 1, (17)

which satisfies the “boundary conditions”:

µ2
1 = n, µ2

n = 1. (18)

Thus, the double sum can be formally reduced to a sim-
pler form, interpretable as a Lebesgue sum of the step
function 2j − 1 over a discrete measure space. The mea-
sure µ2

j “counts” the contributions of each odd number,
weighted by itself [? ]:

S2
n =

n∑
j=1

(2j − 1)µ2
j =

n∑
j=1

(2j − 1)(n− j + 1). (19)

Expanding, yields:

S2
n =

n∑
j=1

[−2j2 + (2n+ 3)j − (n+ 1)]. (20)

Solving for S2
n, we obtain:

S2
n =

2n+ 3

3
S1
n − n+ 1

3
S0
n, (21)

expressing the sum of the squares in terms of lower power
sums. Substituting known values of S1

n and S0
n gives:

S2
n =

2n+ 3

3

(
n2 + n

2

)
− n+ 1

3
(n) =

2n3 + 3n2 + n

6
.

(22)

This approach reveals a connection between S2
n and

Lebesgue summation. By shifting focus from indices to
values of odd numbers, we gain a new perspective. The
table below illustrates the transformation from double to
single sum for n = 5:

S2
5 σ1 σ3 σ5 σ7 σ9 µ2

j

∑
L

9 1 9
7 7 2 14

5 5 5 3 15
3 3 3 3 4 12

1 1 1 1 1 5 5∑
R 12 22 32 42 52 55
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4. The cases (k, 2) for k > 2

When k > 2, in constructing the corresponding
Lebesgue sum for these cases, we can still use the func-
tion (2j − 1), but the function µk

j is no longer a simple

counting measure as seen in the case of µ2
j . Instead,

µk
j becomes a more complicated arithmetic function. To

better understand this, we will outline the step-by-step
construction for the specific case k = 3, with n = 5. In
this case, we have:

µ3
j =

n2 + n

2
− j2 − j

2
. (23)

The generalized sum for k = 3 becomes:

S3
n =

n∑
j=1

[
−j3 +

3

2
j2+

2n2+ 2n− 1

2
j − n2 + n

2

]
,

which simplifies to:

S3
n =

3

4
S2
n +

2n2 + 2n− 1

4
S1
n − n+ 1

4
S0
n

=
n4 + 2n3 + n2

4
= (S1

n)
2. (24)

This result expresses the cube sum S3
n as a function of

lower-order sums that matches the square of the linear
sum S1

n. The following table summarizes the process of
transforming the double sum S3

5 into a single sum:

S3
5 j (2j−1) µ3

j (2j−1)µ3
j

5 9 5 45
4 7 9 63
3 5 12 60
2 3 14 42
1 1 15 15∑5

j1
15 25 55 225

B. The form (k, h) = (k, 3)

Our method suggests the possibility of a broader
hierarchy of sum representations of the form
(k, 1), (k, 2), (k, 3), . . . , each of which can be analyzed
using the approach outlined above. The non-uniqueness
of these decompositions becomes apparent from the fact
that different associated polynomials must be used. To
illustrate this point, we can explore the specific case of
the form (k, h) = (k, 3) using the established method-
ological framework. This investigation will reveal the
fundamental malleability of power sum representations.
To determine p3(j) in the form aj2 + bj + c, we set:

i∑
j=1

(aj2 + bj + c) = i3,

a
2i3 + 3i2 + i

6
+ b

i2 + i

2
+ ci = i3,

from which we easily deduce: a = 3, b = −3, c = 1. It
follows that we can express the sum Sk

n for k ≥ 3 in this
way:

Sk
n =

n∑
j=1

(3j2 − 3j + 1)

n∑
i=j

ik−3, (25)

which simplifies to:

Sk
n =

n∑
j=1

(3j2 − 3j + 1)µk
j , (26)

where:

µk
j = Sk−3

n − Sk−3
j−1 . (27)

In particular, for k = 3, we have:

µ3
j = S0

n − S0
j−1 = n− j + 1. (28)

Thus, the generalized sum for k = 3 becomes:

S3
n =

n∑
j=1

(3j2 − 3j + 1)(n− j + 1)

=

n∑
j=1

[
−3j3 + 3j2n+ 6j2 − 3jn− 4j + n+ 1

]
. (29)

Simplifying this expression leads to:

S3
n =

3(n+ 2)

4
S2
n − 3n+ 4

4
S1
n +

n+ 1

4
S0
n

=
n4 + 2n3 + n2

4
. (30)

Comparison of Eq. (??) with Eq. (??) shows that the de-
composition of S3

n into combinations of lower sums is not
unique. While the final result is fixed, the route taken to
arrive at it can vary. We can then think of obtaining rep-
resentations of sums of progressively higher orders that
provide equivalent decompositions for the same sum but
with different coefficients.

