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Improvement of Proportional
Conflict Redistribution Rules of
Combination of Basic Belief
Assignments

THÉO DEZERT
JEAN DEZERT
FLORENTIN SMARANDACHE

This paper discusses and analyzes the behaviors of the Propor-

tional Conflict Redistribution rules no. 5 (PCR5) and no. 6 (PCR6)

to combine several distinct sources of evidence characterized by their

basic belief assignments defined over the same frame of discernment.

After a brief review of these rules, the paper shows through simple

examples why their behaviors can sometimes increase the uncertainty

more than necessary, which is detrimental to decision-making support

drawn from the result of the combination.We present a theoretical im-

provement of these rules, and establish new PCR5+ and PCR6+ rules

of combination. These new rules overcome the weakness of PCR5 and

PCR6 rules by computing binary-keeping indexes that allow to keep

only focal elements that play an effective role in the partial conflict

redistribution. PCR5+ and PCR6+ rules are not associative but they

preserve the neutrality of the vacuous belief assignment contrary to the

PCR5 and PCR6 rules, and they make a more precise redistribution

which does not increase improperly the mass of partial uncertainties.

I. INTRODUCTION

There exist different theories based on distinct rep-
resentations and modelings of uncertainty to deal with
uncertain information to conduct information fusion [1].
The theory of probability [2], [3], the theory of fuzzy sets
[4], [5], the possibility theory [6], [7], and the theory of
belief functions [8]–[10] are the most well-known ones.
This paper addresses the problem of information fusion
in the mathematical framework of the belief functions
introduced by Shafer from Dempster’s works [11], [12].
The belief functions are often used in decision-making
support applications because the experts are generally
able to express only a belief in a hypothesis (or a set
of hypotheses) from their partial knowledge, experience,
and from their own perception of the reality. To con-
duct information fusion, we need some efficient rules
of combination that are able to manage the conflict-
ing sources of evidence (if any), or expert opinions ex-
pressed in terms of belief functions. Readers interested
in belief functions can found classical related papers in
[13] and in the special issue [14],which includes also a list
of good selected papers. It is worth to mention that the
recent book of Cuzzolin [15] includes 2137 references,
with many of them related to belief functions.

In this paper, we adopt the notion of conflict intro-
duced by Shafer in [8] (p. 65). This notion of conflict is
often adopted by researchers working with belief func-
tions, as in [16] (p. 17) for instance, because this notion
is quite simple to understand. Different definitions and
interpretations of conflict can be also found in [17]–[27]
for readers interested in this topic. In this paper, two (or
more) sources are said conflicting if they support incom-
patible (disjoint, or contradictory) hypotheses. We also
work with distinct sources of evidences that are consid-
ered as (cognitively) independent and reliable. We nei-
ther consider, nor apply discounting techniques of belief
assessments listed in [14] before combining them to keep
the presentation and notations as simple as possible.1

While the conjunctive rule makes it possible to
combine information between different sources of in-
formation by estimating the level of existing conflict,
Dempster–Shafer (DS) rule [8], [16] proposes a distri-
bution of this conflict on the hypotheses characterized
by the sources of information. The normalization car-
ried out by the DS rule may, however, be considered
counter-intuitive especially when the level of conflict be-
tween the sources of information is high [28], [29], but
also in some situations where the level of conflict be-
tween sources is low as shown in [30] showing a dictato-
rial behavior of DS rule. The Proportional Conflict Re-
distribution rules no. 5 (PCR5) [31] and no. 6 (PCR6)
[32], [33] have been proposed to circumvent the problem
of the DS rule to make a more judicious management of
the conflict.

1Of course discounted belief assignments can also be combined by the
rules presented in this paper.
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In this paper, we put forward a flawed behavior of
these combination rules in some cases attributed to the
non-neutrality of the vacuous Basic Belief Assignment
(BBA), and we propose an improvement of these two
combination rules (denoted by PCR5+ and PCR6+) in
order to ensure the neutrality property of the vacuous
BBA (VBBA).This is achieved by discarding specific el-
ements implied in the partial conflict and which are not
useful for making the conflict redistribution.

In the Proportional Conflict Redistribution (PCR)
rules [32]–[34], one redistributes the product of masses
of belief of incompatible (i.e., conflicting) elements
whose intersection is empty only to elements involved
in this product and proportionally to their mass of be-
lief. For instance, let’s consider two elementsA and B of
a frame of discernment (FoD) withA∩B = ∅, and three
BBAs m1(·),m2(·), and m3(·) defined on this FoD with
m1(A) > 0,m2(B) > 0,andm3(A ∪ B) > 0.The product
m1(A)m2(B)m3(A ∪B) > 0 is called a conflicting prod-
uct hereafter because A ∩ B ∩ (A ∪ B) = ∅. Based on
PCR5 (and PCR6) rule, we will redistribute the value of
this product back to the focal2 elementsA,B, andA∪B,
and proportionally tom1(A),m2(B), andm3(A ∪B). In
the improved PCR rules developed in this paper,we will
redistribute this conflicting product only to the focal el-
ementsA and B since the focal elementA∪B is neither
in conflict with A, nor with B. Such an improvement in
the PCR is made possible by defining a binary-keeping
index for each focal element involved in the conflicting
product. This index will allow the identification of ele-
ments of the conflicting product that will have an effec-
tive role in the proportional redistribution of conflicting
product. All elements (if any) having a binary-keeping
index equal to zero are discarded of the conflict redistri-
bution process. This main idea is developed in this pa-
per and illustrated with several examples. It allows to
preserve the neutrality of the total ignorant source of
evidence in the improved versions of PCR5 and PCR6
rules, which is often considered as a desirable property
for a rule of combination of distinct and reliable sources
of evidence.

For the reader not immersed in the belief mathe-
matics notion, the comparative numerical examples of
Example 1 of Section III-B as compared with Example
1 revisited of Section VII, provide a quick verification of
the improvements.

This paper is organized as follows.We give the basics
of belief functions in Section II. We present the PCR5
and PCR6 rules of combination in Section III with new
general formulas in Subsection III-C, and associated ex-
amples in Section IV. The flawed behavior of PCR5 and
PCR6 rules are highlighted in Section V through spe-
cific examples.Then,SectionVI proposes themathemat-
ical expression of the new improved PCR5+ and PCR6+

2A focal element is an element (i.e., a subset) having a strictly positive
mass of belief committed to it—see Section II elements.

rules of combination, as well as the very detailed pro-
cedure to select the focal elements for these new pro-
portional redistributions. Finally, comparative results for
relevant examples are shown in Section VII in order to
compare the PCR5 and PCR6 results with the PCR5+

and PCR6+ results. Concluding remarks are given in
Section VIII. For convenience, two MatlabTM routines
are also given in Appendix 3 of this paper for PCR5+

and PCR6+ rules of combination.

II. BASICS OF BELIEF FUNCTIONS

We consider a given finite set � of n > 1 distinct el-
ements � = {θ1, θ2, . . . , θn} corresponding to the FoD
of the fusion problem, or the decision-making problem,
under concern. All elements of � are mutually exclu-
sive3 and each element is an elementary choice of the
potential decision to take. The power set of � is the set
of all subsets of � (including empty set ∅ and �) and it
is usually denoted 2� because its cardinality equals 2|�|.
We adopt Shafer’s formalism whereby propositions are
represented by subsets [8] (Chap. 2, pp. 35–37). Hence,
the propositions under concern are in one-to-one corre-
spondance with subsets of �. We also use classical no-
tations of set theory [35], i.e. ∅ for the empty set,A ∪ B
for the union4 of sets A and B (which is the set of all
objects that are a member of the set A, or the set B, or
both),A∩B for their intersection (which is the set of all
objects that are members of both A and B), etc. A BBA
given by a source of evidence is defined by Shafer [8]
in his Mathematical Theory of Evidence (known also as
Dempster–Shafer Theory (DST)) as m(·) : 2� → [0, 1]
satisfying {

m(∅) = 0∑
A∈2� m(A) = 1, (1)

where m(A) is the mass of belief exactly committed to
A, what we usually call the mass of A. A BBA is said
proper (or normal) if it satisfies Shafer’s definition (1).
The subset A ⊆ � is called a focal element of the BBA
m(·) if and only if m(A) > 0. The empty set is not
a focal element of a BBA because m(∅) = 0 accord-
ing to definition (1). The set of all focal elements of a
BBAm(·) is denoted F (m). Its mathematical definition
is F (m) = {X ∈ 2�|m(X ) > 0}. The cardinality |F (m)|
of the set F (m) is denoted Fm. The order of focal el-
ements of F (m) does not matter and all the focal ele-
ments are different. The set F (m) of focal elements of
m(·) has at least one focal element, and at most 2|�| − 1
focal elements.

3This standard assumption is called Shafer’s model of FoD in Dezert–
Smarandache theory (DSmT) framework [34].
4We prefer the notation A ∪ B for denoting the union of sets A and
B, which is a formal mathematical notation for the union of two sets,
instead of the notations AB or {A,B} used by some authors.
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Belief and plausibility functions are, respectively, de-
fined fromm(·) by [8]

Bel(A) =
∑

X∈2�|X⊆A
m(X ) (2)

and

Pl(A) =
∑

X∈2�|A∩X �=∅
m(X ) = 1 − Bel(Ā). (3)

where Ā represents the complement of A in �.
Bel(A) and Pl(A) are usually interpreted, respec-

tively, as lower and upper bounds of an unknown
(subjective) probability measure P(A) [11], [12]. The
functionsm(.),Bel(.) and Pl(.) are one-to-one.A belief
function Bel(.) is Bayesian if all Bel’s focal elements
are singletons [8] (Theorem 2.8, p. 45). In this case,
m(X ) = Bel(X ) for any (singleton) focal element
X , and m(.) is called a Bayesian BBA. Corresponding
Bel(·) function is equal to Pl(·) and these functions can
be interpreted as a same (possibly subjective) proba-
bility measure P(·). The VBBA representing a totally
ignorant source is defined as mv(�) = 1.

III. COMBINATION OF BBAS

This section presents at first the conjunctive rule of
combination which is one of the main rules to combine
reliable sources of evidence and which allows to iden-
tify the conflicting information among the sources. Then
we present the PCR5 [31] and PCR6 [32], [33] as al-
ternatives of Dempster’s rule of combination [8]. The
development of these rules has been motivated by the
counter-intuitive behavior of Dempster’s rule [8] when
combining high conflicting sources of evidences, but also
when combining low conflicting sources of evidences as
well5.The reader interested in this topic can refer to [13],
[28]–[30] to see theoretical justifications and examples.
In the following, and for simplicity, we restrain our pre-
sentation to the classical framework of belief functions,
and we work with BBAs defined only on the power set
2� of a FoD �. PCR rules have been defined originally
for working with Dedekind’s lattice as well, see Chap-
ter 1 of [34] (Volume 2). In this paper, we present sim-
ple general expressions of PCR5 and PCR6 fusion rules
because they are easier to understand than the original
general formulas, and they afford expressions of the im-
proved PCR5+ and PCR6+ rules in a direct and useful
manner.

After a brief presentation of the main notations used
in this paper, we will recall both PCR5 and PCR6 rules
for historical and technical reasons. PCR5 has been de-
veloped at first, and then PCR6 has been proposed based
on a modified redistribution principle inspired by PCR5.
In this paper, we follow the logical and historical de-
velopment of these PCR5 and PCR6 rules to make

5Which is known as the dictatorial behavior of Dempster’s rule [30].

the presentation of their improved versions PCR5+ and
PCR6+. It seems easier to understand PCR6+ fusion for-
mula once the PCR5+ formula will have been estab-
lished. By presenting both rules, we offer to the readers
a global deeper view on how these new rules work and
their fundamental and mathematical differences in their
conflict redistribution principles. In the sequel, all the in-
troduced examples assume themodel of Shafer’s FoD as
in the classical DST framework.

A. Notations

When we make the combination of S ≥ 2 BBAs by
the conjunctive rule, or by the PCR5 and PCR6 fusion
rules, we have to compute the product of the masses of
the focal elements composing any possible S-tuple of fo-
cal elements. Each possible S-tuple is noted by6

X j � (Xj1 ,Xj2 , . . . ,XjS ) ∈ F (m1)×F (m2)×. . .×F (mS),

where j1 ∈ {1, 2, . . . ,Fm1}, j2 ∈ {1, 2, . . . ,Fm2}, ..., jS ∈
{1, 2, . . . ,FmS}. The element Xji is the focal element of
mi(·) that makes the i-th component of the j-th S-tuple
X j.

For notation convenience also, the cartesian prod-
uct F (m1) × F (m2) × . . . × F (mS) is denoted by
F (m1, . . . ,mS) in the sequel.

We have F � |F (m1, . . . ,mS)| = ∏S
i=1 |F (mi)| =∏S

i=1 Fmi products of masses of focal elements to con-
sider and to calculate because we have Fm1 focal ele-
ments in F (m1), Fm2 focal elements in F (m2), ..., and
FmS focal elements in F (mS). Each product for j = 1 to
F is of the form

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) �
S∏
i=1

mi(Xji ). (4)

There are two types of products:

� π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is called a non-conflicting
(mass) product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = X �= ∅.

In this case, π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is also noted by
π j(X ) for short.

� π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) is called a conflicting (mass)
product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = ∅.

