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Abstract: Mapping the universe has always been a salient endeavor in astronomy
and astrophysics. Advancements in observational astronomy have generated vast
amounts of data containing various features of celestial objects. Inducing a
growing need for accurate and detailed classification and localization of stellar
objects in the cosmos. In this paper, we present a comprehensive study that
combines machine learning techniques to classify celestial objects into distinct
categories and predict their precise locations in the sky. This study is divided into
two parts: a classification task, where the stellar objects are classified into
galaxies, stars, or quasars (quasi-stellar radio sources). The resulting model
exhibits exceptional performance in differentiating these objects, as demonstrated
by high classification accuracy. We extend our analysis to predict the location of
stellar objects using regression techniques. By employing multi-target regression,
we model the right ascension and declination coordinates, enabling accurate
localization of celestial objects on the celestial sphere. The practical implications
of our research lie in producing comprehensive celestial catalogs, facilitating
targeted observations, and contributing to the broader field of observational
astronomy. The ability to accurately classify and localize stellar objects lays the
groundwork for mapping the cosmos and advancing our understanding of the
universe's intricate structure.
Keywords: galaxies, stars, Quasars, machine learning, observational astronomy, localization.

1. Introduction

Advancements in technology have revolutionized
the field of astronomy, enabling us to explore the
vast depths of the universe like never before. This
development within the sphere of astrophysics led
to an increasing volume of astronomical data
generated by advanced telescopes and
observatories such as the Sloan Digital Sky Survey
(SDSS), making this data more accessible.
Consequently, the need for efficient and accurate
data processing techniques has become paramount.
Machine learning, a branch of artificial
intelligence, has emerged as a powerful tool in the
analysis of astronomical data, offering novel
solutions to various challenges faced by
astronomers. Using one of the most robust machine

learning algorithms, The Random Forest, this
research aims to study stellar observations released
in January 2023 by the SDSS as the survey’s 18th
data release. The entities detected by the
observatory providing this data are either galaxies,
stars or Quasars (Quasi-stellar radio source).
Galaxies are vast, majestic systems that serve as
the building blocks of the universe. They are
immense collections of stars, planets, gas, dust, and
dark matter bound together by gravity. Galaxies
come in a remarkable variety of shapes, sizes, and
configurations, ranging from small, dwarf galaxies
with a few million stars to massive elliptical
galaxies harboring trillions of stars [1]. Taking us
to our second object, stars serve as the fundamental
building blocks of galaxies. These luminous
spheres of hot, glowing gas are held together by gr-
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vity and emit light and heat through nuclear fusion
reactions in their cores. Stars are scattered
throughout the universe, forming intricate patterns
known as constellations and playing a crucial role
in shaping the cosmos [2]. Quasars, on the other
hand, are incredibly powerful and distant celestial
objects that emit enormous amounts of energy
across the electromagnetic spectrum. These
enigmatic entities represent one of the most
fascinating and mysterious phenomena in the
universe. Quasars were first discovered in the
1960s as extremely bright, point-like sources of
light that resembled stars in optical telescopes.
However, further observations revealed that their
spectra were highly unusual, exhibiting a
characteristic redshift, indicating that they are
located at extreme distances from Earth. The light
emitted by quasars carries crucial information
about the early universe. Due to their extreme
distances, quasars provide a glimpse into the
universe's distant past, allowing astronomers to
study the cosmos in its infancy. By analyzing the
spectra of quasars, scientists can probe the
chemical composition of the intergalactic medium
and investigate the conditions of the universe
during its early epochs. Following this logic, the
classification and localization of these celestial
bodies play a crucial role in the understanding of
the expansion of our universe and its composition.
This study will use Python language due to its
numerous applications in machine learning, the
sufficiency of its libraries for this task and its
simplicity and expansibility. For the classification
task, the Random Forest Classifier will be used to
predict the classes of the celestial objects. For the
regression task, the Random Forest Regressor will
be used to predict the coordinates of these entities.
After each task, the accuracy of the model will be
evaluated and the structure of the Random Forest
studied.

