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Abstract 

   We look at the classical Kaluza-Klein theory allowing the metric to vary in the fifth 

dimension.   Considering only linear terms we then use a Lorentz invariant distribution 

of the metric terms to find out how the metric terms vary with respect to frequency.  We find 

that they blow up at high frequency, so that non-linear terms would have to be taken into 

account.  

 

I. Introduction 

  Kaluza and Klein1-3 extended the Einstein field equations to 5 dimensions and were able to 

obtain the Einstein-Maxwell equations if the metric in the fifth dimension was taken to 

represent the electromagnetic potential.    For a review see Applequist, Chodos and Freund4,  

Bailin and Love5,  and Overduin and Wesson6.   Most papers, including those of Kaluza and 

 Klein, take the metric to be independent of the fifth dimension.    When the metric is allowed to  

vary in the fifth dimension then it can be expanded in a Fourier expansion with respect to the  

fifth dimension.   The higher order modes are then generally interpreted as massive spin two  

particles, and neglected in the low energy limit.   For example see Bailin and Love5.   Wesson7  

allows the metric to vary in the fifth dimension, and interprets the extra terms as a stress-energy  

tensor in Einstein’s field equations.   
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   In this paper we also make a Fourier expansion of the metric with respect to the fifth 

dimension, but take the terms as purely classical  and don’t associate any spin two particles with 

them.  Instead we require their distribution to be invariant under a Lorentz transformations and 

find the resulting expectation values.    

 

II. Basic equations 

     Following Klein2 we will write the metric in the form 

 

      𝑑𝑠2 = 𝜑2(𝑑𝑥1 + 𝛼𝜇𝑑𝑥𝜇)(𝑑𝑥1 + 𝛼𝜈𝑑𝑥𝜈) + 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈                                   (1) 

 

where 𝜑, 𝛼𝜇, and 𝑔𝜇𝜈 are functions of  𝑥1 and 𝑥𝜇.  The coordinate 𝑥1 represents the fifth 

 dimension, and 𝑥𝜇, where the 𝜇 can be any Greek index,  represents the four dimensional space- 

time coordinates.    𝑥0 will be used to represent time, and 𝑥𝑖 , where the i can be any Latin index,  

is used to represent the three-space coordinates.   We will also use the Einstein summation  

conversion where repeated indices indicate a summation. 

   Again following Klein3 we take the fifth dimension to be closed with respect to 𝑥1 so that  

𝑥1 + 2𝜋𝑎 comes back to the same point for some constant a.   𝜑,  𝛼𝜇, and 𝑔𝜇𝜈 are taken as  

functions of 𝑥1, and 𝑥𝜇.    

   Following Einstein and Bergmann8 if we now make the transformation  

𝑥1′ =  𝐷−1 ∫ 𝜑𝑑𝑥1𝑥1

0
 , where 𝐷 =  ∫ 𝜑𝑑𝑥12𝜋𝑎

0
 , then the new 𝜑 will be independent of 𝑥1.  In 

this case the curvature tensor components take the form 

 

  𝑅11 = 𝑅11′                                                                                                              (2) 

 



  𝑅1𝜇 =  𝑅𝜇1 =  𝑅𝜇1′ + 𝛼𝜇𝑅11′                                                                                 (3) 

 

  𝑅𝜇𝜈 = 𝛼𝜇𝛼𝜈𝑅11′ +  𝛼𝜇𝑅𝜈1′ + 𝛼𝜈𝑅𝜇1′ + 𝑅𝜇𝜈′                                                         (4) 

 

where 

 

  𝑅11′ = 𝑔𝜇𝜈 {(𝜑2𝛼𝜇,1 );�̅� −  𝜑𝜑;𝜇𝜈 −  𝜑2𝛼𝜇,1 𝛼𝜈 ,1−
1

2
 𝑔𝜇𝜈 ,11 } 

           + 
1

4
 {−𝑔𝜇𝜈 ,1 𝑔𝜇𝜈 ,1 + 𝜑4𝐹𝜇𝜈𝐹𝜇𝜈}                                                                    (5) 

