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ABSTRACT

In this paper, we provide a main method for construction of continued fraction based on a
given power series using Euler connection. Then we establish very innovative results in
continued fraction approximation for the Gamma function as applications of our method. Also
new continued fraction bounds for the Gamma function are obtained. Finally new continued
fraction approximations and bounds for Wallis ratio are established.
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1. Introduction

The classical Euler Gamma function � defined by
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was first introduced by the Swiss mathematician Leonhard Euler (1707-1783) in his goal to
generalize the factorial to non-integer values.

Today the Stirling’s formula
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is one of the most well-known formulas for approximation of the factorial function by being
widely applied in number theory, combinatorics, statistical physics, probability theory and
other branches of science.

Up to now, many researchers made great efforts in the area of establishing more accurate
approximations for the factorial function and more precise inequalities, and had lots of
inspiring results.
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The Stirling’s series for the Gamma function is presented (see [1]) by
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where nB (n ∈ ℕ0 ≔ ℕ ∪ {0}) denotes the Bernoulli numbers defined by the generating
formula
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then the first few terms of nB are as follows:
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It was proved in [2] by Alzer (see also [18]) that for given � ∈ ℕ, the function
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is strictly completely monotonic on )  ,0(  of n is even, and so is nF if n is odd.

It thus follows that double inequality
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(1.4)

holds for all 0x .

The Burnside’s formula [4]
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is more precise than (1.2).

An asymptotic expansion of which for the Gamma function
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as x was given in [25]. In [39], Yang showed that the function
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is completely monotonic on )  ,0(  of n is odd, and so is nG if n is even. These yield
that for n ∈ ℕ, the double inequality
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holds for all 0x .

More asymptotic expansion developed by some closed approximation formulas for the
Gamma function can be found in [3], [6], [7], [8], [9], [10], [11], [12], [15], [16], [21], [22],
[24], [29], [30], [32], [33], [36], [41],[42] and the references cited therein.

Then two approximation formulas for the Gamma function in terms of hyperbolic functions
have attracted the attention of scholars, the first one of which, Windschitl’s approximation
formula [47], is given by
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and the second one is the Smith’s approximation formula for the Gamma function
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which was introduced in [35] by Smith. These two formulas are based on the Stirling’s
formula and the Burnside’s formula respectively.

In recent papers [43] and [44], Yang and Tian developed the Windschitl’s approximation
formula (1.9) to an asymptotic expansion as
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as x , and the Smith’s approximation formula (1.10) to an asymptotic expansion as
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Especially the Wallis ratio defined by
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for n ∈ ℕ (see [17]) also has attracted the attention of many researchers(see [13, 19, 20, 26]
and references therein).

Some properties involving the generalized Wallis ratio    1/2/1  xx for 2/1x ,
as a ratio of two Gamma functions, can be found in [5], [31], [37], [38], [40], [45], [46].

In particular, by (1.3) and (1.6), we immediately get that
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and for n ∈ ℕ, the double inequality
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holds for all 0x (see [14], [34], [39]).

In [14] Chen and Paris showed that
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and in a recent paper [44], Yang and Tian developed this formula to an asymptotic expansion
as
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as x .

In our study, we focus the continued fraction approximations.

Recently, some authors have focused on continued fractions in order to obtain new
asymptotic formulas.

For example, on the one hand, Mortici [27] found Stieltjes’ continued fraction
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Also Mortici [28] provided a new continued fraction approximation starting from the Nemes’

formula (1.7) as follows:

 

x

x

x
dx

cx

bx

ax
x

xexx


















































 



10

112

1 21  , (1.18)

where




84040896418781427802410
45142771240023326589616,

7441324011300
113930321915,

1193976
2117009,

252
2369

 dcba .

On the other hand, Lu [23] provided a new continued fraction approximation based on the
Burnside’s formula (1.5) as follows;
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where
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Also Lu [48] found two asymptotic formulas
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Until now many continued fraction approximations for the Gamma function were given, but
it’s very uncomfortable to determine the parameters of the continued fractions because of the
limitation of method.

So we establish an effective method to construct continued fraction.

In this paper, using Euler connection, we provide a main method for construction of
continued fraction based on a given power series and determine all parameters of the
continued fractions simply. Then we establish several continued fraction approximations for
the Gamma function as applications of our method. Also new continued fraction bounds for
the Gamma function are obtained. Finally new continued fraction approximations and bounds
for Wallis ratio are established.

2. A main method to construct continued fractions

In this section, we present a main method to construct continued fraction based on a given
power series using Euler connection.

The Euler connection states the connection between series and continued fractions as follows;

Lemma 2.1. (The Euler connection [14]) Let }{ kc be a sequence in ℂ \ {0} and
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approximant nf for all n. This continued fraction is given by
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The following theorem states our main method.

Theorem 2.1. For every 0x ,
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the left-side of (2.3) is equal to )(xfn (n ∈ ℕ). Using Lemma 2.1,
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The proof of Theorem 2.1 is complete.