2. Methodology

2.1. Machine learning for astronomy and
astrophysics

Machine learning is a subfield of artificial
intelligence that uses data to enable computers to
learn and make predictions without being
explicilty programmed for the specific task,
involving the development of algorithms and
statistical models [3]. The core idea behind
machine learning is to allow machines to improve
their performance on a given task through
experience and exposure to relevant data. By
leveraging statistical techniques and pattern
recognition, machine learning algorithms identify
patterns, trends, and relationships within the data,
enabling them to generalize and make accurate
predictions on new, unseen data [4]. Machine
learning has found diverse and impactful
applications in astronomy and astrophysics and
and is gaining popularity as a vaiable alternative
for manual processing and computationally
intensive template-based matched filtering
algorithms. It has revolutionazed the way
astronomers analyse and intepret vast amounts of
data. Additionally, machine learning is
instrumental in identifying rare and transient
events in astronomical surveys, enabling the
discovery of new phenomena and celestial
objects. Furthermore, in the field of cosmology,
machine learning techniques help analyze
large-scale structures and extract valuable insights
from complex datasets, leading to a deeper
understanding of the universe's evolution.

2.2. The Random Forest Algorithm

Random Forest is an ensemble supervised
learning algorithm used for both classification
and regression tasks. It is based on the concept of
decision trees and combines the predictions of
multiple individual decision trees to make more
accurate and robust predictions. The algorithm
works by creating a multitude of decision trees
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during the training phase, each using a random
subset of features [5]. In classification, the final
prediction is determined through a majority vote of
the individual trees, while in regression, it is
computed as the average of the predictions from
each tree. Random Forest's ability to handle
high-dimensional data, reduce overfitting, and
capture complex relationships between features
makes it a widely used and powerful tool in
various domains, including astronomy, where it has
been successfully applied to tasks such as object
classification, localization of cosmic entities and
redshift estimation.

2.3. Data

SDSS-V is the first facility providing multi-epoch
optical & IR spectroscopy across the entire sky, as
well as offering contiguous integral-field
spectroscopic coverage of the Milky Way and
Local Volume galaxies. This panoptic
spectroscopic survey continues the strong SDSS
legacy of innovative data and collaboration
infrastructure [6]. This study will use the spectrar
features observed by this survey as training data.
The data consists of 100,000 stellar object
observation: 52343 galaxy (52.3%), 37232 star
(37.2%) and 10425 Quasar (10.4%) (figure 1).
Each observation is described by 42 features and
one class column classifying the observations.
Features include the object identifiers (Objid)
and (Specobjid); J2000 celestial coordinates :
right ascension (ra) and declination (dec); the
final redshift of the celestial object (redshift); the
run and rerun numbers: the run refering to the
specific period in which the survey observed a
part of the sky and the rerun refering to the
preprocessing of the obtained data; The camera
column (camcol); the number of the sky field in
which the observation was obtained (field); the
number of physical glass plates mounted on the
telescope (plate); the ID of the oplical fiber
responsible for gathering the object’s light
(fiberID); Modified Julian Date represents the

number of days that have passed since midnight
Nov. 17, 1858. It is used in SDSS to keep track of
the time of each observation (mjd); petroRad_u,
petroRad_g, petroRad_r, petroRad_i, and
petroRad_z are the petrosian radii for the five
photometric bands u (ultraviolet), g (green), r
(red), i (infrared), and z (near-infrared)
respectively; petroFlux_u, petroFlux_g,
petroFlux_r, petroFlux_i, and petroFlux_z are the
petrosian fluxes for the five photometric bands;
these features describe the total amount of light
emitted from the celestial objects. petroR50_u,
petroR50_g, petroR50_r, petroR50_i, and
petroR50_z are the petrosian half-light radii for
the five photometric bands. psfMag_u, psfMag_g,
psfMag_r, psfMag_i, and psfMag_z are the
magnitudes of objects measured using the Point
Spread Function (PSF) in the five photometric
bands. expAB_u, expAB_g, expAB_r, expAB_i,
and expAB_z - axis ratio of exponential fits to the
light profile of celestial objects observed in the
five photometric bands.