II. STACKED SUMMATIONS

The concept of “stacked summations,” also referred to
as ”nested summations,” offers a systematic method for
expressing and evaluating power sums. By representing
the sum of k-th powers of the first n natural numbers,
Sk
n =

∑n
i=1 i

k, as a series of k nested summations, we
gain insights into their recursive and polynomial struc-
tures. For any positive integer k, the power sum Sk

n can
be expressed as k nested summations, where each layer
corresponds to a level of summation:

Sk
n =

n∑
i1=1

i1∑
i2=1

i2∑
i3=1

· · ·
ik−1∑
ik=1

1︸ ︷︷ ︸
k summations

. (31)
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In this formulation:
- The number of nested summations equals the power k.
- The limits of the inner summations depend on the in-
dices of the outer summations.
- The innermost summation is always equal to 1, re-
flecting the recursive nature of the process. This pro-
cess avoids the need of predetermine any polynomial.
We illustrate the method by calculating Sk

n explicitly for
k = 2, 3. For k = 1, we accept our precedent derivation.

S2
n =

n∑
i=1

i2 =

n∑
i=1

i∑
j=1

j∑
k=1

1, (32)

=

n∑
i=1

i∑
j=1

j =

n∑
i=1

i(i+ 1)

2
, (33)

=
n(n+ 1)(2n+ 1)

6
. (34)

S3
n =

n∑
i=1

i3 =

n∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

1, (35)

=

n∑
i=1

i∑
j=1

j∑
k=1

k, (36)

=

n∑
i=1

i∑
j=1

j(j + 1)

2
, (37)

=

n∑
i=1

i(i+ 1)(i+ 2)

6
, (38)

=
n2(n+ 1)2

4
. (39)

A. Advantages and Insights

The stacked summations approach offers several ad-
vantages:
1. Systematic Representation: Each power k adds a new
summation layer, simplifying higher-order computations.
2. Recursive Structure: The method highlights how Sk

n

builds upon Sk−1
n .

3. Polynomial Nature: It naturally explains why power
sums result in polynomial expressions.
4. Pattern Recognition: The coefficients and structures
of the resulting polynomials exhibit clear patterns.
5. Theoretical Insights: This method connects power
sums to combinatorial and algebraic frameworks.
While stacked summations may not always be the most

computationally efficient, their systematic nature and re-
cursive insights make them a valuable tool for theoretical
exploration. This approach deepens our understanding of
the relationships between powers, nested iterations, and
the resulting polynomial forms, bridging the gap between
computation and mathematical theory.

II. CONCLUSION
Our reformulation provides a new perspective on power

sums, revealing hidden structures that go beyond their
apparent simplicity. By introducing the weighting factors
µ2
j , we express power sums as weighted sums of sequences

of odd numbers in the form (k, h) = (k, 2) with k ≥ 2.
This provides a consistent framework for analyzing power
sums of different orders. In particular:
1) For k = 2, the weights simplify to: µ2

j = n − j + 1.

This allows us to interpret S2
n as a Lebesgue sum of the

step function 2j − 1 over a discrete measure space. The
measure µ2

j “counts” the contributions of each odd num-
ber.
2) For k > 2, the weighting factors µk

j become more com-
plex, assigning decreasing weights to odd numbers and
reflecting the influence of the higher-order power sum.
3) Unlike the case of k = 2, which involves multiple se-
quences, the method for k > 2 is based on a single se-
quence of odd numbers.
While this reformulation does not improve computational
efficiency, it does provide a systematic self-referential way
to compute and decompose power sums into lower-order
sums that may reveal new patterns, relationships, and
identities. Using this approach with h = 3 demonstrates
the non-uniqueness of power sum decompositions. This
flexibility allows for multiple valid decompositions, de-
pending on the desired outcome–whether computational
efficiency or theoretical insight. The non-uniqueness
highlights the richness of power sums and suggests new
avenues of investigation, as different decompositions can
provide alternate ways to understand their properties.

[1] H. Lebesgue, Measure and the Integral, (Holden Day, San
Francisco, 1966, pag. 180).