In this case, π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is also noted by
π j(∅) for short.
It is worth noting that an element X ∈ 2� \ {∅} may

belong to sets of focal elements of the different BBAs to
combine, and therefore a S-tuple X j can have duplicate
components. Because all the BBAs are normalized, we

6The symbol � means “equals by definition.”
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always have

F∑
j=1

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) = 1. (5)

As a simple example to illustrate our notations, let
us consider two BBAs m1(·) and m2(·) defined over the
FoD � = {A,B,C} with, respectively, two and three fo-
cal elements, say F (m1) = {A,B ∪ C} and F (m2) =
{B,C,A ∪ C}. Here Fm1 = |F (m1)| = 2 and Fm2 =
|F (m2)| = 3. For j1 = 1 (the first focal element ofm1(·))
one has Xj1 = A, and for j1 = 2 (the second focal ele-
ment ofm1(·)) one hasXj1 = B∪C. Similarly, for j2 = 1
(the first focal element of m2(·)) one has Xj2 = B, for
j2 = 2 (the 2nd focal element ofm2(·)) one hasXj2 = C,
and j2 = 3 (the 3rd focal element of m2(·)) one has
Xj2 = A ∪ C. In this case we have F = Fm1 · Fm2 = 6
products of masses to consider in the conjunctive fusion
rule (see next sub-section) which are

π1(A ∩ B) = m1(A)m2(B),

π2(A ∩C) = m1(A)m2(C),

π3(A ∩ (A ∪C)) = m1(A)m2(A ∪C),

π4((B ∪C) ∩ B) = m1(B ∪C)m2(B),

π5((B ∪C) ∩C) = m1(B ∪C)m2(C),

π6((B ∪C) ∩ (A ∪C)) = m1(B ∪C)m2(A ∪C).

The products π1 and π2 are called conflicting products
because

� for π1, the focal elements A and B involved in π1 are
incompatible (i.e., disjoint) because A ∩ B = ∅. π1

(A ∩ B) is of course equivalent to π j(Xj1 ∩ Xj2 ) with
j = 1 by taking Xj1 = A and Xj2 = B; and

� for π2, one has A ∩ C = ∅. π2(A ∩ C) is equivalent
to π j(Xj1 ∩ Xj2 ) with j = 2 by taking Xj1 = A and
Xj2 = C, etc.

The products π3, ..., and π6 are not conflicting prod-
ucts because the focal elements involved in each prod-
uct have non-empty intersection. Because m1(A) + m1

(B∪C) = 1 andm2(B)+m2(C)+m2(A∪C) = 1,one has
(m1(A)+m1(B∪C))(m2(B)+m2(C)+m2(A∪C)) = 1,
and therefore

∑6
j=1 π j = 1. This illustrates the formula

(5).
In this paper, i ∈ {1, . . . ,S} represents the index of

the i-th source of evidence characterized by the BBA
mi(·), and j ∈ {1, . . . ,F} represents the index of the j-th
product π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ).

B. The conjunctive rule of combination

Let’s consider S ≥ 2 distinct reliable sources of evi-
dence characterized by their BBA ms(·) (s = 1, . . . ,S)

defined on 2�.Their conjunctive fusion7 is defined for all
A ∈ 2� by

mConj
1,2,...,S(A) =

∑
X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS )

=
∑

X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

S∏
i=1

mi(Xji ). (6)

The symbol ©∩ is also used in the literature, for in-
stance in [36], to note the conjunctive fusion operator,
i.e.,mConj

1,2,...,S(A) = [m1©∩ m2©∩ . . . ©∩ mS](A).
The total conflicting mass between the S sources of

evidence, denoted mConj
1,2,...,S(∅), is nothing but the sum of

all existing conflicting mass products, that is

mConj
1,2,...,S(∅) =

∑
X j∈F (m1,...,mS)
Xj1∩...∩XjS=∅

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS )

= 1 −
∑

A∈2�\{∅}
mConj

1,2,...,S(A). (7)

Note that the combined BBA mConj
1,2,...,S(.) given in (6) is

not a proper BBA because it does not satisfy Shafer’s
definition (1). In general, the S sources of evidence to
combine do not fully agree, and we have consequently
mConj

1,2,...,S(∅) > 0.
Dempster’s rule of combination (called also orthog-

onal sum by Shafer [8], p. 6) coincides with the nor-
malized version of the conjunctive rule. It is defined by
mDS

1,2,...,S(A) = mConj
1,2,...,S(A)/(1 − mConj

1,2,...,S(∅)), assuming

mConj
1,2,...,S(∅) �= 1. The DS upper notation refers to ini-

tials of Dempster and Shafer names becauseDempster’s
rule has gained its popularity through Shafer’s works
on belief functions. Shafer uses the symbol ⊕ to note
Dempster’s fusion operator, i.e., mDS

1,2,...,S(A) = [m1 ⊕
m2 ⊕ . . . ⊕ mS](A) for A �= ∅, and mDS

1,2,...,S(∅) = 0. A
probabilistic analysis of Dempster’s rule of combination
can be found in [37], and the geometry of Dempster’s
rule is analyzed in [38].

Example 1: Consider � = {A,B} and two following
BBAs

m1(A) = 0.1 m1(B) = 0.2 m1(A ∪ B) = 0.7

m2(A) = 0.4 m2(B) = 0.3 m2(A ∪ B) = 0.3

We have mConj
1,2 (∅) = 0.11, and

mConj
1,2 (A) = 0.35, mConj

1,2 (B) = 0.33, mConj
1,2 (�) = 0.21.

7The conjunctive fusion rule is also called Smets’ rule of combination
by some authors because it has been widely used by Philippe Smets in
his works related to belief functions. But Smets himself call it conjunc-
tive rule, see his last paper [20] (p. 388).
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Symbolically we denote the conjunctive fusion of S
sources as mConj

1,2,...,S = Conj(m1,m2, . . . ,mS). This con-
junctive rule is commutative and associative.This means
that the sources can be combined altogether in one step,
or sequentially in any order and it does not matter.
Also, the total ignorant source represented by the vacu-
ous (non-informative) BBA has no impact in the fusion
result—see Lemma 1 below.

Lemma 1:The VBBAmv has a neutral impact in the
conjunctive rule of combination, that is

Conj(m1,m2, . . . ,mS,mv ) = Conj(m1,m2, . . . ,mS).
(8)

Proof: see Appendix 1.
The main drawback of this fusion rule is that it does

not generate a proper BBA because mConj
1,2,...,S(∅) > 0 in

general,and also it can provide a fusion resultmConj
1,2,...,S(∅)

that quickly tends to one after only few steps of a se-
quential fusion processing of the sources which is not
very useful for decision-making support. This is because
the empty set ∅ is the absorbing element for the con-
junctive operation since ∅ ∩A = ∅ for allA ∈ 2� so that
the mass committed to the empty set always increases
through the repeated conjunctive fusion rule. The main
interest of this rule is its ability to identify the partial con-
flicts and to provide a measure of the total level of con-
flict mConj

1,2,...,S(∅) between the sources which can be used
to manage (select or discard) the sources in the fusion
process if one prefers, see [39] for an application in geo-
physics for instance.

C. PCR5 and PCR6 rules of combination

The PCR rules have been developed originally in the
framework of DSmT [31], [32], [34] but they can work
also in the classical framework of Shafer’s belief func-
tions as well. Six rules have been proposed and they are
referred as PCR1, ..., PCR6 rules of combination hav-
ing different complexities,PCR1 being themost simplest
(but less effective) one. All these rules share the same
general principle which consists of three steps:

� apply the conjunctive rule (6);
� calculate the conflicting mass products π j(∅); and
� redistribute the conflicting mass products π j(∅) pro-
portionally on all non-empty sets involved in the
conflict.

The way the conflicting mass product π j(∅) is redis-
tributed yields to different versions of PCR combination
rules that work for any degree of conflict.The sophistica-
tion/complexity and preciseness of PCR rules increases
from the first PCR1 rule up to the last rule PCR6. The
main disadvantage of these rules, aside their complex-
ity, is their non-associativity properties which impose to
combine all the BBAs altogether with PCR rules rather
than sequentially to expect the best fusion result.

In this paper, we focus on the presentation of PCR5
and PCR6 only because they are the most well-known
advanced fusion rules used so far in the belief func-
tions community. A detailed presentation of other rules
of combination encountered in the literature can be
found in [40]. Symbolically, the PCR5 fusion and the
PCR6 fusion of S ≥ 2 BBAs are, respectively, de-
noted mPCR5

1,2,...,S = PCR5(m1,m2, . . . ,mS), and mPCR6
1,2,...,S =

PCR6(m1,m2, . . . ,mS).
Readers familiar with PCR rules could quickly read

the example 1 given in section III-B, and the results
obtained with classical and improved PCR5 and PCR6
rules in sectionVII to appreciate the discussion through-
out the paper.

The PCR5 rule of combination [31]: This rule trans-
fers the conflicting mass π j(∅) to all the elements in-
volved in this conflict and proportionally to their individ-
ual masses, so that amore sophisticate and specific distri-
bution is donewith the PCR5 fusion process with respect
to other existing rules (including Dempster’s rule). The
PCR5 rule is presented in details (with justification and
examples) in [34] (Vol. 2 and Vol. 3).

• The PCR5 fusion of two BBAs is obtained by
mPCR5

1,2 (∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑
X∈2�

X∩A=∅

[
m1(A)2m2(X )
m1(A) +m2(X )

+ m2(A)2m1(X )
m2(A) +m1(X )

]
, (9)

wheremConj
1,2 (A) is the conjunctive rule formula (6) with

S = 2, and where all denominators in (9) are different
from zero. If a denominator is zero, that fraction is dis-
carded.All propositions/sets are in a canonical form.We
take the disjunctive normal form, which is a disjunction
of conjunctions, and it is unique in Boolean algebra and
simplest. For example, X = A ∩ B ∩ (A ∪ B ∪ C) it is
not in a canonical form, but we simplify the formula and
X = A ∩ B is in a canonical form.

The PCR5 formula (9) for two BBAs can also be ex-
pressed by considering only the focal elements of m1(·)
and m2(·) as follows

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

(Xj1 ,Xj2 )∈F (m1 )×F (m2 )
Xj1∩Xj2=∅
Xj1=A

m1(Xj1 ) · m1(Xj1 )m2(Xj2 )
m1(Xj1 ) +m2(Xj2 )

+
∑

(Xj1 ,Xj2 )∈F (m1 )×F (m2 )
Xj1∩Xj2=∅
Xj2=A

m2(Xj2 ) · m1(Xj1 )m2(Xj2 )
m1(Xj1 ) +m2(Xj2 )

,

(10)

or equivalently, with shorthand π j notations, as
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mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

j∈{1,...,F}|X j∈F (m1,m2 )
Xj1∩Xj2=∅

A∈X j

[
mi∈{1,2}|Xji=A(Xji )

· π j(Xj1 ∩Xj2 )
m1(Xj1 ) +m2(Xj2 )

]
, (11)

whereF = |F (m1)|·|F (m2)| is the total number of prod-
ucts π j(Xj1 ∩Xj2 ) = m1(Xj1 )m2(Xj2 ), andA ∈ X j means
that at least one component of X j equals A.

• The explicit formula of the PCR5 fusion of three
BBAs is given in [41].

• A simple formulation of the general expres-
sion of the PCR5 fusion of S > 2 BBAs is ob-
tained by redistributing each conflicting product
π j(∅) = π j(Xj1 ∩ . . . ∩XjS = ∅) = ∏S

i=1mi(Xji ) to
some elements of the power set of the FoD that are
involved in the conflict. Each π j(∅) is redistributed
proportionally to elements involved in this conflict
based on the PCR5 redistribution principle. When an
element A ∈ 2� is not involved in a conflicting product
π j(∅), i.e. A /∈ X j, the conflicting product π j(∅) is not
redistributed to A. If an element A is involved in the
conflict Xj1 ∩ . . . ∩XjS = ∅, i.e.A ∈ X j and π j(∅) occur,
then the proportional redistribution of π j(∅) to A is
given by

x j(A) �

⎛⎝ ∏
i∈{1,...,S}|Xji=A

mi(Xji )

⎞⎠
· π j(∅)∑
X∈X j

( ∏
i∈{1,...,S}|Xji=X

mi(Xji )
) , (12)

where A ∈ X j means that at least one component of the
S-tuple X j = (Xj1 , . . . ,XjS ) ∈ F (m1, . . . ,mS) equals A.

Finally the mass value of A obtained by the PCR5
rule is calculated by
mPCR5

1,2,...,S(A) = mConj
1,2,...,S(A) +

∑
j∈{1,...,F}|A∈X j∧π j (∅)

x j(A),

(13)
where A ∈ X j ∧ π j(∅) is a shorthand notation meaning
that at least one component of the S-tuple X j equals A
and the components ofX j are conflicting, i.e.,Xj1 ∩ . . .∩
XjS = ∅.

Therefore the general PCR5 formula can be ex-
pressed asmPCR5

1,2,...,S(∅) = 0, and for A ∈ 2� \ {∅} by

mPCR5
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[( ∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

( ∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (14)

It is worth noting that the formula (14) is a general-
ization of the formula (11), i.e., (14) coincides with (11)
when S = 2.

This general PCR5 formula is equivalent to the orig-
inal PCR5 formula given in [31] but it involves only the
focal elements of the BBAs to combine whichmakes the
derivationmore efficient (less computationally demand-
ing) than the original general PCR5 formula, specially
when each BBA has only few focal elements. We use
this new general PCR5 formula because it is relatively
simple and easy to improve it into PCR5+ formula—
see section VI-B. The extension of PCR5 for combin-
ing qualitative8 BBAs can be found in [34] (Vol. 2 and
3) and in [33]. PCR5 rule is not associative and the best
fusion result is obtained by combining the sources alto-
gether at the same timewhen possible.A suboptimal fast
fusion method using PCR5-based canonical decomposi-
tion [42] can be found in [43].