Figure 1. Class size and distribution

2.4. Stellar classification

2.4.1. Data preprocessing

3



Machine learning algorithms typically require
numerical data as input, and converting the target
labels into numeric values enables the algorithms
to work effectively. In this case, assigning 0 to
"GALAXY," 1 to "STAR" and 2 to "QSO" allows
the algorithm to treat the three different classes as
distinct numerical categories.
Outlier detection is performed in data
preprocessing to identify and handle data points
that are significantly different from the majority
of the data. Outliers are data points that deviate
substantially from the typical patterns in the
dataset and can have a significant impact on the
performance of machine learning models.Outlier
detection and elimination ensures data quality,
model performance and robustness, and
interpretability. This study will use the Local
Outlier Factor (LOF), it is a popular outlier
detection algorithm that measures the local
density deviation of a data point with respect to
its neighbors. It assigns an anomaly score to each
data point based on its local density compared to
the densities of its neighbors. The LOF algorithm
can be used to identify data points that are
significantly less dense than their neighbors,
which are likely to be outliers [7]. First, for each
data point in the dataset, the distance to its
k-nearest neighbors (k-distance) is computed. The
value of k is a user-defined parameter and
determines the number of neighbors to consider.
The k-distance provides an estimate of how close
or far away a data point is from its k-nearest
neighbors. Second, the reachability density (RD)
is calculated. The reachability density or
reachability distance between Xi and Xj is
defined as the maximum of the k-distance of Xj
and the actual distance between Xi and Xj. In
layman terms, if a point Xi lies within the
K-neighbors of Xj, the reachability distance will
be K-distance of Xj, else, reachability distance
will be the distance between Xi and Xj .

𝑅𝐷(𝑋𝑖, 𝑋𝑗) = 𝑚𝑎𝑥(𝐾 − 𝑑𝑖𝑠(𝑋𝑗), 𝑑𝑖𝑠(𝑋𝑖, 𝑋𝑗))
(1)

Third, the local reachability density will be
calculated. It is inverse of the average reachability
distance of a given data point A from its
neighbors. Intuitively according to LRD formula,
the more the average reachability distance (i.e.,
neighbors are far from the point), the less density
of points are present around a particular point.
This tells how far a point is from the nearest
cluster of points. Low values of LRD implies that
the closest cluster is far from the point.

LRDk = (2)
1

Σ𝑋𝑗 ∈ 𝑁�(𝐴) 𝑅𝐷(𝐴, 𝑋𝑗)
𝑁�(𝐴)| || |

Lastly, the Local Outlier Factor (LOF) is
calculated. the LRD of each point is used to
compare with the average LRD of its K neighbors.
The LOF is the ratio of the average LRD of the K
neighbors of A to the LRD of A. Intuitively, if the
point is not an outlier (inlier), the ratio of average
LRD of neighbors is approximately equal to the
LRD of a point (because the density of a point and
its neighbors are roughly equal). In that case, LOF
is nearly equal to 1. On the other hand, if the point
is an outlier, the LRD of a point is less than the
average LRD of neighbors. Then LOF value will
be high. However, selecting a threshold of LOF > 1
is not a rule, in a matter of fact, it is usually
inconclusive [7].