 

  𝑅𝜇1
′ =  −𝑔𝜈𝛾[

1

2
𝜑𝜑,𝜈 𝐹𝜇𝛾 +  

1

2
(𝜑2𝐹𝜇𝜈);�̅�  +  𝜑2𝛼𝛾,1 𝐹𝜈𝜇 

         + 
1

2
𝜑{(𝜑−1𝑔𝜈𝛾,1 );�̅� − (𝜑−1𝑔𝜇𝛾,1 );�̅�}]                                                            (6) 

 

  𝑅𝜇𝜈′ =  
1

2
𝜑−2{(𝜑2𝛼𝜇,1 );�̅�  +  (𝜑2𝛼𝜈 ,1 );�̅�} −  𝜑−1𝜑;𝜇𝜈 −  𝛼𝜇,1 𝛼𝜈 ,1 

          + 
1

4
𝑔𝛾𝛿{2𝑔𝛾𝜇,1 𝐹𝛿𝜈 + 𝑔𝛾𝛿 ,1 𝐹𝜈𝜇} − 

1

2
 𝜑2𝑔𝛾𝛿𝐹𝛾𝜇𝐹𝛿𝜈 

          + 
1

2
 𝜑−2 {𝑔𝛾𝛿 (𝑔𝛾𝜇,1 𝑔𝛿𝜈 ,1− 

1

2
𝑔𝛾𝛿 ,1 𝑔𝜇𝜈 ,1 ) −  𝑔𝜇𝜈 ,11 } +  𝑔𝛾𝛿𝑅𝜇𝛾𝜈𝛿               (7) 

 

A comma represents a partial derivative,  a semicolon represents a covariant derivative, and 

 

  (),�̅� = (),𝜇− 𝛼𝜇(),1                                                                                                     (8)    

     

  ();�̅� = ();𝜇 − 𝛼𝜇(),1                                                                                                    (9)  

 

where () represents a tensor of any rank and for tensors 𝐴, 𝐴𝜇, 𝐴𝜇𝜈 we have 



 

   𝐴;𝜇 = 𝐴,𝜇                                                                                                                   (10) 

 

   𝐴𝜇;𝜈 =  𝐴𝜇,𝜈−  Γ𝜇𝜈
𝛾

𝐴𝛾                                                                                                (11) 

 

   𝐴𝜇𝜈;𝛾 =  𝐴𝜇𝜈 ,𝛾−  Γ𝜇𝛾
𝛿 𝐴𝛿𝜈 −  Γ𝛾𝜈

𝛿 𝐴𝜇𝛿                                                                           (12) 

 

where Γ𝜇𝜈
𝛾

= 𝑔𝛾𝛿Γ𝛿𝜇𝜈 and 

 

    Γ𝜇𝜈𝛾 =  
1

2
 (𝑔𝜇𝜈 ,�̅� + 𝑔𝜇𝛾,𝜈 ̅− 𝑔𝜈𝛾,�̅� )                                                                        (13) 

 

𝑔𝜇𝜈represents the inverse metric of 𝑔𝜇𝜈, that is 𝑔𝜇𝛾𝑔𝛾𝜈 =  𝛿𝜈
𝜇

.   We also have 

 

    𝐹𝜇𝜈 =  𝛼𝜇,𝜈 ̅− 𝛼𝜈 ,�̅�                                                                                                     (14) 

 

    𝐹𝜇𝜈 =  𝑔𝜇𝛾𝑔𝜈𝛿𝐹𝛾𝛿                                                                                                      (15) 

 

   𝑅𝜇𝛾𝜈𝛿 =  
1

2
{𝑔𝜇𝛿 ,�̅��̅� + 𝑔𝛾𝜈 ,�̅��̅�  − 𝑔𝛾𝛿 ,�̅��̅� −  𝑔𝜇𝜈 ,�̅��̅� } +  Γ𝜇𝛿

𝜆 Γ𝜆𝛾𝜈 −  Γ𝜇𝜈
𝜆 Γ𝜆𝛾𝛿                 (16) 

 

  The eqs. (2-7) for 𝑅11, 𝑅𝜇1 and 𝑅𝜇𝜈 agree with Bejancu9 when 𝜑 = 1, with Wesson7 when  

𝛼𝜇 = 0, and with Wehus and Revndal10 when the metric is independent of the fifth dimension. 