The PCR6 rule of combination [32]: A variant of
PCR5 rule, called PCR6 rule,has been proposed byMar-
tin andOsswald in [32], [33] for combining S > 2 sources.
Because PCR6 coincides with PCR5when one combines
two sources, we do not provide the PCR6 formula for
two sources which is the same as (9). The difference be-
tween PCR5 and PCR6 lies in the way the PCR is done
as soon as three (or more) sources are involved in the
fusion as it will be shown in the example 2 introduced in
the next section.The explicit formula of the PCR6 fusion
of three BBAs is given in [41] for convenience.

The PCR6 fusion of S > 2 BBAs is obtained by
mPCR6

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by9

mPCR6
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[( ∑
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

( ∑
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (15)

The difference between the general PCR5 and PCR6
formulas is that the PCR5 proportional redistribution
involves the products

∏
i∈{1,...,S}|Xji=A

mi(Xji ) of multiple

same focal elements A (if any) in the conflict, whereas
the PCR6 conflict redistribution principle works with
their sum

∑
i∈{1,...,S}|Xji=A

mi(Xji ) instead. The next section

presents some examples for PCR5 and PCR6 rules of
combinations.

We use this general PCR6 formula instead of the
original Martin-Osswald’s PCR6 formula [32] because

8A qualitative BBA is a BBA whose values are labels (e.g., low,
medium, and high) instead of real numbers.
9We wrote this PCR6 general formula in the style of PCR5 formula
(14).
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it is easier to improve it into PCR6+ formula—see Sec-
tionVI-B.From the implementation point of view,PCR6
is simpler to implement than PCR5. From the decision-
making standpoint, PCR6 is better than PCR5 when
S > 2 as reported by Martin and Osswald in [32] (see
also the Example 3 in the next section) in their applica-
tions. For convenience, some MatlabTM codes of PCR5
and PCR6 fusion rules can be found in the appendix of
[44], also in Chap. 7 of [34] (Vol. 3), or fromArnaudMar-
tin’s web page [45]. PCR6 code (in R programming lan-
guage) can be found also in iBelief package developed
by Kuang Zhou and Arnaud Martin from the BFAS10

repository [46], or directly from [47] as well. When we
have only two BBAs to combine, PCR5 and PCR6 rules
provide the same result because formulas (14) and (15)
coincide for S = 2.

In this paper, we have voluntarily chosen to present
the two rules, PCR5 and PCR6, and their improved ver-
sionsmainly for historical reasons and because these two
rules have strong theoretical links as we have shown.
By doing this, we offer the possibility to readers (and
potential users) to test each of these advanced fusion
methods and evaluate their performances on their own
applications. Even though PCR6 is posterior to PCR5,
since some researchers have implemented and are using
PCR5 fusion rule, it appears important to introduce the
improved version of this rule. Furthermore, PCR5 goes
back exactly on the tracks of the conjunctive rule, while
PCR6 does not.

IV. EXAMPLES FOR PCR5 AND PCR6 FUSION RULES

Here we provide two simple examples showing the
difference of the results between PCR5 and PCR6 rules.
For convenience, all numerical values given in the ex-
amples of this paper have been rounded to six decimal
places when necessary.

Example 2: We consider the simplest FoD � =
{A,B}, and the three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5

Because Fm1 = |F (m1)| = 3, Fm2 = |F (m2)| = 3
and Fm3 = |F (m3)| = 3, we have F = Fm1 · Fm2 ·
Fm3 = 27 products to consider.Fifteen products are non-
conflicting and will enter in the calculation ofmConj

1,2,3(A),

mConj
1,2,3(B), and mConj

1,2,3(A ∪ B), and 12 products are con-
flicting products that will need to be proportionally re-
distributed. The conjunctive combination of these three
BBAs is

mConj
1,2,3(A) = m1(A)m2(A)m3(A)

+m1(A)m2(A)m3(A ∪ B)

10Belief Functions and Applications Society.

+m1(A)m2(A ∪ B)m3(A)

+m1(A ∪ B)m2(A)m3(A)

+m1(A)m2(A ∪ B)m3(A ∪ B)

+m1(A ∪ B)m2(A)m3(A ∪ B)

+m1(A ∪ B)m2(A ∪ B)m3(A)

= 0.5370,

mConj
1,2,3(B) = m1(B)m2(B)m3(B)

+m1(B)m2(B)m3(A ∪ B)

+m1(B)m2(A ∪ B)m3(B)

+m1(A ∪ B)m2(B)m3(B)

+m1(B)m2(A ∪ B)m3(A ∪ B)

+m1(A ∪ B)m2(B)m3(A ∪ B)

+m1(A ∪ B)m2(A ∪ B)m3(B)

= 0.0900,

mConj
1,2,3(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(A ∪ B)

= 0.3 · 0.2 · 0.5 = 0.0300,

and

mConj
1,2,3(∅) = 1 −mConj

1,2,3(A) −mConj
1,2,3(B) −mConj

1,2,3(A ∪ B)

= 0.3430,

In this example, we have 12 partial conflicts, noted π j(∅)
( j = 1, . . . , 12), which are given by the following prod-
ucts

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪ B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪ B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪ B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪ B)m3(A) = 0.0080.

In applying the PCR5 formula (14), and the PCR6 for-
mula (15), we obtain finally mPCR5

1,2,3 (∅) = mPCR6
1,2,3 (∅) = 0,
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and11

mPCR5
1,2,3 (A) ≈ 0.723281,

mPCR5
1,2,3 (B) ≈ 0.182460,

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259,

and

mPCR6
1,2,3 (A) ≈ 0.743496,

mPCR6
1,2,3 (B) ≈ 0.162245,

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259.

We see a difference between the BBAs mPCR5
1,2,3 and

mPCR6
1,2,3 , which is normal because the PCR principles are

quite different. Using the PCR5 fusion rule the first par-
tial conflicting mass π1(∅) = m1(A)m2(A)m3(B) = 0.03
will be redistributed back to A and B proportionally to
m1(A)m2(A) and tom3(B) as follows

x1(A)
m1(A)m2(A)

= x1(B)
m3(B)

= π1(∅)
m1(A)m2(A) +m3(B)

,

whence

x1(A) = m1(A)m2(A)π1(∅)
m1(A)m2(A) +m3(B)

= 0.0225,

x1(B) = m3(B)π1(∅)
m1(A)m2(A) +m3(B)

= 0.0075.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.
Using the PCR6 fusion rule the first partial conflict-

ing mass π1(∅) = 0.03 will be redistributed back to A
andB proportionally to (m1(A)+m2(A)) and tom3(B).
So we will get the following redistributions x1(A) =
0.0275 for A and x1(B) = 0.0025 for B because

x1(A)
m1(A) +m2(A)

= x1(B)
m3(B)

= π1(∅)
m1(A) +m2(A) +m3(B),

whence

x1(A) = (m1(A) +m2(A))π1(∅)
m1(A) +m2(A) +m3(B)

= 0.0275,

x1(B) = m3(B)π1(∅)
m1(A) +m2(A) +m3(B)

= 0.0025.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.
Note that for all the partial conflicts having no dupli-

cate element involved in the conflicting product π j(∅)
we make the same redistribution with PCR5 rule and
with PCR6 rule. For instance, for π7(∅) = m1(A ∪
B)m2(A)m3(B) = 0.0150 we get

x7(A ∪ B)
m1(A ∪ B)

= x7(A)
m2(A)

= x7(B)
m3(B)

= π7(∅)
m1(A ∪ B) +m2(A) +m3(B),

11The symbol ≈ means “approximately equal to.”

whence π7(∅) = x7(A ∪ B) + x7(A) + x7(B) = 0.0150
with

x7(A ∪ B) = m1(A ∪ B)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

= 0.0050,

x7(A) = m2(A)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

≈ 0.0083,

x7(B) = m3(B)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

≈ 0.0017.

The next example shows also the difference between
PCR5 and PCR6 rules, and it justifies why PCR6 rule is
usually preferred to PCR5 rule in applications.

Example 3: we consider the FoD � = {A,B,C}, and
the four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, andm4(C) = 1.

These BBAs are in conflict because the intersection of
their focal elements is (A ∪ B) ∩A ∩ (A ∪ B) ∩C = ∅.
In this example, one has only one product of masses to
calculate,which is π1((A∪B)∩A∩(A∪B)∩C) = m1(A∪
B)m2(A)m3(A ∪ B)m4(C) = 1. In fact this product is a
conflicting product denoted π1(∅). We can also denote
it π (∅) because the index j = 1 is useless in this case.
Moreover, these BBAs are also in total conflict because
π (∅) = m1(A ∪ B)m2(A)m3(A ∪ B)m4(C) = 1.

If one applies the PCR5 rule principle we get

x(A ∪ B)
m1(A ∪ B)m3(A ∪ B)

= x(B)
m2(B)

= x(C)
m4(C)

= π (∅)
m1(A ∪ B)m3(A ∪ B) +m2(B) +m4(C),

whence x(A ∪ B) = 1/3, x(B) = 1/3 and x(C) = 1/3 so
that

mPCR5
1,2,3,4(A ∪ B) = x(A ∪ B) = 1/3,

mPCR5
1,2,3,4(B) = x(B) = 1/3,

mPCR5
1,2,3,4(C) = x(C) = 1/3.

This PCR5 result appears counter-intuitive because
three sources among the four sources exclude definitely
the hypothesis C because one has Pl1(C) = Pl2(C) =
Pl3(C) = 0, so it is intuitively expected that after the
combination of all the four BBAs the mass committed
toC should not be greater than 1/4 = 0.25.

If one applies the PCR6 rule principle, we get

x(A ∪ B)
m1(A ∪ B) +m3(A ∪ B)

= x(B)
m2(B)

= x(C)
m4(C)

= π (∅)
m1(A ∪ B) +m3(A ∪ B) +m2(B) +m4(C),

whence x(A ∪ B) = 2/4, x(B) = 1/4 and x(C) = 1/4 so
that
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mPCR6
1,2,3,4(A ∪ B) = x(A ∪ B) = 0.5,

mPCR6
1,2,3,4(B) = x(B) = 0.25,

mPCR6
1,2,3,4(C) = x(C) = 0.25,

which is in better agreement with what we intuitively
expect because mPCR6

1,2,3,4(C) is not greater than 1/4. Of
course in this example, Dempster’s rule of combination
cannot be simply applied because the conflict is total
yielding a division by zero in Dempster’s rule formula
[8], but by using eventually some discounting methods
to modify the BBAs to combine.

V. FLAWED BEHAVIOR OF PCR5 AND PCR6 RULES

The PCR5 and PCR6 rules of combination are not
associative which means that the fusion of the BBAs
must be done using general formulas (14) or (15) if one
has more than two BBAs to combine, which is not very
convenient. Therefore, the sequential PCR5 or PCR6
combination of S > 2 BBAs are not in general equal
to the global PCR5 or PCR6 fusion of the S BBAs al-
together because the order of the combination of the
sources does matter in the sequential combination. In
general (i.e. when conflicts exist between the sources of
evidence to combine) one has for S > 2

PCR5(m1,m2, . . . ,mS) �=
PCR5(PCR5(PCR5(m1,m2),m3), . . . ,mS) (16)

and

PCR6(m1,m2, . . . ,mS) �=
PCR6(PCR6(PCR6(m1,m2),m3), . . . ,mS), (17)

and also for S > 2 PCR5 fusion result is generally differ-
ent of PCR6 fusion result that is

PCR5(m1,m2, . . . ,mS) �= PCR6(m1,m2, . . . ,mS).
(18)

Formula (18) says that in general PCR5 is different
from PCR6, of course except the case when we com-
bine only two sources. PCR5 and PCR6 rules can be-
come computationally intractable for combining a large
number of sources and for working with large FoD. This
is a well-known limitation of these rules, but this is the
price to pay to get better results than with classical rules.

Aside the complexity of these rules, it is worth to
mention that the neutral impact property of the VBBA
mv is lost in general when considering the PCR5 or
PCR6 combination of S > 2 BBAs altogether, that is

PCR5(m1, . . . ,mS−1,mv ) �= PCR5(m1, . . . ,mS−1)
(19)

and

PCR6(m1, . . . ,mS−1,mv ) �= PCR6(m1, . . . ,mS−1)
(20)

Formula (19) and (20) show that in general PCR5 and
PCR6 do not have the ignorant source as a neutral el-
ement. This is due to the redistribution principles used
in PCR5 and in PCR6 rules. Example 4 shows the non-
neutral impact of the VBBA in PCR5 and PCR6 rules
for convenience. Note that the VBBA has a neutral im-
pact in the fusion result if and only if one has only two
BBAs to combine with PCR5,or PCR6, and one of them
is the VBBA because in this case there is no possible
(partial) conflict to redistribute between any BBA m(·)
defined over the FoD � and the VBBA mv(·). That is,
for any BBA m1(·) one always has

PCR5(m1,mv ) = PCR6(m1,mv ) = m1. (21)

Example 4:we consider the FoD� = {A,B} having only
two elements, and the following four BBAs as follows:

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5,

m4(A ∪ B) = 1.

BBAsm1,m2, andm3 are as in example 2, and the BBA
m4 is nothing but the VBBA mv defined over this FoD
�.

