Proofs of Four Conjectures in Number
Theory : Beal’s Conjecture, Riemann
Hypothesis, The abc and ¢ < R1:63

Conjectures
- version 3 - December 2022 -

Abdelmajid Ben Hadj Salem

Résidence Bousten 8, Mosquée Raoudha,

1181 Soukra Raoudha, Tunisia
Email: abenhadjsalem@gmail.com

Abstract

This monograph presents the proofs of 4 important conjectures in the field
of number theory:

- The Beal’s conjecture.

- The Riemann Hypothesis.

- The ¢ < R'®3 conjecture.

- The abc conjecture is true.

We give in detail all the proofs.

Résumé

Cette monographie présente les preuves de 4 conjectures importantes dans
le domaine de la théorie des nombres a savoir:

- La conjecture de Beal.

- U'Hypothese de Riemann.

- La conjecture ¢ < R,

- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.
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Chapter 1

A Complete Proof of Beal’s Conjecture

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C,m,n, and | be positive integers
with m,n,1 > 2. If A + B" = C! then A, B, and C have a common factor. We begin to construct the
polynomial P(x) = (x — A™)(x — B")(x + C') = x*> — px + q with p, g integers depending of A™, B"
and C'. We resolve x> — px + q = 0 and we obtain the three roots x1, x2, x3 as functions of p,q and a
parameter 6. Since A™, B", —C' are the only roots of x> — px + g = 0, we discuss the conditions that
X1, X2, X3 are integers and have or not a common factor. Three numerical examples are given.

Résumé

En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A, B,C, m, n, et | des entiers positifs
avec m,n,l > 2. Si A™ + B" = Cl alors A, B, et C ont un facteur commun.

Je commence par construire le polyndme P(x) = (x — A™)(x — B")(x + C) = x® — px + g avec
p,q des entiers qui dépendent de A™, B" et C. Nous résolvons x> — px + g = 0 et nous obtenons
les trois racines x1, X2, x3 comme fonctions de p, g et d'un parametre . Comme A™, B", —C! sont les

seules racines de x> — px + g = 0, nous discutons les conditions pourque x1, x5, x3 soient des
entiers. Trois exemples numériques sont présentés.
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1.1 Introduction

In 1997, Andrew Beal [2] announced the following conjecture :

Conjecture 1.1.1. Let A, B,C,m,n, and | be positive integers with m,n,l > 2. If:
A" + B" = C! (1.1.1)

then A, B, and C have a common factor.

\. J

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea is to construct a

polynomial P(x) of order three having as roots A™, B" and —C' with the condition (1.1.1). We obtain

P(x) = x*> — px + q where p,q are depending of A", B" and C'. Then we express A", B", —C' the

roots of P(x) = 0 in function of p and a parameter 6 that depends of the A, B, C. The calculations
4p

. 0 ) ) ) 0 ) a
give that A2 — ?coszf. As AZ" is an integer, it follows that cos®>~ must be written as b where a,b

are two positive coprime integers. Beside the trivial cases, there are two main hypothesis to study:
- the first hypothesis is: 3 |a and b |4p,
- the second hypothesisis: 3| p and b |4p.

We discuss the conditions of divisibility of p,a, b so that the expression of A2 is an integer. De-
pending of each individual case, we obtain that A, B, C have or do have not a common factor. Our
proof of the conjecture contains many cases to study. there are many cases where we use elementary
number theory and some cases need more research to obtain finally the solution. I think that my
new idea detailed above overcomes the apparent limitations of the methods I am using.

The paper is organized as follows. In section 1, It is an introduction of the paper. The trivial
case, where A™ = B", is studied in section 2. The preliminaries needed for the proof are given in
section 3 where we consider the polynomial P(x) = (x — A™)(x — B")(x + C') = x®> — px +q. The
section 4 is the preamble of the proof of the main theorem. Section 5 treats the cases of the first
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hypothesis 3 | 2 and b | 4p. We study the cases of the second hypothesis 3 | p and b | 4p in section
6. Finally, we present three numerical examples and the conclusion in section 7.

In 1997, Andrew Beal [2] announced the following conjecture :

7

Conjecture 1.1.2. Let A, B,C,m,n, and | be positive integers with m,n,l > 2. If:

A" 4+ B" = (1.1.2)

then A, B, and C have a common factor.