  

III. Linear Field Equations 

     We will take the field equations to be a 5D generalization of the Einstein vacuum field  



equations 

 

     𝑅11 = 0                                                                                                                             (17) 

 

     𝑅𝜇1 = 0                                                                                                                             (18) 

 

     𝑅𝜇𝜈 = 0                                                                                                                             (19) 

 

  Now write 𝑔𝜇𝜈 =  𝜂𝜇𝜈 +  ℎ𝜇𝜈 and 𝜑 = 1 +  𝜀, where 𝜂𝜇𝜈 is the diagonal Minkowski tensor 

with 𝜂00 =  −1, 𝜂0𝑖 =  0 and 𝜂𝑖𝑗 =  𝛿𝑖𝑗 along 𝜂𝜇𝜈 = 𝜂𝜇𝜈.  If we only keep linear terms in ℎ𝜇𝜈, 𝜀  

and 𝛼𝜇 then eqs. (17-19) reduce to 

 

      𝜂𝜇𝜈 {𝛼𝜇,𝜈1 −  𝜀,𝜇𝜈−
1

2
 ℎ𝜇𝜈 ,11 } = 0                                                                                   (20) 

 

       𝜂𝜈𝛾{ 𝐹𝜇𝜈 ,𝛾  + ℎ𝜈𝛾,1𝜇− ℎ𝜇𝛾,1𝜈 } = 0                                                                                (21) 

 

       𝛼𝜇,𝜈1 + 𝛼𝜈 ,𝜇1 −  2𝜀,𝜇𝜈 − ℎ𝜇𝜈 ,11+  𝜂𝛾𝛿{ℎ𝜇𝛿 ,𝛾𝜈 + ℎ𝛾𝜈 ,𝜇𝛿  −  ℎ𝛾𝛿 ,𝜇𝜈 − ℎ𝜇𝜈 ,𝛾𝛿 } = 0    (22) 

          

Now consider the allowable coordinate transformations such that 𝜑,1 = 0.    Define new 

coordinates 𝑥1′ and  𝑥𝜇′ such that 

 

   𝑥1 =  𝑥1′
+ 𝑓(𝑥𝜇′, 𝑥1′)                                                                                                       (23) 

 

  𝑥𝜇 =  𝑥𝜇′ + 𝑓𝜇(𝑥𝜈′, 𝑥1′)                                                                                                     (24) 



 

If we only keep linear terms in 𝑓 , 𝑓𝜇, and the metric components ℎ𝜇𝜈, 𝜀 and 𝛼𝜇, then the 

new metric components take the form 

 

     𝜀′ =  𝜀 + 𝑓,1′                                                                                                                     (25) 

 

    𝛼𝜇
′ =  𝛼𝜇 + 𝑓,𝜇′+ 𝜂𝜇𝜈𝑓𝜈 ,1′                                                                                               (26) 

 

    ℎ𝜇𝜈
′ =  ℎ𝜇𝜈 + 𝜂𝜇𝛾𝑓𝛾,𝜈′  + 𝜂𝛾𝜈𝑓𝛾,𝜇′                                                                                    (27) 

 

Then in order for 𝜀′ to be independent of  𝑥1′
we need  

 

    𝜀′,1′ =  𝜀,𝜇 𝑓𝜇,1′+ 𝑓,1′1′  = 0                                                                                              (28) 

 