In example 2, we did obtain with PCR5(m1,m2,m3)
and with PCR5(m1,m2,m3,m4) the following resulting
BBAs

mPCR5
1,2,3 (A) ≈ 0.723281,

mPCR5
1,2,3 (B) ≈ 0.182460,

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259,

and

mPCR5
1,2,3,4(A) ≈ 0.654604,

mPCR5
1,2,3,4(B) ≈ 0.144825,

mPCR5
1,2,3,4(A ∪ B) ≈ 0.200571.

Clearly, PCR5(m1,m2,m3) �= PCR5(m1,m2,m3,m4)
even if m4 is the VBBA.

Analogously, we did obtain with PCR6(m1,m2,m3)
and with PCR6(m1,m2,m3,m4)

mPCR6
1,2,3 (A) ≈ 0.743496,

mPCR6
1,2,3 (B) ≈ 0.162245,

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259,

and
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mPCR6
1,2,3,4(A) ≈ 0.647113,

mPCR6
1,2,3,4(B) ≈ 0.128342,

mPCR6
1,2,3,4(A ∪ B) ≈ 0.224545.

Hence, PCR6(m1,m2,m3) �= PCR6(m1,m2,m3,

m4), even ifm4 is the VBBA.
This example 4 shows clearly that the VBBA does

not have a neutral impact in the PCR5 and PCR6 rules
of combination. In fact, adding more VBBAs mv in the
PCR5 or PCR6 fusion will increase more and more the
mass of A ∪ B while decreasing more and more the
masses of A and of B with PCR5, and PCR6. When
the number of VBBAs mv increases, we will have12

mPCR5/6
1,2,3,mv ,...,mv

(A ∪ B) → 1, mPCR5/6
1,2,3,mv ,...,mv

(A) → 0, and

mPCR5/6
1,2,3,mv ,...,mv

(B) → 0.
This is unsatisfactory because the VBBA brings no

useful information to exploit, and it is naturally expected
that it must not impact the fusion result in the combina-
tion of BBAs. This can be seen as a flaw of the behavior
of PCR5 and PCR6 rules of combination.

To emphasize this flaw, we give in the example 5 a
case where the mass committed to some partial uncer-
tainties can increase more than necessary with PCR5
and with PCR6 rules of combination. This is detrimen-
tal for the quality of the fusion result and for decision-
making because the result is more uncertain than it
should be, and consequently the decision is more diffi-
cult to make.

Example 5: we consider the FoD � =
{A,B,C,D,E}, and the following three BBAs⎧⎪⎪⎨⎪⎪⎩

m1(A ∪ B) = 0.70
m1(C ∪D) = 0.06
m1(A ∪ B ∪C ∪D) = 0.15
m1(E) = 0.09

and ⎧⎪⎪⎨⎪⎪⎩
m2(A ∪ B) = 0.06
m2(C ∪D) = 0.50
m2(A ∪ B ∪C ∪D) = 0.04
m2(E) = 0.40

and {
m3(B) = 0.01
m3(A ∪ B ∪C ∪D ∪ E) = 0.99.

Note that the BBAm3 is not equal to the VBBA but it is
very close to the VBBA because m3(�) is close to one.

If we make the PCR6(m1,m2) fusion of only the
two BBAs m1 and m2 altogether, which is also equal to
PCR5(m1,m2), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

mPCR6
1,2 (A ∪ B) ≈ 0.465309

mPCR6
1,2 (C ∪D) ≈ 0.296299

mPCR6
1,2 (A ∪ B ∪C ∪D) ≈ 0.023471

mPCR6
1,2 (E) ≈ 0.214921

12The notation mPCR5/6 indicates “mPCR5 or mPCR6” for convenience.

If we make the PCR6(m1,m2,m3) fusion of all these
three BBAs altogether we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

mPCR6
1,2,3 (B) ≈ 0.000962

mPCR6
1,2,3 (A ∪ B) ≈ 0.286107

mPCR6
1,2,3 (C ∪D) ≈ 0.203454

mPCR6
1,2,3 (A ∪ B ∪C ∪D) ≈ 0.012203

mPCR6
1,2,3 (E) ≈ 0.116038

mPCR6
1,2,3 (A ∪ B ∪C ∪D ∪ E) ≈ 0.381236

One sees that combining the BBAs m1,m2 with the
BBA m3 (where m3 is close to VBBA, and therefore
m3 is almost non-informative) generates a big increase
of the belief of the uncertainty in the resulting BBA.
This behaviour is clearly counter-intuitive because if the
source is almost vacuous, only a small degradation of
the uncertainty is expected and in the limit case when
m3 is the VBBA no impact of m3 on the fusion result
should occur. Note that this behavior also occurs with
PCR5(m1,m2,m3) because one has for this example⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mPCR5
1,2,3 (B) ≈ 0.001103

mPCR5
1,2,3 (A ∪ B) ≈ 0.286107

mPCR5
1,2,3 (C ∪D) ≈ 0.203384

mPCR5
1,2,3 (A ∪ B ∪C ∪D) ≈ 0.012203

mPCR5
1,2,3 (E) ≈ 0.115967

mPCR5
1,2,3 (A ∪ B ∪C ∪D ∪ E) ≈ 0.381236

The deep analysis of the partial conflict redistribu-
tions done in this interesting example reveals clearly
the flaw of the principles of PCR5 and PCR6 rules
of combination. Indeed, for this example, one has
Fm1 · Fm2 · Fm3 = 4 · 4 · 2 = 32 products π j(Xj1 ∩ Xj2 ∩
Xj3 ) = m1(Xj1 )m2(Xj2 )m3(Xj3 ) to calculate, where
Xj1 ∈ F (m1) = {A ∪ B,C ∪ D,A ∪ B ∪ C ∪ D,E},
Xj2 ∈ F (m2) = {A ∪ B,C ∪ D,A ∪ B ∪C ∪ D,E}, and
Xj3 ∈ F (m3) = {B,A∪B∪C∪D∪E}. Among these 32
possible conjunctions of focal elements, 20 products cor-
respond to partial conflicts when Xj1 ∩ Xj2 ∩ Xj3 = ∅,
which need to be redistributed properly to some ele-
ments of 2� \ {∅} according to the PCR5, or the PCR6
redistribution principles.

More precisely, we have to consider all the following
products π j for calculating the result

π1(B) = m1(A ∪ B)m2(A ∪ B)m3(B) = 0.00042,

π2(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(�) = 0.04158,

π3(∅) = m1(A ∪ B)m2(C ∪D)m3(B) = 0.0035,

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.3465,

π5(B) = m1(A ∪ B)m2(A ∪ B ∪C ∪D)m3(B) = 0.00028,

π6(A ∪ B) = m1(A ∪ B)m2(A ∪ B ∪C ∪D)m3(�) = 0.02772,

π7(∅) = m1(A ∪ B)m2(E)m3(B) = 0.0028,

π8(∅) = m1(A ∪ B)m2(E)m3(�) = 0.2772,

π9(∅) = m1(C ∪D)m2(A ∪ B)m3(B) = 0.000036,

π10(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.003564,
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π11(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.0003,

π12(C ∪D) = m1(C ∪D)m2(C ∪D)m3(�) = 0.0297,

π13(∅) = m1(C ∪D)m2(A ∪ B ∪C ∪D)m3(B) = 0.000024,

π14(C ∪D) = m1(C ∪D)m2(A ∪ B ∪C ∪D)m3(�)

= 0.002376,

π15(∅) = m1(C ∪D)m2(E)m3(B) = 0.00024,

π16(∅) = m1(C ∪D)m2(E)m3(�) = 0.02376,

π17(B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B)m3(B) = 0.00009,

π18(A ∪ B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B)m3(�) = 0.00891,

π19(∅) = m1(A ∪ B ∪C ∪D)m2(C ∪D)m3(B) = 0.00075,

π20(C ∪D) = m1(A ∪ B ∪C ∪D)m2(C ∪D)m3(�)

= 0.07425,

π21(B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B ∪C ∪D)m3(B)

= 0.00006,

π22(A ∪ B ∪C ∪D) = m1(A ∪ B ∪C ∪D)m2(A ∪ B ∪C ∪D)

·m3(�) = 0.00594,

π23(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(B) = 0.0006,

π24(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(�) = 0.0594,

π25(∅) = m1(E)m2(A ∪ B)m3(B) = 0.000054,

π26(∅) = m1(E)m2(A ∪ B)m3(�) = 0.005346,

π27(∅) = m1(E)m2(C ∪D)m3(B) = 0.00045,

π28(∅) = m1(E)m2(C ∪D)m3(�) = 0.04455,

π29(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(B) = 0.000036,

π30(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(�) = 0.003564,

π31(∅) = m1(E)m2(E)m3(B) = 0.00036,

π32(E) = m1(E)m2(E)m3(�) = 0.03564.

The conjunctive rule gives

mConj
1,2,3(B) = π1(B) + π5(B) + π17(B) + π21(B) = 0.00085,

mConj
1,2,3(A ∪ B) = π2(A ∪ B) + π6(A ∪ B) + π18(A ∪ B)

= 0.07821,

mConj
1,2,3(C ∪D) = π12(C ∪D) + π14(C ∪D) + π20(C ∪D)

= 0.106326,

mConj
1,2,3(A ∪ B ∪C ∪D) = π22(A ∪ B ∪C ∪D) = 0.00594,

mConj
1,2,3(E) = π32(E) = 0.03564.

The total conflicting mass between these three BBAs is

mConj
1,2,3(∅) =

∑
j=3,4,7,...,11,13,15,16,19,23,...,31

π j(∅)

= 1 −mConj
1,2,3(B) −mConj

1,2,3(A ∪ B) −mConj
1,2,3(C ∪D)

−mConj
1,2,3(A ∪ B ∪C ∪D) −mConj

1,2,3(E) = 0.773034.

Let us examine how themPCR5
1,2,3 (�) ≈ 0.381236 value

is obtained based on the PCR5 redistribution principle.
Based on the structures of π j(∅) products, we have to
consider only products involving a proportional redistri-
bution to �. So we get a proportional redistribution to
� only from the following products

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.3465,

π8(∅) = m1(A ∪ B)m2(E)m3(�) = 0.2772,

π10(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.003564,

π16(∅) = m1(C ∪D)m2(E)m3(�) = 0.02376,

π24(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(�) = 0.0594,

π26(∅) = m1(E)m2(A ∪ B)m3(�) = 0.005346,

π28(∅) = m1(E)m2(C ∪D)m3(�) = 0.04455,

π30(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(�) = 0.003564.

Because there is no duplicate focal elements in each of
these products, the PCR5 and PCR6 redistributions to�

will be the same in this example.
The proportional redistribution of π4(∅) to � is

x4(�) = m3(�)π4(∅)
m1(A ∪ B) +m2(C ∪D) +m3(�)

≈ 0.156637.

The proportional redistribution of π8(∅) to � is

x8(�) = m3(�)π8(∅)
m1(A ∪ B) +m2(E) +m3(�)

≈ 0.131305.

The proportional redistribution of π10(∅) to � is

x10(�) = m3(�)π10(∅)
m1(C ∪D) +m2(A ∪ B) +m3(�)

≈ 0.003179.

The proportional redistribution of π16(∅) to � is

x16(�) = m3(�)π16(∅)
m1(C ∪D) +m2(E) +m3(�)

≈ 0.016222.

The proportional redistribution of π24(∅) to � is

x24(�) = m3(�)π24(∅)
m1(A ∪ B ∪C ∪D) +m2(E) +m3(�)

≈ 0.038186.

The proportional redistribution of π26(∅) to � is

x26(�) = m3(�)π26(∅)
m1(E) +m2(A ∪ B) +m3(�)

≈ 0.004643.

The proportional redistribution of π28(∅) to � is

x28(�) = m3(�)π28(∅)
m1(E) +m2(C ∪D) +m3(�)

≈ 0.027914.

The proportional redistribution of π30(∅) to � is

x30(�) = m3(�)π30(∅)
m1(E) +m2(A ∪ B ∪C ∪D) +m3(�)

≈ 0.003150.

Therefore, we finally obtain the quite big value for
the mass committed to �
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mPCR5
1,2,3 (�) = x4(�) + x8(�) + x10(�) + x16(�) + x24(�)

+ x26(�) + x28(�) + x30(�)

≈ 0.381236.

We see clearly why PCR5 (and PCR6) redistributes
some mass to uncertainty � although the focal element
� is not in conflict with other focal elements involved in
each product π4(∅),π8(∅),π10(∅),π16(∅),π24(∅),π26(∅),
π28(∅), and π30(∅),which is an undesirable behavior that
we want to avoid. That is why we propose in the next
section some improvement of PCR5 and PCR6 rules of
combination.

VI. IMPROVEMENT OF PCR5 AND PCR6 RULES

To circumvent the weakness of the orignal PCR5 and
PCR6 redistribution principles, we propose an improve-
ment of these rules that will be denoted as PCR5+ and
PCR6+ in the sequel.These new rules are not redundant
with PCR5 nor with PCR6 when combining more than
two BBAs altogether.

The very simple and basic idea to improve PCR5 and
PCR6 redistribution principles is to discard the elements
that contain all the other elements implied in the par-
tial conflict π j(∅) calculation. Indeed, the elements dis-
carded are regarded as non-informative and not useful
for making the conflict redistribution.