LOF�(A)=
Σ𝑋𝑗 ∈ 𝑁𝑘(𝐴) 𝐿𝑅𝐷�(𝑋𝑗)

𝑁�(𝐴)| || | • 1
𝐿𝑅𝐷�(𝐴)

(3)

The main hindrance with imbalanced data is that
there are too few examples of the minority class
for a model to effectively learn the decision
boundary. One way to solve this problem is to
oversample the examples in the minority class.
This can be achieved by simply duplicating
examples from the minority class in the training
dataset prior to fitting a model. This can balance
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the class distribution but does not provide any
additional information to the model. As can be
seen in the histogram representing our three
classes (figure 1), there is a large imbalance in
our data. This study will use the built in
imblearn’s Synthetic Minority Oversampling
TEchnique (SMOTE), The methodology of the
SMOTE function is to select k examples that are
close in the feature space, draw a line between the
examples in the feature space and drawing a new
sample at a point along that line in the prospect of
creating more comprehensive samples for the
minority data [8]. After oversampling the data,
each class would have a count of 52343 as shown
in figure 2.

Figure 2. Class count and distribution after
oversampling

Feature selection is a crucial step in improving
the accuracy of a predictive model. Feature
selection methods can be used to identify and
remove unneeded, irrelevant and redundant
attributes from data that do not contribute to the
accuracy of a predictive model or may in fact
decrease its accuracy. Fewer attributes is desirable
because it reduces the complexity of the model,
and a simpler model is simpler to understand and
explain. In this study, the correlation of the 42
features and the object’s class was carefully
analyzed in order to select which features have

important roles in the prediction process. To
ensure careful feature selection, the built in corr()
Python function is used to display the correlation
between all the features on the class column. This
code returns numbers ranging from -1 to 1. this
range represents whether a feature’s correlation
with the class column is negative, positive or
equal to zero as shown in figure 3.

Figure 3. Correlation of different features with the
‘class’ column

2.4.2. Model training

To reduce the risk of overfitting, the dataset is
divided into a training set, which the model uses to
learn patterns and relationships, and a test set or
validation set, which is kept separate for unbiased
evaluation. For our model, the train set represents
70% of all the data and the evaluation set of 30%.
This split is performed randomly to ensure an
unbiased and generalized prediction. After careful
consideration, it turned out that the optimal number
of trees (n_estimators) in our model is 100. An
illustration of the first decision tree in the model
(index 0) is shown is figure 4. Each tree in this
model uses a random subset of features making,
not only, every tree unique but every random forest
generated after running the program. Therefore, we
could have different accuracy scores after running
the code many times.
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Figure 4. Visualization of the first decision tree of the Random Forest classifier

2.4.3 Model evaluation

With 100 trees, the Random Forest classifier
model achieved a nearly impeccable accuracy of
99.3% in the classification of the celestial bodies.

Figure 5. Classification report

As shown in figure 5, the precision, F1-score and
recall for galaxies and quasars were 99%. As for
stars the model attained a 100% score in
precision, Recall and F1-score. The support
represents the number of samples for each class in
the test dataset. The classification overall
achieved an average accuracy of 99% for all
classes and the training process takes 32 seconds.

The scores’ definitions are listed in the following
equations:

(4)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

(5)𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(6)𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

In each of the equations above, the TP represents
the true positive; FP, the false positive; and FN
the false negative. The confusion matrix shown in
figure 9 depicts the counts of TP, TN (true
negative), FP and FN in detail giving an
interesting insight into the model. The confusion
matrix provides the count of the predicted labels
and actual labels, by analyzing the intersections
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between them, we can gain insight into the
performance of our model.

Figure 6. Confusion matrix

To check the performance of the model, another
technique is using the AUC (area under the curve)
ROC (Receiver Operating Characteristics) curve.
It is one of the most important evaluation metrics
for checking any classification model’s
performance. It is also written as AUROC (Area
Under the Receiver Operating Characteristics). In
short, the RUROC curve tells how much the
model is capable of distinguishing between
classes. The closer the AUC is to 1, the better the
prediction is. The ROC curves for each class are
represented in figure 7 [9].