Taking 𝜀,𝜇 𝑓𝜇,1′  as a second order effect we then need 𝑓,1′1′ = 0 and thus take 𝑓 to be  

independent of 𝑥1′
 .   To see what further restriction we can make, take the 𝑥1′

 derivative 

of eq. (26) to obtain 

 

   𝛼𝜇
′ ,1′ =  𝛼𝜇,1′+ 𝑓,𝜇′1′+ 𝜂𝜇𝜈𝑓𝜈 ,1′1′                                                                                     (29) 

 

Since 𝑓,𝜇′1′ = 0  eq. (29) will be zero if we take  𝑓𝜇,1′1′ =  −𝜂𝜇𝜈𝛼𝜈 ,1′ .  Thus we  can take 𝛼𝜇
′  to  

be independent of 𝑥1′
 in this linear approximation. 

   Now dropping the prime, expand the metric in a Fourier expansion in 𝑥1  so that 

 



    ℎ𝜇𝜈 =  ∑ 𝑎𝜇𝜈
𝑛∞

𝑛=−∞ 𝑒𝑖𝑛𝑥1/𝑎                                                                                                (30) 

 

ℎ𝜇𝜈 is real so we need 𝑎𝜇𝜈
−𝑛 =  𝑎𝜇𝜈

𝑛∗ where 𝑎𝜇𝜈
𝑛∗ is the complex conjugate of 𝑎𝜇𝜈

𝑛 .  We then take 

𝑎𝜇𝜈
𝑛  for 𝑛 ≥ 0 to be the independent degrees of freedom.  Eqs. (20-22) then become 

 

         𝜂𝜇𝜈𝑎𝜇𝜈
𝑛  = 0                                                                                                                       (31) 

 

        𝜂𝜈𝛾{𝑎𝜈𝛾
𝑛 ,𝜇− 𝑎𝜇𝛾

𝑛 ,𝜈 } = 0                                                                                                   (32) 

 

        
𝑛2

𝑎2 𝑎𝜇𝜈
𝑛 +  𝜂𝛾𝛿{𝑎𝜇𝛿

𝑛 ,𝛾𝜈+ 𝑎𝛾𝜈
𝑛 ,𝜇𝛿  − 𝑎𝛾𝛿

𝑛 ,𝜇𝜈 − 𝑎𝜇𝜈
𝑛 ,𝛾𝛿 } = 0                                                (33) 

 

where we have set 𝛼𝜇,1 = 0 and have only considered the 𝑛 > 0 terms.   Eqs. (31-33) reduce to  

the conditions 

 

         𝜂𝜇𝜈𝑎𝜇𝜈
𝑛 = 0                                                                                                                    (34) 

 

        𝜂𝜈𝛾𝑎𝜇𝜈
𝑛 ,𝛾 = 0                                                                                                                   (35) 

 

        𝜂𝛾𝛿𝑎𝜇𝜈
𝑛 ,𝛾𝛿 =  

𝑛2

𝑎2 𝑎𝜇𝜈
𝑛                                                                                                          (36)  

 

   Eqs. (34-36) are the same equations as found in Bailin and  Love5. Following Mandel and 

Wolf11, expand 𝑎𝜇𝜈
𝑛  in a Fourier series in a box of size 𝐿3 so that 

 



       𝑎𝜇𝜈
𝑛 =  

1

√𝐿3
∑ 𝑎𝜇𝜈𝐤

𝑛 𝑒𝑖𝐤⋅𝐱
𝐤                                                                                                   (37) 

 

where k𝒊 =  
𝟐𝝅

𝐿
n𝒊 with n𝒊 an integer, and a bold letter indicates a vector.  Using eq. (37) in eqs.  