For instance, if we consider the previous example 5,
the conflictingmasswith PCR5+ andPCR6+ for the con-
flicting product π4(∅) = m1(A∪B)m2(C∪D)m3(�) will
be proportionally redistributed back only toA∪B and to
C ∪D but not to � because A ∪ B ⊆ � andC ∪D ⊆ �.
Thus, with PCR5+ and PCR6+ rules, we will make the
following redistribution:

x4(A ∪ B)
m1(A ∪ B)

= x4(C ∪D)
m2(C ∪D)

= π4(∅)
m1(A ∪ B) +m2(C ∪D)

Here, x4(�) is set to 0 with PCR5+ and PCR6+ prin-
ciples because no proportion of π4(∅) must be redis-
tributed to �.

However, with PCR5 and PCR6 rule we make the
redistributions according to

x4(A ∪ B)
m1(A ∪ B)

= x4(C ∪D)
m2(C ∪D)

= x4(�)
m3(�)

= π4(∅)
m1(A ∪ B) +m2(C ∪D) +m3(�)

.

A. Selection of focal elements for proportional
redistribution

The main issue to improve PCR5 and PCR6 rules of
combination is how to identify in each conflicting prod-
uct π j(∅) the set of elements to keep for making the im-
proved proportional redistribution.

In this section, we propose a solution of this prob-
lem that can be easily implemented. For convenience,
we give also the basic MatlabTMcodes of PCR5+ and
PCR6+ in Appendix 3.

Let us consider π j(∅) = m1(Xj1 )m2(Xj2 ) . . .mS(XjS )
a conflicting product13 where Xj1 ∩ Xj2 ∩ . . . ∩ XjS = ∅.
We denote by X j = {X1, . . . ,Xsj , s j ≤ S} the set of all
distinct components of the S-tuple X j related with the
conflicting product π j(∅). The order of the elements in
X j does not matter. The number s j of elements in X j can
be less than S because it is possible to have duplicate fo-
cal elements in π j(∅).We consider inX j only the distinct
focal elements involved in π j(∅) (see the next example)
and we will define their binary keeping-index indicator
which will allow to know if each element of X j needs to
be kept in the PCR, or not, in the improved PCR5 and
PCR6 rules of combination.

For each element Xl ∈ X j we first define its binary
containing indicator δ j(Xl ′ ,Xl ) with respect to Xl ′ ∈ X j

to characterize ifXl contains (includes)Xl ′ in wide sense,
or not.Therefore,we take δ j(Xl ′ ,Xl ) = 1 ifXl ′ ∩Xl = Xl ′ ,
or equivalently ifXl ′ ⊆ Xl , and δ j(Xl ′ ,Xl ) = 0 otherwise.
The definition of this binary containing indicator is sum-
marized by the formula

δ j(Xl ′ ,Xl ) �
{
1 if Xl ′ ⊆ Xl ,
0 if Xl ′ � Xl .

(22)

Of course δ j(Xl,Xl ) = 1 because Xl ∩ Xl = Xl , and
we have δ j(Xl ′ ,Xl ) = 0 as soon as |Xl ′ | > |Xl |, where
|Xl ′ | and |Xl | are the cardinalities of Xl ′ and Xl , respec-
tively.We have also δ j(Xl ′ ,Xl ) = 0 when Xl ′ ∩Xl �= Xl ′ .
ForXl = �, we have δ j(Xl ′ ,Xl ) = δ j(Xl ′ ,�) = 1 for any
Xl ′ ∈ X j.

To know if a focal element Xji ∈ X j must be kept, or
not, in the proportional redistribution of the j-th con-
flicting mass π j(∅) with PCR5+ and PCR6+ rules, we
have to determinate its binary keeping-index κ j(Xji ).For
this, we define κ j(Xji ) ∈ {0, 1} as follows

κ j(Xji ) � 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xji |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl ) (23)

The value κ j(Xji ) = 1 stipulates that the focal el-
ement Xji ∈ X j must receive some proportional re-
distribution from the conflicting mass π j(∅). The value
κ j(Xji ) = 0 indicates that the focal element Xji will not
be involved in the proportional redistribution of the con-
flicting mass π j(∅).

13We consider S > 2 BBAs because for S = 2 BBAs, no improper
increasing of uncertainty occurs with PCR5 or PCR6.
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The binary keeping-index can also be defined equiv-
alently as

κ j(Xji ) =

⎧⎪⎨⎪⎩
1 if c(Xji ) is true
1 − ∏

Xl′ ∈X j
Xl′ �=Xji|Xl′ |≤|Xji |

δ j(Xl ′ ,Xji ) if c(Xji ) is false,

(24)
where the condition c(Xji ) is defined as

c(Xji ) � ∃Xl ∈ X j such |Xl | > |Xji | and κ j(Xl ) = 1.

Because this second definition of κ j(Xji ) is self-
referencing, we need to calculate the binary keeping in-
dexes iteratively starting by the element of X j of highest
cardinality (say X ), then for elements of X j of cardinal-
ity |X |−1 (if any), then for elements of X j of cardinality
|X |−2 (if any), etc.From the implementation standpoint
the definition (24) is more efficient than the direct defi-
nition (23).

Remark 1:We always have κ j(�) = 0 if � ∈ X j be-
cause � always includes all other focal elements of X j

and � has the highest cardinality, so δ j(Xl ′ ,�) = 1 for
allXl ′ ∈ X j. Therefore the binary keeping index formula
(23) reduces to

κ j(�) = 1 −
∏

Xl′ ∈X j

δ j(Xl ′ ,�) = 1 − 1 · 1 · . . . · 1︸ ︷︷ ︸
|X j | terms

= 0.

Remark 2: For a given FoD and a given number of
BBAs to combine, it is always possible to calculate off-
line the values of the binary keeping indexes of focal el-
ements of all possible combinations of focal elements in-
volved in conflicting products π j(∅) > 0 because the bi-
nary keeping index depends only on the structure of the
focal elements, and not on the numerical mass values of
the focal elements. This remark is important, especially
in applications where we have thousands or millions of
fusion steps to make because we will not have to recal-
culate in each fusion step the binary keeping-indexes for
each π j(∅) even if the input BBAs values to combine
change.

Remark 3: It is worth to recall that PCR5+ and
PCR6+ have interest if and only if we have more than
two (S > 2)BBAs to combine. If we have only twoBBAs
to combine (S = 2) we always get mPCR5 = mPCR5+ =
mPCR6 = mPCR6+ because in this case the PCR5, PCR5+,
PCR6, and PCR6+ rules coincide.

For convenience, we illustrate the calculation of
these binary keeping-indexes based on the direct calcu-
lation (23) for different examples.

Example 6: We consider the FoD � = {A,B,C,D},
six BBAs, and the j-th conflicting (assumed strictly pos-
itive) product whose structure is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C)m6(A ∪ B ∪C ∪D).

In this product π j(∅), we have the duplicate focal
element B ∪ C because it appears both in m2(B ∪ C)

and in m4(B ∪ C). The focal elements entering in each
BBA of π j(∅) are respectively Xj1 = A, Xj2 = B ∪ C,
Xj3 = A ∪ C, Xj4 = B ∪ C, Xj5 = A ∪ B ∪ C, and
Xj6 = A ∪ B ∪ C ∪ D = �. So we have to consider only
the following set of distinct focal elements for this π j(∅)
product

X j = {X1 = A,X2 = B ∪C,X3 = A ∪C,

X4 = A ∪ B ∪C,X5 = A ∪ B ∪C ∪D}.
Therefore, considering only Xl ′ �= Xl and |Xl ′ | ≤ |Xl |

that are conditions entering in formula (23),we have the
following binary containing indicator δ j(Xl ′ ,Xl ) values:

δ j(X1,X2) = 0 because (X1 = A) � (X2 = B ∪C),

δ j(X1,X3) = 1 because (X1 = A) ⊆ (X3 = A ∪C),

δ j(X1,X4) = 1 because (X1 = A) ⊆ (X4 = A ∪ B ∪C),

δ j(X1,X5) = 1 because (X1 = A) ⊆ (X5 = �),

δ j(X2,X3) = 0 because (X2 = B ∪C) � (X3 = A ∪C),

δ j(X2,X4) = 1 because (X2 = B ∪C) ⊆ (X4 = A ∪ B ∪C),

δ j(X2,X5) = 1 because (X2 = B ∪C) ⊆ (X5 = �),

δ j(X3,X2) = 0 because (X3 = A ∪C) � (X2 = B ∪C),

δ j(X3,X4) = 1 because (X3 = A ∪C) ⊆ (X4 = A ∪ B ∪C),

δ j(X3,X5) = 1 because (X3 = A ∪C) ⊆ (X5 = �),

δ j(X4,X5) = 1 because (X4 = A ∪ B ∪C) ⊆ (X5 = �).

The binary keeping indexes κ j(Xji ) for i = 1, 2, . . . , 6
are calculated based on the formula (23) as follows:
� For the focal element Xj1 = A = X1 of X j having

|Xj1 | = 1, we get

κ j(A) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj1

|≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj1 = A will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj2 = B ∪C = X2 of X j having
|Xj2 | = 2, we get

κ j(B ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj2 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)

60 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 1 JUNE 2021



· δ j(X1,X5)δ j(X2,X3)δ j(X2,X4)

· δ j(X2,X5)δ j(X3,X2)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj2 = B ∪C will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj3 = A ∪C = X3 of X j having
|Xj3 | = 2, we get

κ j(A ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj3 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)

· δ j(X1,X5)δ j(X2,X3)δ j(X2,X4)

· δ j(X2,X5)δ j(X3,X2)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj3 = A ∪C will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the duplicate focal element Xj4 = B ∪ C of X j

having |Xj4 | = 2, we have κ j(Xj4 ) = 1 because Xj4 =
Xj2 and κ j(Xj2 ) = 1.

� For the focal element Xj5 = A ∪ B ∪ C = X4 of X j
having |Xj5 | = 3, we get

κ j(A ∪ B ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj5 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X4)δ j(X2,X5)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence, the focal element Xj5 = A ∪B ∪C will be dis-
carded in the proportional redistribution of the con-
flicting mass π j(∅).

� For the focal element Xj6 = A∪B∪C ∪D = � = X5

of X j having |Xj6 | = 4, we get

κ j(�) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj6 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − δ j(X1,X5)δ j(X2,X5)δ j(X3,X5)δ j(X4,X5)

= 1 − 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforemen-
tioned remark 1. Hence, the focal element Xj5 = A ∪
B ∪C ∪ D = � will be discarded in the proportional
redistribution of the conflicting mass π j(∅).
In summary, the conflicting product π j(∅) =

m1(A)m2(B∪C)m3(A∪C)m4(B∪C)m5(A∪B∪C)m6(�)
will be redistributed only to the three focal elements A,
B ∪ C, and A ∪ C with the improved rules PCR5+ and
PCR6+, whereas it would have been redistributed to all
five focal elements A, B ∪ C, A ∪ C, A ∪ B ∪ C, and �

with the classical PCR5 and PCR6 rules. Thus, two focal
elements were discarded.

Example 7:This example is somehow an extension of
example 6 by including a new element E in the FoD. So,
the FoD is � = {A,B,C,D,E}, seven BBAs, and the
j-th conflicting (assumed strictly positive) product
whose structure is as follows

π j(∅) = m1(A∪E)m2(B∪C∪E)m3(A∪C∪E)m4(B∪C∪E)

·m5(A ∪ B ∪C ∪ E)m6(A ∪ B ∪C ∪D ∪ E)m7(A).

In this product π j(∅),we have the duplicate focal ele-
mentB∪C∪E because it appears both inm2(B∪C∪E)
and in m4(B ∪ C ∪ E). The focal elements entering in
each BBA of π j(∅) are, respectively, Xj1 = A ∪ E,
Xj2 = B ∪ C ∪ E, Xj3 = A ∪ C ∪ E, Xj4 = B ∪ C ∪ E,
Xj5 = A ∪ B ∪C ∪ E, Xj6 = A ∪ B ∪C ∪ D ∪ E = �,

and Xj7 = A. So we have to consider only the following
set of distinct focal elements for this π j(∅) product

X j = {X1 = A ∪E,X2 = B ∪C ∪E,X3 = A ∪C ∪E,

X4 = A∪B∪C∪E,X5 = A∪B∪C∪D∪E,X6 = A}.
Therefore, considering only Xl ′ �= Xl and |Xl ′ | ≤ |Xl |

that are conditions entering in formula (23),we have the
following binary containing indicator δ j(Xl ′ ,Xl ) values:

δ j(X6,X1) = 1 because (X6 = A) ⊆ (X1 = A ∪ E),

δ j(X6,X2) = 0 because (X6 = A) � (X2 = B ∪C ∪ E),

δ j(X6,X3) = 1 because (X6 = A) ⊆ (X3 = A ∪C ∪ E),

δ j(X6,X4) = 1 because (X6 = A) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X6,X5) = 1 because (X6 = A) ⊆ (X5 = �),

δ j(X1,X2) = 0 because (X1 = A ∪ E) � (X2 = B ∪C ∪ E),

δ j(X1,X3) = 1 because (X1 = A ∪ E) ⊆ (X3 = A ∪C ∪ E),

δ j(X1,X4) = 1 because (X1 = A ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X1,X5) = 1 because (X1 = A ∪ E) ⊆ (X5 = �),

δ j(X2,X3) = 0 because (X2 = B ∪C ∪ E) � (X3 = A ∪C ∪ E),

δ j(X2,X4) = 1 because (X2 = B ∪C ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X2,X5) = 1 because (X2 = B ∪C ∪ E) ⊆ (X5 = �),

δ j(X3,X2) = 0 because (X3 = A ∪C ∪ E) � (X2 = B ∪C ∪ E),
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δ j(X3,X4) = 1 because (X3 = A ∪C ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X3,X5) = 1 because (X3 = A ∪C ∪ E) ⊆ (X5 = �),

δ j(X4,X5) = 1 because (X4 = A ∪ B ∪C ∪ E) ⊆ (X5 = �).