Figure 7. ROC curves and their corresponding AUC

2.5. Object localization

For the regression task, the model uses the same
data (SDSS 18th data release). However, the
predicted label will differ. In order to localize
celestial objects in the sky, two coordinates are
used: the right ascension (ra) and declination (dec).
The multi-target regression algorithm will therefore
predict these algorithms who represent two distinct
columns of the dataset.

2.5.1. Coordinates

Like cities, every object in the sky has two
numbers that fix its location called right
ascension and declination, more generally
referred to as the object's celestial coordinates.
Declination corresponds to latitude and right
ascension to longitude. Just like the
latitude-longitude grid on earth, the cosmos is
mapped as a sphere with the earth as its center
The equator, which marks the 0° latitude line,
circles the sky as the celestial equator, while the
north and south celestial poles hover over either
end of the planet's polar axes. Viewed from
Earth's equator, the celestial equator begins at the
eastern horizon, passes directly overhead and
drops down to the western horizon. Since we're
inside a sphere, it would continue around the
backside of the Earth as well. From mid-latitudes,
the celestial equator stands midway between the
horizon and overhead point, while from the poles
the celestial equator encircles the horizon.
Anything north of the celestial equator has a
northerly declination, marked with a positive
sign. Anything south of the equator has a negative
declination written with a negative sign. While
we use a physical location on Earth as our
reference for longitude, it is quite similar in the
cosmic level. Astronomers use the spot the Sun
arrives at on the first day of spring, called the
vernal equinox as shown in figure 11. Presently,
it's located in the constellation of Pisces, the Fish.
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The sky can be treated as a clock, since it wheels
by as Earth rotates, so the zero point of right
ascension is called "0h" for "zero hours." Unlike
longitude, right ascension is measured in just one
direction east. Because there are 24 hours in a
day, each hour of right ascension measured along
the equator equals 1/24th of a circle (360° divided
by 24) or 15°. That's a little more than one-half
the width of the W-shaped constellation
Cassiopeia. Unlike Earth coordinates, celestial
coordinates change due to the slow wobble of
Earth's axis called precession. Precession causes
the equinox points to drift westward at a rate of
50.3 arcseconds annually. As the equinox shifts, it
drags the coordinate grid with it. That's why star
catalogs and software programs have to be
updated regularly to the latest "epoch." This is
done every 50 years. In our data, the ra and dec
are referenced as the Epoch J2000.0 coordinates
which stands from the year 2000 to 2050 [10].

Figure 8. the cosmic sphere map. Declination
(green) is measured in degrees north and south of
the celestial equator. Right ascension, akin to

longitude, is measured east from the equinox. The
red circle is the Sun's apparent path around the sky,

which defines the ecliptic [10].

2.5.2. Data preprocessing

For this regression task, the label encoding and
outlier detection process will be the same since it
is mainly related to the data than it is to the
model. As for the feature selection, after
calculating the correlation of all features with the
dec and class columns, it was revealed that most
features were related either negatively or
positively to the coordinates. Therefore, after
careful consideration, it was most safe to make
use of all features during the training process
knowing that the RandomForest is very resistant
to that. In regression models, the target variable is
continuous rather than categorical which
eliminates the concept of class imbalance.
Consequently, there is no need to perform
oversampling.
In order to avoid potential errors or
inconsistencies during model training and
evaluation, the target variables (y_ra and y_dec)
must be reshaped. Most machine learning
libraries, including scikit-learn, expect the target
variables to be in a two-dimensional array-like
format. The first dimension represents the
number of samples (data points), and the second
dimension represents the number of target
variables (output dimensions). In the context of
predicting celestial coordinates, each data point
represents an astronomical object, and we have
two target variables (y_ra and y_dec) to predict
for each object. We will use the NumPy ‘reshape’
function. The specific shape of the target
variables after reshaping would be
(num_samples, num_dimensions), where
num_samples is the total number of data points,
and num_dimensions is the number of target
variables (2 in this case).