(34-36) they then reduce to 

 

         𝜂𝜇𝜈𝑎𝜇𝜈𝐤
𝑛 = 0                                                                                                                  (38) 

 

         𝑎𝜇0𝐤
𝑛 ,0 =  𝑖𝑘𝑖𝑎𝜇𝑖𝐤

𝑛                                                                                                            (39) 

 

          𝑘2𝑎𝜇𝜈𝐤
𝑛 + 𝑎𝜇𝜈𝐤

𝑛 ,00 =  −
𝑛2

𝑎2 𝑎𝜇𝜈𝐤
𝑛                                                                                      (40) 

 

For a solution write 

 

        𝑎𝜇𝜈𝐤
𝑛 = 𝑎𝜇𝜈𝐤

𝑛+ 𝑒𝑖𝜔𝑡 +  𝑎𝜇𝜈𝐤
𝑛− 𝑒−𝑖𝜔𝑡                                                                                     (41) 

 

When eq. (41) is applied to eqs. (38-40) , we obtain the condition that 𝜔2 =
𝑛2

𝑎2 + 𝑘2 and 

 

        𝑎00𝐤
𝑛± =  𝛿𝑖𝑗𝑎𝑖𝑗𝐤

𝑛±                                                                                  (42) 

 

       𝑎0𝑖𝐤
𝑛± =  ±

𝑘𝑗

𝜔
𝑎𝑖𝑗𝐤

𝑛±                                                                                                             (43) 

 

with the 𝑎𝑖𝑗𝐤
𝑛+ and 𝑎𝑖𝑗𝐤

𝑛− arbitrary up to the constraint equation 

 



       (𝜔2𝛿𝑖𝑗 −  𝑘𝑖𝑘𝑗)𝑎𝑖𝑗𝐤
𝑛± = 0                                                                                                 (44) 

 

IV. Invariants 

  We would like to find a distribution of  𝑎𝑖𝑗𝐤
𝑛+ and 𝑎𝑖𝑗𝐤

𝑛− which is invariant under Lorentz  

transformations, so we want to see how 𝑎𝑖𝑗𝐤
𝑛+ and 𝑎𝑖𝑗𝐤

𝑛− transform under a Lorentz transformation. 

To accomplish this, we can write  

                                                        

  𝑎𝜇𝜈
𝑛 =

1

√8𝜋3 ∫ 𝑑3𝑘 𝑎𝜇𝜈
𝑛 (𝐤)𝑒𝑖𝐤⋅𝐱                                                                                          (45) 

 

where  

 

  𝑎𝜇𝜈
𝑛 (𝐤) = (

𝐿

2𝜋
)

3

2𝑎𝜇𝜈𝐤
𝑛 =  𝑎𝜇𝜈

𝑛+(𝐤)𝑒𝑖𝜔𝑡 + 𝑎𝜇𝜈
𝑛−(𝐤)𝑒−𝑖𝜔𝑡                                                     (46) 

 

From Landau and Lifshitz12 we have that the integral over 𝑘 space transforms as  

 

  ∫ 𝑑3𝑘 = ∫
𝜔

𝜔′ 𝑑3𝑘 ′                                                                                                              (47) 

 

under a Lorentz transformation.   𝑘′ is the transformed 𝑘 vector, and 𝜔′ is the frequency  

associated with it.  Using eqs. (45-47) and the fact that 𝐤 ⋅ 𝐱 − 𝜔𝑡 is invariant under Lorentz 

transformations, we find that under a Lorentz transformation 𝑎𝜇𝜈
𝑛±(𝐤) transforms as 

 

   𝑎𝜇′𝜈′
𝑛± ′(𝐤′) =  

𝜔

𝜔′
Λ

𝜇′
𝜇

Λ𝜈′
𝜈 𝑎𝜇𝜈

𝑛±(𝐤)                                                                                          (48) 

 



where the Λ
𝜇′
𝜇

 are Lorentz transformation matrices.   Using eqs. (47) and (48), we have the  

invariants 𝜔2𝑎𝜇𝜈𝑛±∗(𝐤)𝑎𝜇𝜈
𝑛±(𝐤) and ∫

1

𝜔
𝑑3𝑘 .   We have set 𝑎𝛾𝛿𝑛±(𝐤) = 𝜂𝛾𝜇𝜂𝛿𝜈𝑎𝜇𝜈

𝑛±(𝐤) and a *  

represents the complex conjugate.  Thus 

 