The binary keeping indexes κ j(Xji ) for i = 1, 2, . . . , 7
are calculated based on the formula (23) as follows
� For the focal element Xj1 = A ∪ E = X1 of X j having

|Xj1 | = 2, we get

κ j(Xj1 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj1

|≤|Xl |
|Xl′ |≤|Xl |

δi(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X1)

· δ j(X6,X2)δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj1 = A ∪ E will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj2 = B ∪ C ∪ E = X2 of X j
having |Xj2 | = 3, we get

κ j(Xj2 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj2

|≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj2 = B∪C ∪E will also be
kept in the proportional redistribution of the conflict-
ing mass π j(∅).

� For the focal element Xj3 = A ∪ C ∪ E = X3 of X j
having |Xj3 | = 3, we get

κ j(Xj3 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj3 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj3 = A∪C∪E is also kept
in the redistribution.

� For the duplicate focal elementXj4 = B∪C∪E having
|Xj4 | = 3, we have κ j(Xj4 ) = 1 because Xj4 = Xj2 and
κ j(Xj2 ) = 1.

� For the focal elementXj5 = A∪B∪C∪E = X4 having
|Xj5 | = 4, we get

κ j(Xj5 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj5 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X4)δ j(X1,X5)δ j(X2,X4)δ j(X2,X5)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X4)

· δ j(X6,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence, the focal element Xj5 = A ∪ B ∪C ∪ E must
be ignored in the proportional redistribution.

� For the focal elementXj6 = A∪B∪C∪D∪E = � =
X5 having |Xj6 | = 5, we get

κ j(Xj6 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj6 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X5)δ j(X2,X5)δ j(X3,X5)δ j(X4,X5)

· δ j(X6,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforemen-
tioned remark 1. Hence, the focal element Xj6 = A ∪
B ∪ C ∪ D ∪ E must be ignored in the proportional
redistribution.

� For the focal element Xj7 = A = X6 having |Xj7 | = 1,
we get naturally (see our previous remark 1)

κ j(Xj7 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj7 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj7 = Amust be kept in the
proportional redistribution.

In summary, the conflicting product π j(∅) = m1(A∪
E)m2(B ∪C ∪ E)m3(A ∪C ∪ E)m4(B ∪C ∪ E)m5(A ∪
B∪C∪E)m6(�)m7(A) will be redistributed only to focal
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elementsA∪E,B∪C∪E,A∪C∪E, andA with the im-
proved rules PCR5+ and PCR6+, whereas it would have
been redistributed to all focal elementsA∪E,B∪C∪E,
A ∪ C ∪ E, A ∪ B ∪ C ∪ E, �, and A with the classical
PCR5 and PCR6 rules.

Example 8: This is a somehow simplified version of
example 6.We consider the FoD � = {A,B,C,D}, only
five BBAs, and suppose that the j-th conflicting (as-
sumed strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C ∪D).

Based on (23), it can be verified14 that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B ∪C ∪D) = 0.

Example 9: We consider the FoD � = {A,B,C,D},
seven BBAs, and suppose that the j-th conflicting (as-
sumed strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C ∪D)m6(A ∪ B ∪C)m7(A ∪ B ∪C).

Based on (23), it can be verified that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B ∪C ∪D) = 0,

κ j(A ∪ B ∪C) = 0.

Example 10: We consider the FoD � = {A,B,C}, three
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C).

Based on (23), it can be verified that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1.

14The verification is left to the reader.

Example 11: We consider the FoD � = {A,B,C}, four
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(A ∪ B).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B) = 1.

Example 12: We consider the FoD � = {A,B,C}, three
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A ∪ B ∪C)m2(A)m3(B ∪C).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A ∪ B ∪C) = 0,

κ j(A) = 1,

κ j(B ∪C) = 1.

Example 13:We consider the FoD� = {A,B,C,D}, and
the three following BBAs

m1(A ∪ B) = 0.8,m1(C ∪D) = 0.2,

m2(A ∪ B) = 0.4,m2(C ∪D) = 0.6,

m3(B) = 0.1,m3(A ∪ B ∪C ∪D) = 0.9.

WehaveF = |F (m1)|·|F (m2)|·|F (m3)| = 2·2·2 = 8
products π j ( j = 1, . . . ,F) entering in the fusion process
as follows

π1(B) = m1(A ∪ B)m2(A ∪ B)m3(B) = 0.032,

π2(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(�) = 0.288,

π3(∅) = m1(A ∪ B)m2(C ∪D)m3(B) = 0.048,

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.432,

π5(∅) = m1(C ∪D)m2(A ∪ B)m3(B) = 0.008,

π6(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.072,

π7(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.012,

π8(C ∪D) = m1(C ∪D)m2(C ∪D)m3(�) = 0.108.

Based on (23), it can be verified15 that the binary
keeping-indexes of focal elements involved in conflict-
ing products π3(∅) to π7(∅) are

κ3(A ∪ B) = 1, κ3(C ∪D) = 1, κ3(B) = 1,

15The verification is left to the reader.

IMPROVEMENT OF PROPORTIONAL CONFLICT REDISTRIBUTION RULES 63



κ4(A ∪ B) = 1, κ4(C ∪D) = 1, κ4(�) = 0,

κ5(C ∪D) = 1, κ5(A ∪ B) = 1, κ5(B) = 1,

κ6(C ∪D) = 1, κ6(A ∪ B) = 1, κ6(�) = 0,

κ7(C ∪D) = 1, κ7(B) = 1.

In summary,once the binary keeping-index of κ j(Xji )
of all focal elements Xji involved in a conflicting prod-
uct π j(∅) are calculated, we can apply PCR5 or PCR6
redistribution principle only with the focal elements for
which κ j(Xji ) = 1. With this new improved method
of proportional redistribution, PCR5+ and PCR6+ rules
will never increase the mass of non-conflicting elements
involved in each π j(∅) (if any), and in doing this way, we
will preserve the neutrality of the vacuous belief assign-
ment in the PCR5+ and PCR6+ fusion rules, which is a
very desirable behavior.

B. Expressions of PCR5+ and PCR6+ fusion rules

The expressions of PCR5+ and PCR6+ fusion rules
are proper modifications of PCR5 and PCR6 formulas
(14) and (15) taking into account the selection of focal
elements on which the proportional redistribution must
apply thanks to the value of their binary keeping index.

The PCR5+ fusion of S > 2 BBAs is obtained by
mPCR5+

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR5+
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (25)

The PCR6+ fusion of S > 2 BBAs is obtained by
mPCR6+

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR6+
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∑
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

(
κ j(X )

∑
i∈{1,...,S}|Xji=X

mi(Xji )
)]

, (26)

where κ j(A) and κ j(X ) are, respectively, the binary
keeping indexes of elements A and X involved in the
conflicting product π j(∅), that are calculated by the for-
mula (23) or (24).

Remark 4: It is worth mentioning that PCR5+ for-
mula (25) is totally consistent with PCR5 formula (14)
when all binary keeping-indexes are equal to one. Simi-
larly, the PCR6+ formula (26) reduces to PCR6 formula
(15) if all binary keeping indexes equal one.

Theorem: The VBBA mv has a neutral impact in
PCR5+ and PCR6+ rules of combination.

Proof: see Appendix 2.

C. On the complexity of PCR5+ and PCR6+ fusion rules

The complexity of PCR5 and PCR6 rules is diffi-
cult to establish precisely because the number of com-
putations highly depends on the structure of focal el-
ements of the BBAs to combine, but definitely it is
higher thanDempster’s rule of combination.What about
the complexity of PCR5+ and PCR6+ fusion rules? On
one hand, PCR5+ and PCR6+ seem more complex than
PCR5 and PCR6 rules because one needs extra compu-
tational burden with respect to PCR5 and PCR6 rules
to calculate the binary keeping indexes. But in fact, the
calculation of binary keeping indexes do not depend on
themass values of focal elements but only on their struc-
ture. Hence, the binary keeping indexes can be calcu-
lated off-line once for all for many possible structures
of focal elements of BBAs to combine. On the other
hand, if the binary keeping index calculation is done off-
line, then PCR5+ and PCR6+ become less complex than
PCR5 and PCR6 rule because some elements are dis-
carded with PCR5+ and PCR6+ making the redistribu-
tion simpler and more effective than with PCR5 and
PCR6 rules. It is not possible to say for sure if glob-
ally PCR5+ and PCR6+ are more (or less) complex than
PCR5 and PCR6 because it really depends on the fu-
sion problem under consideration and the structure of
focal elements of BBAs to combine. If the sources of
evidence to combine generate many partial conflicts to
redistribute, including many elements to discard, then
PCR5+ and PCR6+ are more advantageous than PCR5
and PCR6 in terms of reduction of complexity.

VII. EXAMPLES FOR PCR5+ AND PCR6+ FUSION
RULES

Here we compare the results obtained with PCR5+

and PCR6+ with respect to those drawn from PCR5 and
PCR6 rules on the examples from 1 to 13 in the previous
sections. Since these following examples, for PCR5+ and
PCR6+ fusion rules, respectively, consider the same FoD
and BBAs as those presented, they will be denoted as
“revisited examples.”

Example 1 (revisited): Consider � = {A,B} and two
following BBAs

m1(A) = 0.1 m1(B) = 0.2 m1(A ∪ B) = 0.7

m2(A) = 0.4 m2(B) = 0.3 m2(A ∪ B) = 0.3

Because there is only two BBAs to combine, we have

PCR5(m1,m2) = PCR6(m1,m2),

PCR5+(m1,m2) = PCR6+(m1,m2).
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We have mConj
1,2 (A) = 0.35, mConj

1,2 (B) = 0.33,

and mConj
1,2 (�) = 0.21, and we have the two conflict-

ing products π1(∅) = m1(A)m2(B) = 0.03 and
π2(∅) = m2(A)m1(B) = 0.08 to redistribute.

Applying PCR5 principle for π1(∅) = 0.03 we get

x1(A)
m1(A)

= x1(B)
m2(B)

= π1(∅)
m1(A) +m2(B)

,

whence x1(A) = 0.1 · 0.03
0.1+0.3 = 0.0075 and x1(B) = 0.3 ·

0.03
0.1+0.3 = 0.0225.

Applying PCR5 principle for π2(∅) = 0.08 we get

x2(A)
m2(A)

= x2(B)
m1(B)

= π2(∅)
m2(A) +m1(B)

,

whence x2(A) = 0.4 · 0.08
0.4+0.2 ≈ 0.0533 and x2(B) = 0.2 ·

0.08
0.4+0.2 ≈ 0.0267.

Therefore we get

mPCR5
1,2 (A) = mPCR6

1,2 (A) = mConj
1,2 (A) + x1(A) + x2(A)

= 0.35 + 0.0075 + 0.0533 = 0.4108,

mPCR5
1,2 (B) = mPCR6

1,2 (B) = mConj
1,2 (B) + x1(B) + x2(B)

= 0.33 + 0.0225 + 0.0267 = 0.3792,

mPCR5
1,2 (A ∪ B) = mPCR6

1,2 (A ∪ B) = mConj
1,2 (A ∪ B) = 0.21.

If we want to apply PCR5+, or PCR6+, rule we need
to compute the binary keeping indexes of each focal
element entering in the conflicting products π1(∅) and
π2(∅). In this example, for π1(∅) = m1(A)m2(B), we
have X1 = {A,B}, and for π2(∅) = m2(A)m1(B),
we have X2 = {A,B}. Applying formula (22), we get
δ1(A,B) = 0 because A � B, and δ1(B,A) = 0 because
B � A (and also δ2(A,B) = 0 and δ2(B,A) = 0). Ap-
plying formula (23) we get the binary keeping indexes
κ1(A) = 1, κ1(B) = 1, κ2(A) = 1, and κ2(B) = 1, indi-
cating that the redistribution of π1(∅) must operate on
all elements of X1 = {A,B}, and the redistribution of
π2(∅) must also operate on all elements of X2 = {A,B},
so there is no element that must be discarded for making
the improved redistribution in this example. Therefore
PCR5+,or PCR6+ results coincidewithPCR5 andPCR6
results, that is mPCR5(·) = mPCR6(·) = mPCR5+

(·) =
mPCR6+

(·) which is normal.
Example 2 (revisited): Consider � = {A,B} and the

three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5.

As shown in Section IV, for this example,one has the fol-
lowing 12 conflicting products to redistribute when ap-
plying PCR5 or PCR6 fusion formulas.

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪ B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪ B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪ B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪ B)m3(A) = 0.0080.

With PCR5 and PCR6, the products π1(∅) to π6(∅) are
redistributed to A and B only, whereas the products
π7(∅) to π12(∅) are redistributed toA,B, andA∪B. Ap-
plying PCR5 formula (14) and PCR6 formula (15), we
obtain mPCR5

1,2,3 (∅) = mPCR6
1,2,3 (∅) = 0 and

⎧⎪⎨⎪⎩
mPCR5

1,2,3 (A) ≈ 0.723281

mPCR5
1,2,3 (B) ≈ 0.182460

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259

and

⎧⎪⎨⎪⎩
mPCR6

1,2,3 (A) ≈ 0.743496

mPCR6
1,2,3 (B) ≈ 0.162245

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259

The calculation of the binary keeping indexes by the
formula (23) gives in this example{

κ j(A) = 1, κ j(B) = 1, for j = 1, . . . , 6

κ j(A) = 1, κ j(B) = 1, κ j(A ∪ B) = 0, for j = 7, . . . , 12.