2.5.3. Model training

For this regression task, the study will use the
random forest and the multi output regressor
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since it is trying to predict the coordinates of a
cosmic body which includes two variables. The
data is split into training (80%) and testing (20%)
datasets. During the training process, the model
learns to map the features to the corresponding
celestial coordinates. The model is then fed the
testing dataset to evaluate its efficiency.

2.5.4. Model evaluation

For the evaluation of the regression model,
several metrics will be used including the mean
squared error (MSE), the mean absolute error
(MAE), the relative squared error (RSE), and the
R2 score (R2), the latter will be most significant
in the evaluation. The R2 score is an evaluation
metric that ranges from 0 to 1, the closer it is to 1,
the better the model’s performance . These
metrics are defined by the following equations
where ŷ will refer to the predicted output and y
the actual output:

(7)𝑀𝐴𝐸 =  1
𝑛 Σ 𝑦 −  𝑦| |

(8)𝑀𝑆𝐸 =  1
𝑛  Σ (𝑦 −  𝑦) 2

(9)𝑅𝑆𝐸 =  
𝑀𝐴𝐸
𝑀𝑆𝐸

(10)𝑅 2 = 1 − 𝑅𝑆𝐸  

Since we are dealing with multi target regression,
each of these metrics will be calculated for the ra
and dec separately.

Figure 9. Regression evaluation metrics scores

As shown in figure 9, the model performed
slightly better in predicting the declination than it
did with the right ascension. However, the R2
scores of ra and dec of 0.997 and 0.999
respectively show that the model has an overall
excellent accuracy.

3. Discussion and conclusion

We have attempted to predict the class and
coordinates of stellar objects with the Python’s
Random Forest algorithm. In the process, we
explored the performance of our model for both
classification and regression tasks, the model
achieved an excellent accuracy of 99.3% and
approximately 99% respectively. The data is free
of null values so the preprocessing process will
consist of oversampling, feature selection, label
encoding and target value reshaping for the
regression model. On one hand, the classification
consisted of predicting the type of celestial body
based on spectral features as either a galaxy, a
star or a quasar. After evaluating the model, we
can analyze the trends in classification. For
instance, we can perceive that the model has very
little confusion between predicting quasars and
galaxies, this may be due to the fact that quasars
are 10 to 100 times brighter than galaxies and
their emission lines shift far to the red
wavelength reaching up to 96% the speed of
light, while galaxies have both blue and red shifts
[10]. Like that, different trends in prediction are
mainly a result of some vast differences in data.
On the other hand, we trained our regression
model to predict the right ascension and
declination representing the coordinates of the
stellar object. We can see that the model
performed overall better in predicting the dec
over the ra. Predicting ra may be a more complex
task compared to predicting dec due to various
factors, such as variations in the celestial sphere,
seasonal changes, and different tracking systems
[9]. As a result, the model might struggle more in
capturing these intricate patterns accurately. This
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opens the door to intriguing suggestions to
improve this model.
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Appendix

Here is a section of the classification and
regression training algorithms:

classification:

x_train, x_test, y_train, y_test =
train_test_split(x, y, test_size = 0.3, random_state
= 42)
r_forest = RandomForestClassifier()
r_forest.fit(x_train,y_train)
predicted = r_forest.predict(x_test)

Regression:

y_ra = y_ra.values.reshape(-1, 1)
y_dec = y_dec.values.reshape(-1, 1)

X_train, X_test, y_ra_train, y_ra_test,
y_dec_train, y_dec_test = train_test_split(X,
y_ra, y_dec, test_size=0.2, random_state=42)
rf_regressor =
RandomForestRegressor(random_state=42)
multioutput_regressor =
MultiOutputRegressor(rf_regressor)
multioutput_regressor.fit(X_train,
np.hstack((y_ra_train, y_dec_train)))

predicted_ra =
multioutput_regressor.predict(X_test)[:, 0]
predicted_dec =
multioutput_regressor.predict(X_test)[:, 1]
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