Remark 2.1. As you can see, Theorem 2.1 is simply proved by Euler connection. This
theorem is very useful for construction of continued fraction approximations and comfortable
to determine the parameters of the continued fractions.

3. Continued fraction approximations and bounds for the Gamma function

In this section, we establish continued fraction approximations and continued fraction bounds
for the Gamma function as applications of our method.

Theorem 3.1. As x , we have the continued fraction approximation of )1(  x ,
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According to the Stirling’s series,
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Thus, our new continued fraction approximation can be obtained.

Remark 3.1. As you can see, our new continued fraction approximation for the Gamma
function is equal to the Stirling’s series.
From Theorem 2.1, we have another expression of (3.4) as follows;
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Theorem 3.2. For every 0x , we have continued fraction bounds for the Gamma function:
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Proof. Using (1.4) and the same method from (3.2) to (3.3), for 0x ,
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Thus, our new continued fraction bounds for the Gamma function are obtained.

Theorem 3.3. As x , we have the continued fraction approximation of )
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According to (1.6),
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Thus, our new continued fraction approximation can be obtained.

Remark 3.2. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.6).
From Theorem 2.1, we have another expression of (3.12) as follows;
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Theorem 3.4. For every 0x , we have continued fraction bounds for the Gamma function
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Proof. Using (1.8) and the same method from (3.10) to (3.11), for 0x ,
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Thus, our new continued fraction bounds for the Gamma function are obtained.

Theorem 3.5. As x , we have the continued fraction approximation of )1(  x ,
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Proof. In (1.11), it’s easy to see that
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According to (1.11),
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Thus, our new continued fraction approximation can be obtained.

Remark 3.3. As you can see, our new continued fraction approximation for the Gamma
function is equal to (1.11).
From Theorem 2.1, we have another expression of (3.22) as follows;
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Theorem 3.6. As x , we have the continued fraction approximation of )
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Proof. In (1.12), it’s easy to see that
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From (3.26) and Theorem 2.1, as x ,
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from (3.25),
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According to (1.12),
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Thus, our new continued fraction approximation can be obtained.

Remark 3.4. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.12).
From Theorem 2.1, we have another expression of (3.29) as follows;
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4. Continued fraction approximations and bounds for the generalized
Wallis ratio

In this section, we present continued fraction approximations and continued fraction bounds
for the Wallis ratio as applications of our method.

Theorem 4.1. As x , we have the continued fraction approximation for the generalized
Wallis ratio:
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From (4.2) and Theorem 2.1, as x ,
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According to (1.13),
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Thus, our new continued fraction approximation can be obtained.

Remark 4.1. As you can see, our new continued fraction approximation for the Gamma
function is equal to (1.13).
From Theorem 2.1, we have another expression of (4.4) as follows;
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Theorem 4.2. For every 0x , we have continued fraction bounds for the Wallis ratio:
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Proof. Using (1.14) and the same method from (4.2) to (4.3), for 0x ,
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Thus, our new continued fraction bounds are obtained.

Theorem 4.3. As x , we have the continued fraction approximation of the Wallis ratio:
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Proof. In (1.16), it’s easy to see that
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From (4.11) and Theorem 2.1, as x ,
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Thus, our new continued fraction approximation can be obtained.

Remark 4.2. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.16).
From Theorem 2.1, we have another expression of (4.14) as follows:
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5. Concluding Remarks

In Remark 3.1 and Remark 3.2, we can see that
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and in Remark 3.3 and Remark 3.4,
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Also in Remark 3.1 and Remark 4.1, we can see that
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From Theorem 3.1, Theorem 3.5 and the relations of (5.1), (5.2), (5.3) and (5.4), we get

  ,
691

2310 ,
910
2073 ,

99
140 ,

4
3 ,

7
2 ,

30
1 ,

12
1

7654321  aaaaaaa ,

  ,
2828954 
9460605  ,

1860040 
4243431  ,

12573 
17885  ,

496 
381  ,

98
31 ,

120
7 ,

24
1

7654321  ppppppp ,

  ,
17966 
60071  ,

2728 
6219  ,

153
217 ,

112
85 ,

10
3 ,

24
1 ,

8
1

7654321  sssssss ,

and

, ,
81592182478458 

688901326772623  ,
491163150 
2264216681  ,

29383393 
98232630 

 ,
990990 
2260261  ,

9
13 ,

35
33 ,

1620 
1

765

4321





mmm

mmmm

,  ,
2004119061430265433 
9763905958695070727  ,

66001609246944 
63277419158798  ,

421202956109 
654023117361 

 ,
2025583560 
4626754267  ,

4572 
6643  ,

4340 
4191  ,

51840 
31

765

4321





uuu

uuuu

. ,
032861593191042 
928979685440152  ,

601262231511 
175819036870   ,

5347777526 
11788161308 

 ,
990264 
2260261  ,

3060 
4433  ,

196 
187  ,

5760 
7

765

4321





www

wwww

As mentioned above, in our investigation, we provide a generally applicable and very useful
method to construct continued fraction and have successfully found its applications.
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