Therefore, if we apply the PCR5+ and PCR6+ im-
proved rules of combination, we redistribute the prod-
ucts π1(∅) to π6(∅) to A and B (as for PCR5 and
PCR6 rule), but the products π7(∅) to π12(∅) will be
redistributed to A, B only, and not to A ∪ B because
κ j(A ∪ B) = 0 for j = 7, . . . , 12. So finally, we obtain
mPCR5+

1,2,3 (∅) = mPCR6+
1,2,3 (∅) = 0 and⎧⎪⎨⎪⎩

mPCR5+
1,2,3 (A) ≈ 0.768631

mPCR5+
1,2,3 (B) ≈ 0.201369

mPCR5+
1,2,3 (A ∪ B) = 0.03

and

⎧⎪⎨⎪⎩
mPCR6+

1,2,3 (A) ≈ 0.788847

mPCR6+
1,2,3 (B) ≈ 0.181153

mPCR6+
1,2,3 (A ∪ B) = 0.03

We can verify that we obtain a more precise re-
distribution with PCR5+ (respectively PCR6+) rule
with respect to PCR5 (respectively PCR6) rule because

TABLE I
Example 5: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
B 0.001103 0.001107

A ∪ B 0.286107 0.464483
C ∪D 0.203385 0.296186

A ∪ B ∪C ∪D 0.012203 0.023408
E 0.115966 0.214816

A ∪ B ∪C ∪D ∪ E 0.381236 0
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TABLE II
Example 5: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
B 0.000962 0.000967

A ∪ B 0.286107 0.464483
C ∪D 0.203454 0.296255

A ∪ B ∪C ∪D 0.012203 0.023408
E 0.116038 0.214887

A ∪ B ∪C ∪D ∪ E 0.381236 0

mPCR5+
1,2,3 (A ∪ B) < mPCR5

1,2,3 (A ∪ B) and also mPCR6+
1,2,3 (A ∪

B) < mPCR6
1,2,3 (A ∪ B).

Example 3 (revisited): we consider � = {A,B,C},
and the four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, andm4(C) = 1.

These four BBAs are in total conflict because
(A ∪ B) ∩A ∩ (A ∪ B) ∩C = ∅, and one has only one
product π (∅) = m1(A ∪ B)m2(A)m3(A ∪ B)m4(C) = 1
to consider, so j = 1 in this case and it can be omitted in
the notations of the binary keeping indexes.

As shown previously, one has⎧⎨⎩
mPCR5

1,2,3,4(A ∪ B) = 1/3
mPCR5

1,2,3,4(B) = 1/3
mPCR5

1,2,3,4(C) = 1/3
and

⎧⎨⎩
mPCR6

1,2,3,4(A ∪ B) = 0.5
mPCR6

1,2,3,4(B) = 0.25
mPCR6

1,2,3,4(C) = 0.25

Because all focal elements A ∪ B, A, and C entering in
π (∅) are conflicting then one has the binary keeping-
indexes κ(A ∪ B) = 1, κ(A) = 1 and κ(C) = 1, i.e., all
these elements will receive a redistribution of the con-
flicting mass π (∅). Therefore there is no restriction for
making the redistribution. Consequently, PCR5+ result
coincides with PCR5 result, and PCR6+ result coincides
with PCR6 result.

Example 4 (revisited): we consider � = {A,B}, and
the following four BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5,

m4(A ∪ B) = 1 (m4 is the VBBA).

The BBAsm1,m2, andm3 are the same as in example 2,
and the BBA m4 is the VBBA. We have already shown

TABLE III
Example 6: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6(·) mPCR5+

1,2,3,4,5,6(·)
A 1/5 1/3

A ∪C 1/5 1/3
B ∪C 1/5 1/3

A ∪ B ∪C 1/5 0
A ∪ B ∪C ∪D 1/5 0

TABLE IV
Example 6: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6(·) mPCR6+

1,2,3,4,5,6(·)
A 1/6 1/4

A ∪C 1/6 1/4
B ∪C 1/3 1/2

A ∪ B ∪C 1/6 0
A ∪ B ∪C ∪D 1/6 0

that PCR5(m1,m2,m3) �= PCR5(m1,m2,m3,m4) even
ifm4 is the VBBA, and⎧⎨⎩

mPCR5
1,2,3,4(A) ≈ 0.654604

mPCR5
1,2,3,4(B) ≈ 0.144825

mPCR5
1,2,3,4(A ∪ B) ≈ 0.200571

Similarly, PCR6(m1,m2,m3) �= PCR6(m1,m2,m3,m4),
and ⎧⎨⎩

mPCR6
1,2,3,4(A) ≈ 0.647113

mPCR6
1,2,3,4(B) ≈ 0.128342

mPCR6
1,2,3,4(A ∪ B) ≈ 0.224545

Applying the PCR5+ formula (25) and the PCR6+

formula (26) wewill obtainmPCR5+
1,2,3 (∅) = mPCR6+

1,2,3,4 (∅) = 0
and⎧⎪⎨⎪⎩
mPCR5+

1,2,3,4 (A) ≈ 0.768631
mPCR5+

1,2,3,4 (B) ≈ 0.201369
mPCR5+

1,2,3,4 (A ∪ B) = 0.03
and

⎧⎪⎨⎪⎩
mPCR6+

1,2,3,4 (A) ≈ 0.788847
mPCR6+

1,2,3,4 (B) ≈ 0.181153
mPCR6+

1,2,3,4 (A ∪ B) = 0.03

One has PCR5+(m1,m2,m3,m4) = PCR5+

(m1,m2,m3) and PCR6+(m1,m2,m3,m4) = PCR6+

(m1,m2,m3) because with the improved proportional
redistribution of PCR5+ and PCR6+ rules, the VBBA
has always a neutral impact in the fusion result, which is
what we intuitively expect.

Example 5 (revisited): we consider � =
{A,B,C,D,E}, and the following three BBAs⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1(A ∪ B) = 0.70

m1(C ∪D) = 0.06

m1(A ∪ B ∪C ∪D) = 0.15

m1(E) = 0.09

TABLE V
Example 7: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)
A 1/6 1/4

A ∪ E 1/6 1/4
A ∪C ∪ E 1/6 1/4
B ∪C ∪ E 1/6 1/4

A ∪ B ∪C ∪ E 1/6 0
A ∪ B ∪C ∪D ∪ E 1/6 0
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TABLE VI
Example 7: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)
A 1/7 1/5

A ∪ E 1/7 1/5
A ∪C ∪ E 1/7 1/5
B ∪C ∪ E 2/7 2/5

A ∪ B ∪C ∪ E 1/7 0
A ∪ B ∪C ∪D ∪ E 1/7 0

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
m2(A ∪ B) = 0.06

m2(C ∪D) = 0.50

m2(A ∪ B ∪C ∪D) = 0.04

m2(E) = 0.40

and {
m3(B) = 0.01

m3(A ∪ B ∪C ∪D ∪ E) = 0.99

Note that the BBAm3 is not equal to the VBBA but it is
very close to the VBBA because m3(�) is close to one.

If we consider the fusion of only the two first
BBAs m1 and m2, we have PCR6(m1,m2) =
PCR6+(m1,m2) = PCR5(m1,m2) = PCR5+(m1,m2)
because all these rules coincide when combining two
BBAs. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

mPCR6
1,2 (A ∪ B) ≈ 0.465309

mPCR6
1,2 (C ∪D) ≈ 0.296299

mPCR6
1,2 (A ∪ B ∪C ∪D) ≈ 0.023471

mPCR6
1,2 (E) ≈ 0.214921

If we make the PCR5, PCR5+, PCR6, and PCR6+

fusion of these three BBAs altogether we obtain now
different results which is normal, because for S > 2,
one has PCR5+(m1, . . . ,mS) �= PCR5(m1, . . . ,mS) and
PCR6+(m1, . . . ,mS) �= PCR6(m1, . . . ,mS) in general.
So, in this example 5, we get results shown in Tables I
and II.

These values highlight the great ignorance of the re-
sults proposed by PCR5 and PCR6 when the third (al-
most vacuous) source of information is taken into ac-
count. Indeed, mPCR5

1,2,3 (�) = mPCR6
1,2,3 (�) is the great-

est mass among the set of hypotheses, whereas the
results proposed with PCR5+ and PCR6+ combina-

TABLE VII
Example 8: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5(·) mPCR5+

1,2,3,4,5(·)
A 1/4 1/3

A ∪C 1/4 1/3
B ∪C 1/4 1/3

A ∪ B ∪C ∪D 1/4 0

TABLE VIII
Example 8: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5(·) mPCR6+

1,2,3,4,5(·)
A 1/5 1/4

A ∪C 1/5 1/4
B ∪C 2/5 1/2

A ∪ B ∪C ∪D 1/5 0

tion rules discard the ignorant information and pro-
pose results closer to those obtained by merging
two sources. Indeed, the largest mass is allocated to
A ∪ B.

The next examples 6–12 are very simple examples
involving only categorical BBAs so that only one con-
flicting product (equals to one) needs to be redistributed
based on PCR5, PCR6, PCR5+, and PCR6+ rules. These
examples offer the possibility to the reader to do the
derivations manually for making a verification of our re-
sults.

Example 6 (revisited):we consider � = {A,B,C,D},
and the following categorical BBAsm1(A) = 1,m2(B ∪
C) = 1,m3(A∪C) = 1,m4(B∪C) = 1,m5(A∪B∪C) = 1,
andm6(A∪B∪C∪D) = 1. If wemake the PCR5,PCR5+,
PCR6, and PCR6+ fusion of these six BBAs altogether,
we obtain results given in Tables III and IV.

In this example,we have only one conflicting product
π1(∅) to redistribute which is given by

π1(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C)m6(A ∪ B ∪C ∪D).

Because κ1(A ∪ B ∪ C) = 0 and κ1(A ∪ B ∪ C ∪
D) = 0, these two disjunctions are discarded and
more mass is committed to A, A ∪ C and B ∪ C with
PCR5+ and PCR6+ rules. There is more mass allocated
to B ∪C with PCR6+ and PCR6 than with PCR5+ and
PCR5 because two sources of information support this
hypothesis.

Example 7 (revisited): we consider � =
{A,B,C,D,E}, and the following seven categori-
cal BBAs m1(A ∪ E) = 1, m2(B ∪ C ∪ E) = 1,
m3(A ∪ C ∪ E) = 1, m4(B ∪ C ∪ E) = 1,
m5(A ∪ B ∪C ∪ E) = 1,m6(A ∪ B ∪C ∪ D ∪ E) = 1,
and m7(A) = 1. If we make the PCR5, PCR5+, PCR6,

TABLE IX
Example 9: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)
A 1/5 1/3

A ∪C 1/5 1/3
B ∪C 1/5 1/3

A ∪ B ∪C 1/5 0
A ∪ B ∪C ∪D 1/5 0
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TABLE X
Example 9: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)
A 1/7 1/4

A ∪C 1/7 1/4
B ∪C 2/7 1/2

A ∪ B ∪C 2/7 0
A ∪ B ∪C ∪D 1/7 0

and PCR6+ fusion of these seven BBAs altogether, we
obtain results given in Tables V and VI.

In this example 7, we have only one conflicting prod-
uct π1(∅) to redistribute which is given by

π1(∅) = m1(A ∪ E)m2(B ∪C ∪ E)m3(A ∪C ∪ E)

·m4(B ∪C ∪ E)m5(A ∪ B ∪C ∪ E)

·m6(A ∪ B ∪C ∪D ∪ E)m7(A).

Because κ1(A∪B∪C∪E) = 0 and κ1(A∪B∪C∪D∪E) =
0, these two disjunctions are discarded and more mass is
committed to A,A ∪ E,A ∪C ∪ E, and B ∪C ∪ E with
PCR5+ and PCR6+ rules. There is more mass allocated
to B ∪C ∪ E with PCR6+ and PCR6 than with PCR5+

and PCR5 because two sources of information support
this hypothesis.

Example 8 (revisited):we consider � = {A,B,C,D},
and the following categorical BBAsm1(A) = 1,m2(B ∪
C) = 1, m3(A ∪ C) = 1, m4(B ∪ C) = 1, and m5(A ∪
B ∪C ∪ D) = 1. If we make the PCR5, PCR5+, PCR6,
and PCR6+ fusion of these seven BBAs altogether we
obtain results given in Tables VII and VIII.

Because κ1(A ∪ B ∪ C ∪ D) = 0, this disjunction
is discarded and more mass is committed to A, A ∪ C,
and B ∪ C with PCR5+ and PCR6+ rules. There is more
mass allocated toB∪Cwith PCR6+ and PCR6 than with
PCR5+ and PCR5 because two sources of information
support this hypothesis.

Example 9 (revisited):we consider � = {A,B,C,D},
and the following seven categorical BBAs m1(A) =
1, m2(B ∪C) = 1, m3(A ∪ C) = 1, m4(B ∪ C) = 1,
m5(A ∪ B ∪ C ∪ D) = 1, m6(A ∪ B ∪ C) = 1, and
m7(A ∪ B ∪ C) = 1. If we make the PCR5, PCR5+,
PCR6, and PCR6+ fusion of these seven BBAs alto-
gether, we obtain results given in Tables IX and X.