  ∫
1

𝜔
𝑑3𝑘 𝜔2𝑎𝜇𝜈𝑛±∗(𝐤)𝑎𝜇𝜈

𝑛±(𝐤) =  ∫ 𝑑3𝑘 𝜔𝑎𝜇𝜈𝑛±∗(𝐤)𝑎𝜇𝜈
𝑛±(𝐤)                                            (49) 

 

transforms as a scalar under a Lorentz transformation. 

 

V. Probability Distribution and Expectation Values 

  We will take the distribution of the 𝑎𝜇𝜈
𝑛±(𝐤) to be invariant under a Lorentz transformation and  

assume the following Gaussian form 

 

   𝑃 = 𝐶𝑒𝑥𝑝(− ∑
1

𝜎𝑛
2 ∫ 𝑑3𝑘 𝜔(𝑎𝜇𝜈𝑛+∗(𝐤)𝑎𝜇𝜈

𝑛+(𝐤) +  𝑎𝜇𝜈𝑛−∗(𝐤)𝑎𝜇𝜈
𝑛−(𝐤))𝑛>0 ) 

 

      = 𝐶𝑒𝑥𝑝(− ∑
1

𝜎𝑛
2 ∑ 𝜔(𝑎𝐤

𝜇𝜈𝑛+∗
𝑎𝜇𝜈𝐤

𝑛+ +  𝑎𝐤
𝜇𝜈𝑛−∗

𝑎𝜇𝜈𝐤
𝑛− )𝐤𝑛>0 ) 

  

      = 𝐶𝑒𝑥𝑝(− ∑
1

𝜎𝑛
2 ∑ 𝜔𝑎𝐤

𝜇𝜈𝑛±∗
𝑎𝜇𝜈𝐤

𝑛±
𝐤𝑛>0 )                                                                               (50) 

 

where C is a normalization constant and 𝜎𝑛 is an input to determine the width of the distribution. 

     Using eqs. (42) and (43) we can express eq. (50) in terms of the degrees of freedom 𝑎𝑖𝑗𝐤
𝑛± as 

 

    𝑃 = 𝐶𝑒𝑥𝑝(− ∑
1

𝜎𝑛
2 ∑ 𝜔(𝛿𝑖𝑗𝑎𝑖𝑗𝐤

𝑛±∗
𝐤𝑛>0 𝛿𝑘𝑙𝑎𝑘𝑙𝐤

𝑛± −  2𝛿𝑖𝑗 𝑘𝑙𝑘𝑘

𝜔2
𝑎𝑖𝑙𝐤

𝑛±∗𝑎𝑗𝑘𝐤
𝑛± + 𝑎𝐤

𝑖𝑗𝑛±∗
𝑎𝑖𝑗𝐤

𝑛±))        (51) 

 



subject to the constraint equation (44). 

   To find the constant C, normalize the probability P so that 

 

        ∏ ∏ ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛+𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛+𝐼 ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛−𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛−𝐼
𝐤𝑛>0 𝑃 = 1                                                             (52) 

                                                                           

 subject to the constraint eq. (44).   We have set 

 

    ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛±𝑅 =  ∫ 𝑑𝑎11𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎12𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎13𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎22𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎23𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎33𝐤

𝑛±𝑅∞

−∞
         (53) 

 

with the same idea for ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛±𝐼 where 𝑎𝑖𝑗𝐤

𝑛± = 𝑎𝑖𝑗𝐤
𝑛±𝑅  + 𝑖𝑎𝑖𝑗𝐤

𝑛±𝐼.                                                                                                        

   To do this calculation, we will choose special coordinate system for each value of k 

such that in this coordinate system 𝑥1 points in the k direction.  In this case the constraint  

eq. (44) becomes 

 

  𝑎11𝐤
𝑛± =  −(1 +  

𝑎2

𝑛2 𝑘2)(𝑎22𝐤
𝑛± + 𝑎33𝐤

𝑛± )                                                                                  (54) 

 

so that integrating over 𝑎11𝐤
𝑛±  we find we just need to replace 𝑎11𝐤

𝑛±  in the probability distribution, 

eq. (51), by  −(1 +  
𝑎2

𝑛2 𝑘2)(𝑎22𝐤
𝑛± + 𝑎33𝐤

𝑛± ) so that now eq. (53) is replaced by 

 

  ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛±𝑅 =  ∫ 𝑑𝑎12𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎13𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎22𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎23𝐤

𝑛±𝑅∞

−∞
∫ 𝑑𝑎33𝐤

𝑛±𝑅∞

−∞
                              (55) 

 

The normalization condition eq. (52) then reduces to the condition  

 



      𝐶 = ∏ ∏ [√
24𝜔

𝜋5

𝑛2

𝑎2𝜎𝑛
5]4

𝐤𝑛>0                                                                                               (56) 

 

   Next look at the expectation values given by 

 

       < 𝑎𝑖𝑗𝐤′
𝑛′± > = ∏ ∏ ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛+𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛+𝐼 ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛−𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛−𝐼

𝐤𝑛>0 (𝑎𝑖𝑗𝐤′
𝑛′±𝑃)                               (57)    

                             

 <𝑎𝑖𝑗𝐤′
𝑛′±𝑎𝑘𝑙𝐤′′

𝑛′′±
> = ∏ ∏ ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛+𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛+𝐼 ∫ 𝑑𝑎𝑖𝑗𝐤

𝑛−𝑅 ∫ 𝑑𝑎𝑖𝑗𝐤
𝑛−𝐼

𝐤𝑛>0 (𝑎𝑖𝑗𝐤′
𝑛′±𝑎𝑘𝑙𝐤′′

𝑛′′± 𝑃)                 (58)       

           

where in eq. (58) the 𝑎𝑖𝑗𝐤′
𝑛′±   and 𝑎𝑘𝑙𝐤′′

𝑛′′±
 terms represent the real or imaginary parts, 

along with either the + or – components, so that eq. (58) actually represents ten different 

equations.   Using the same methods as used for finding C, we find that 

 

    < 𝑎𝑖𝑗𝐤
𝑛± >= 0                                                                                                                 (59) 

 

   < 𝑎𝑖𝑗𝐤
𝑛±𝑅𝑎𝑘𝑙𝐤′

𝑛′±𝐼 > = < 𝑎𝑖𝑗𝐤
𝑛±𝑅𝑎𝑘𝑙𝐤′

𝑛′∓𝐼 > = < 𝑎𝑖𝑗𝐤
𝑛+𝑅𝑎𝑘𝑙𝐤′

𝑛′−𝑅 >=< 𝑎𝑖𝑗𝐤
𝑛+𝐼𝑎𝑘𝑙𝐤′

𝑛′−𝐼 > = 0              (60) 

 

along with 

 

    < 𝑎𝑖𝑗𝐤
𝑛±𝑅𝑎𝑘𝑙𝐤′

𝑛′±𝑅 > = < 𝑎𝑖𝑗𝐤
𝑛±𝐼𝑎𝑘𝑙𝐤′

𝑛′±𝐼 > = 𝛿𝑛𝑛′
𝛿𝐤𝐤′ < 𝑎𝑖𝑗𝐤

𝑛 𝑎𝑘𝑙𝐤
𝑛 >                                     (61) 

     

where in the frame of reference where k is aligned with 𝑥1 we have 

 

  < 𝑎11𝐤
𝑛 𝑎11𝐤

𝑛 > =  
1

3𝑛4 𝑎4𝜎𝑛
2𝜔3                                                                                        (62) 



 