Because κ1(A∪B∪C∪D) = 0 and κ1(A∪B∪C) = 0,
these disjunctions are discarded and more mass is com-

TABLE XI
Example 10: Results of PCR5, PCR5+, PCR6, PCR6+

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·) mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
A 1/3 1/3 1/3 1/3

A ∪C 1/3 1/3 1/3 1/3
B ∪C 1/3 1/3 1/3 1/3

TABLE XII
Example 12: Results of PCR5, PCR5+

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
A 1/3 1/2

B ∪C 1/3 1/2
A ∪ B ∪C 1/3 0

mitted to A,A ∪C and B ∪C with PCR5+ and PCR6+

rules. There is more mass allocated toB∪C with PCR6+

and PCR6 than with PCR5+ and PCR5 because two
sources of information support this hypothesis. Simi-
larly, more mass is allocated to (A ∪ B ∪C) with PCR6
than PCR5 since two sources of information support this
hypothesis.

Example 10 (revisited): we consider � = {A,B,C},
and the following three categorical BBAs m1(A) =
1, m2(B ∪ C) = 1, and m3(A ∪ C) = 1. We have
only one conflicting product π1(∅) = m1(A)m2(B ∪C)
m3(A ∪C) = 1 to redistribute, and for this example, we
have κ1(A) = 1, κ1(A∪C) = 1, and κ1(B∪C) = 1,which
means that all focal elements A,A ∪C, and B ∪C must
be kept, and they must receive a mass through the pro-
portional redistribution principle. Hence, in this exam-
ple, we have mPCR5

1,2,3 = mPCR6
1,2,3 = mPCR5+

1,2,3 = mPCR6+
1,2,3 , and

the combined masses are evenly distributed as shown in
the Table XI.

Example 11 (revisited): we consider � = {A,B,C},
and the following four categorical BBAs m1(A) = 1,
m2(B ∪ C) = 1, m3(A ∪ C) = 1, and m4(A ∪ B) = 1.
Because we have only one conflicting product π1(∅) =
m1(A)m2(B∪C)m3(A∪C)m4(A∪B) = 1 and κ1(A) =
1, κ1(A ∪ B) = 1, κ1(A ∪ C) = 1 and κ1(B ∪ C) =
1, no hypothesis is discarded in the PCR, and we get
mPCR5

1,2,3,4 = mPCR6
1,2,3,4 = mPCR5+

1,2,3,4 = mPCR6+
1,2,3,4 with the merged

masses being evenly distributed, that is mPCR5
1,2,3,4(A) =

1/4, mPCR5
1,2,3,4(A ∪ B) = 1/4, mPCR5

1,2,3,4(A ∪ C) = 1/4, and
mPCR5

1,2,3,4(B ∪C) = 1/4.
Example 12 (revisited): we consider � = {A,B,C},

and the following three categorical BBAs, m1(A ∪ B ∪
C) = 1, m2(A) = 1, and m3(B ∪ C) = 1. If we make
the PCR5 fusion and the PCR5+ fusion of these three
BBAs altogether, we obtain results given in Table XII.
Because π1(∅) = m1(A ∪ B ∪ C)m2(A)m3(B ∪ C), we

TABLE XIII
Example 13: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
B 0.041797 0.041797

A ∪ B 0.487632 0.613029
C ∪D 0.258327 0.345174

A ∪ B ∪C ∪D 0.212244 0
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TABLE XIV
Example 13: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
B 0.037676 0.037676

A ∪ B 0.487632 0.613029
C ∪D 0.262448 0.349295

A ∪ B ∪C ∪D 0.212244 0

get κ1(A ∪ B ∪ C) = 0, κ1(A) = 1, and κ1(B ∪ C) = 1
based on (23). Therefore, using the PCR5+ combina-
tion rule, we get a redistribution of the conflicting mass
π1(∅) = 1 only betweenA andB∪C. In this example we
havemPCR5

1,2,3 = mPCR6
1,2,3 , andmPCR5+

1,2,3 = mPCR6+
1,2,3,4 because no

mass is allocated on the same hypothesis by two differ-
ent sources.

Example 13 (revisited): we consider � =
{A,B,C,D}, and the three following BBAs

m1(A ∪ B) = 0.8,m1(C ∪D) = 0.2,

m2(A ∪ B) = 0.4,m2(C ∪D) = 0.6,

m3(B) = 0.1,m3(A ∪ B ∪C ∪D) = 0.9.

If wemake the PCR5,PCR5+, PCR6, and PCR6+ fusion
of these seven BBAs altogether, we obtain results given
in Tables XIII and XIV.

Because κ j(�) = 0 for any conflicting product π j(∅)
involving �, this hypothesis is discarded in the redistri-
bution of π4(∅) and of π6(∅) (see example 13 in Sub-
section VI-A for details), and therefore more mass is
redistributed to A ∪ B and C ∪ D with PCR5+ and
PCR6+ rules. No more mass is committed to B with
PCR5+ and PCR6+, respectively, in comparison with
PCR5 and PCR6. This is because B is not implied in
any partial conflict with � (cf. Subsection VI-A for
details).

VIII. CONCLUSION

In this paper, after having demonstrated the flawed
behavior of PCR5 and PCR6 rules of combination for
S > 2 BBAs (including possibly VBBAs), we pro-
posed improvements to correct these behaviors. A com-
putation of a binary keeping index has been detailed,
which makes it possible to discard ignorant information
sources for the calculation of each partial conflict. This
binary keeping index has been integrated into the origi-
nal formulations of PCR5 and PCR6 in order to ensure
the neutrality property of the VBBA and to propose two
new combination rules for a number of sources greater
than 2: PCR5+ and PCR6+ rules. The interest of such
combination rules could prove to be particularly impor-
tant in an application case identifying many ignorant
sources of information. In such a scenario, the prepon-

derant ignorance of a certain number of sources will no
longer obscure amore precise characterization provided
by other sources.

These new rules of combination have been al-
ready applied to risk analysis issues for geophysical and
geotechnical data fusion in order to reinforce the levee
protection characterizations [48].

APPENDIX 1: PROOF OF THE LEMMA 1

We prove that:mConj
1,2,...,S,S+1(A) = mConj

1,2,...,S(A), for any
A ∈ 2� \ {∅}, where mS+1(�) = 1 is the VBBA mv . The
set of focal elements ofmS+1(·) isF (mS+1) = {�}, there-
fore FmS+1 = 1 and XjS+1 = �. Based on the formula (6)
written for S+ 1 BBAs, we have

mConj
1,2,...,S,S+1(A) =

∑
X j∈F (m1,...,mS,mS+1 )
Xj1

∩...∩XjS
∩XjS+1

=A

π j(Xj1 ∩ . . . ∩XjS ∩XjS+1 )

=
∑

X j∈F (m1,...,mS,mS+1 )
Xj1

∩...∩XjS
∩�=A

S+1∏
i=1

mi(Xji ). (27)

Because XjS+1 = � is constant and mS+1(XjS+1 ) =
mS+1(�) = 1, one has

S+1∏
i=1

mi(Xji ) =
(

S∏
i=1

mi(Xji )

)
·mS+1(�) =

S∏
i=1

mi(Xji ),

and Xj1 ∩ . . . ∩ XjS ∩ XjS+1 = Xj1 ∩ . . . ∩ XjS ∩ � =
Xj1 ∩ . . . ∩XjS . Therefore the formula (27) becomes

mConj
1,2,...,S,S+1(A) =

∑
X j∈F (m1,...,mS,mS+1)
Xj1∩...∩XjS∩�=A

S+1∏
i=1

mi(Xji )

=
∑

X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

S∏
i=1

mi(Xji )

= mConj
1,2,...,S(A),

which completes the proof of the Lemma 1.

APPENDIX 2: PROOF OF THE THEOREM

We prove that PCR5+(m1, . . . ,mS,mS+1) =
PCR5+(m1, . . . ,mS), or equivalently that
mPCR5+

1,2,...,S+1(A) = mPCR5+
1,2,...,S(A) for any A ∈ 2� \ {∅},

where mS+1(XjS+1 ) = mS+1(�) = 1 is the VBBA. It
is worth noting that mConj

1,2,...,S,S+1(A) = mConj
1,2,...,S(A) for

any A ∈ 2� \ {∅} because the VBBA mS+1(.) is the
neutral element of the conjunctive rule (see Lemma 1).
It is important to note that when considering A = �,
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we have always mPCR5+
1,2,...,S+1(�) = mConj

1,2,...,S,S+1(�) =
mConj

1,2,...,S(�) = mPCR5+
1,2,...,S(�) because the binary keeping

index of � is always equal to zero (see remark 1), i.e.,
κ j(�) = 0. Therefore all the redistribution terms to � in
PCR5+ (and in PCR6+) formula are equal to zero when
A = �. So, we just have to consider A �= � to make the
proof.

Because mS+1(·) is the VBBA, its set of focal ele-
ments is F (mS+1) = {�} and it contains only one focal
element, i.e. |F (mS+1)| = 1. Therefore

F = |F (m1)| · |F (m2)| · . . . · |F (mS)| · |F (mS+1)| (28)

= |F (m1)| · |F (m2)| · . . . · |F (mS)|. (29)

Thismeans that the number of conflicting productsπ j(∅)
associated to the S + 1-tuple Xj = (Xj1 , . . . ,XjS ,�) ∈
F (m1, . . . ,mS,mS+1) is equal to the number of con-
flicting products π j(∅) associated to S-tuple Xj =
(Xj1 , . . . ,XjS ) ∈ F (m1, . . . ,mS). Moreover, we always
have

S+1∏
i=1

mi(Xji ) =
(

S∏
i=1

mi(Xji )

)
·mS+1(�) =

S∏
i=1

mi(Xji ).

Hence, we always have

π j(Xj1 ∩ . . . ∩XjS ∩ � = ∅) = π j(Xj1 ∩ . . . ∩XjS = ∅),
because Xj1 ∩ . . . ∩XjS ∩ � = Xj1 ∩ . . . ∩XjS .

Based on the formula (25) written for S + 1 BBAs,
we have

mPCR5+
1,2,...,S,S+1(A) = mConj

1,2,...,S,S+1(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S+1}|Xji=A

mi(Xji )
)

· π j(Xj1 ∩ . . . ∩XjS ∩ � = ∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S+1}|Xji=X

mi(Xji )
)]

, (30)

where F is given by (28).
Because XjS+1 = � and because we consider A �= �,

we have always∏
i∈{1,...,S+1}|Xji=A

mi(Xji ) =
∏

i∈{1,...,S}|Xji=A
mi(Xji ).

Whether X ∈ Xj = (Xj1 , . . . ,XjS ) or X ∈ Xj =
(Xj1 , . . . ,XjS ,�) the value of κ j(X ) is the same since
the additional binary containing indicator δ j(X,�) en-
tering in the product of the computation of the binary
keeping-index is always equal to 1 and does not modify
κ j(X ) value, and of course when X = A. Because the
binary keeping-index entering in the numerator and de-
nominator of formula (30) removes the factor mS+1(�)
from all products it belongs to (since � includes all el-
ements of the product it belongs to), the formula (30)

reduces to the following formula

mPCR5+
1,2,...,S,S+1(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(Xj1 ∩ . . . ∩XjS = ∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

= mPCR5+
1,2,...,S(A), (31)

whereX j represents now the S-tuple (Xj1 , . . . ,XjS ), and
π j(∅) = π j(Xj1 ∩ . . . ∩XjS = ∅).

So, we have proved PCR5+(m1, . . . ,mS,mS+1) =
PCR5+(m1, . . . ,mS) when mS+1 is the VBBA. Simi-
larly, we can prove that PCR6+(m1, . . . ,mS,mS+1) =
PCR6+(m1, . . . ,mS) whenmS+1 is the VBBA.This com-
pletes the proof of the theorem.

APPENDIX 3: CODES OF PCR5+ AND PCR6+ RULES

For convenience, we provide two basic
MatlabTMcodes for PCR5+ and PCR6+ for the fu-
sion of S ≥ 2 BBAs for working with 2�, i.e. working
with Shafer’s model. No input verification of input is
done in the routines. It is assumed that the input ma-
trix BBA is correct, both in dimension and in content.
The derivation of all possible combinations is done
with combvec(Combinations, vec) instruction which is
included in the MatlabTM neural networks toolbox.
This combvec call can be a very time-consuming task
when the size of the problem increases. A standalone
version of these codes is also available upon request
to the authors. The j-th column of the BBA input
matrix corresponds to the (vertical) BBA vector mj(.)
associated with the j-th source s j. Each element of a
BBAmatrix is in [0,1] and the sum of each column must
be one. If N is the cardinality of the frame � and if
S is the number of sources, then the size of the BBA
input matrix is ((2N ) − 1)) × S. Each column of the
BBA matrix must use the classical binary encoding of
elements. For example, if � = {A,B,C}, then we encode
the elements of 2� \{∅} by the binary sequence 001 ≡ A,
010 ≡ B, 011 ≡ A ∪B, ..., 111 ≡ A ∪B ∪C. The mass of
empty set is not included in the BBA vector because its
is always set to zero.These codes can be used and shared
for free for research purposes only. Commercial uses of
these codes, or adaptation of them in any programming
language, is not allowed without written agreement of
the authors. These codes are provided by the copyright
holders “as is” and any express or implied warranties
are disclaimed. The copyright holder will not be liable
for any direct, or indirect damages of the use of these
codes. The authors would appreciate any feedback in
the use of these codes, and publication using these codes
should cite this paper in agreement for their use.
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