  < 𝑎11𝐤
𝑛 𝑎22𝐤

𝑛 > = < 𝑎11𝐤
𝑛 𝑎33𝐤

𝑛 > = −
1

6𝑛2
𝑎2𝜎𝑛

2𝜔                                                           (63) 

 

  < 𝑎12𝐤
𝑛 𝑎12𝐤

𝑛 > = < 𝑎13𝐤
𝑛 𝑎13𝐤

𝑛 > =
1

4𝑛2
𝑎2𝜎𝑛

2𝜔                                                               (64) 

 

  < 𝑎23𝐤
𝑛 𝑎23𝐤

𝑛 >  =
1

4𝜔
𝜎𝑛

2                                                                                                  (65) 

 

  < 𝑎22𝐤
𝑛 𝑎22𝐤

𝑛 > = < 𝑎33𝐤
𝑛 𝑎33𝐤

𝑛 > =
1

3𝜔
𝜎𝑛

2                                                                       (66) 

 

  < 𝑎22𝐤
𝑛 𝑎33𝐤

𝑛 >  = −
1

6𝜔
𝜎𝑛

2                                                                                             (67) 

 

with the other < 𝑎𝑖𝑗𝐤
𝑛 𝑎𝑘𝑙𝐤

𝑛 > equal to zero. 

  In a general frame of reference these results reduce to 

 

    < 𝑎𝑖𝑗𝐤
𝑛 𝑎𝑘𝑙𝐤

𝑛 > =
𝜎𝑛

2

4𝜔
{𝑑𝑖𝑘𝑑𝑗𝑙 +  𝑑𝑖𝑙𝑑𝑗𝑘 −

2

3
𝑑𝑖𝑗𝑑𝑘𝑙}                                                      (68) 

 

where 

 

   𝑑𝑖𝑗 =  𝛿𝑖𝑗 +
𝑎2

𝑛2
𝑘𝑖𝑘𝑗                                                                                                    (69) 

 

Now 𝜔2 =
𝑛2

𝑎2
+ 𝑘2, so for very large k values, that is for 𝑘 ≫

𝑛

𝑎
, we have 𝜔 ~𝑘 .  Then from 

eqs. (68) and (69) it is apparent that the expectation values of 𝑎𝑖𝑗𝐤
𝑛  blow up as 𝜎𝑛

2 𝑎4

𝑛4 𝑘3 and  



that nonlinear terms would have to be taken into account to see what would happen at very  

high frequencies.                                                                 

   A way out of this would be to only have transverse fluctuations so that 𝑘𝑗𝑎𝑖𝑗𝐤
𝑛± = 0 

with the constraint equation (44) requiring that 𝛿𝑖𝑗𝑎𝑖𝑗𝐤
𝑛± = 0.    From eqs. (42) and (43) 

      we would then need 𝑎00𝐤
𝑛± =  𝑎0𝑖𝐤

𝑛± = 0 which would not be the case when we transform 

     to a new frame, so this idea is not frame independent.   

 

VI. Conclusions 

   If the fluctuations were finite and died off at very high frequency  they could have been used in 

the rest of the Kaluza-Klein equations as an extra fluctuating force in Maxwell’s equations, and  

perhaps Einstein’s field equations.  In that way they might be interpreted as a possible source for  

a hidden variable theory similar to the ideas of Nelson’s stochastic mechanics13.  Since the  

fluctuations blow up at high frequency nonlinear terms would have be taken into account, and  

that is beyond the scope of this investigation.  Bergia, Cannata, and Pasini14 have also looked at  

the idea of metric fluctuations  being the source of quantum mechanics, but consider conformal  

metric fluctuations.    

  Since the five dimensional fluctuations blow up at high frequency it is interesting to compare 

them to the vacuum fluctuations of the electromagnetic field.  The five dimensional vacuum 

fluctuations blow up as 𝜔3 while those of the vacuum electromagnetic field go as 𝜔, for example 

see Mandel and Wolf11. 
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