1.2 Trivial Case
We consider the trivial case when A™ = B". The equation (1.1.2) becomes:
2A™ = C! (1.2.1)

then2 | C' = 2 | C = C = 21.C; with g > 1, 2 C; and 2A™ = 29IC} = A™ = 29-1Cl.
Asl >2,g>1,then2 | A" = 2| A = A = 2'A; withr > 1 and 2 { A;. The equation
(1.2.1),becomes:

2 x 2 Am =24t (1.2.2)

As 21 Ap and 2 1 C1, we obtain the first condition :

there exists two positive integersr, gwithr.g > 1 so that|gl = mr +1 (1.2.3)

Then from (1.2.2):
m—Cl (1.2.4)

121 Casel A1=1—=(C =1

Using the condition (1.2.3) above, we obtain 2.(2")" = (21)! and the Beal conjecture is verified.

122 Case2A1>1=(C >1

From the fundamental theorem of the arithmetic, we can write:

A =al'..a], m<ap<---<a= Al =a]""...a" (1.2.5)
Cl = C‘fl ...C/ISI, (<< < cy — C-ll = Cllﬁ] ...Cl]ﬁ] (126)

where a; (respectively c;) are distinct positive prime numbers and «; (respectively ;) are integers
> 0.

From (1.2.4) and using the uniqueness of the factorization of A} and C}, we obtain necessary:

I=]
aj=c, i=12,...,1 (1.2.7)
mo; :l,Bz

As one a; | A" = a; | B" = a; | B and in this case, the Beal conjecture is verified.

We suppose in the following that A™ > B".
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Chapter 1
1.3 Preliminaries
Let m,n,l € N* >2and A,B,C € N* such:
A" 4+ B" = (! (1.3.1)
We call:
P(x) = (x — A™)(x — B")(x + C) = x® — x2(A™ + B" — C!)
+x[A™B" — C'(A™ + B")] + C' A" B" (1.3.2)
Using the equation (1.3.1), P(x) can be written as:
P(x) = x3 + x[A"B" — (A™ + B")?] + A™B"(A™ + B") (1.3.3)
We introduce the notations:
p= (Am+Bn)2 — AMB" — AZm 4+ AMB" +B2n
As A™ # B", we have p > (A™ — B")2 > 0. Equation (1.3.3) becomes:
P(x)=x>—px+gq
Using the equation (1.3.2), P(x) = 0 has three different real roots : A™, B" and —Cl.
Now, let us resolve the equation:
P(x)=x>—px+q=0 (1.3.4)
To resolve (1.3.4) let:
X=u+v
Then P(x) = 0 gives:
P(x) =P(u+0v)=(u+0)° —pu+o)+q=0= >+ + (u+0)Buv—p)+qg=0 (13.5)
To determine u and v, we obtain the conditions:
w40 = —q
uo=p/3>0
(1.3.6)

Then 2 and ©® are solutions of the second order equation:
X2+ qX+p¥/27=0

2 _ 443 A
A= 4ty =TT A = W %

N

Its discriminant A is written as :

Let:
A =27g* — 4p® = 27(A™B"(A™ + B"))? — 4[(A™ + B")> — A"B"]?
= 27A*"B>"(A™ + B")? — 4[(A™ + B")? — A"B")? (1.3.7)
Denoting :
x=A"B">0
’B — (Am + BH)Z

5
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we can write (1.3.7) as:
A =270’ —4(B —a)® (1.3.8)

As a # 0, we can also rewrite (1.3.8) as :

We call t the parameter :

A becomes :
A=a327t —4(t—1)%)

Let us calling :
y=y(t) =27t —4(t—1)°

Since a > 0, the sign of A is also the sign of y(t). Let us study the sign of y. We obtain y/(t):
y(t) =y =3(1+2t)(5-2t)

Yy =0=t; = —1/2 and t; = 5/2, then the table of variations of y is given below:

t - -172 52 4 +ec

1+2t - ’_0‘ + ‘ +

52t + T + To
¥t 0 -

- ’_‘ + 0
\%/ S—

Figure 1.1: The table of variations

The table of the variations of the function y shows that y < 0 for t > 4. In our case, we are interested

for t > 0. For t = 4 we obtain y(4) = 0 and for t €]0,4[= y > 0. As we have t = g > 4 because as
A™ #£ B™:
(A" —B")?>0= B = (A" +B")* > 40 = 4A"B"

Theny < 0 = A < 0 = A < 0. Then, the equation (1.3.6) does not have real solutions u> and
v3. Let us find the solutions u and v with x = u + v is a positive or a negative real and u.v = p/3.
1.3.1 Expressions of the roots

Proof. The solutions of (1.3.6) are:

—q+iv—A
X1 = — 5
X, =% = ~1- VA
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We may resolve:

M3 9 +ivV—A
B 2
3 —q—iv-A
= —
2
Writing X; in the form: _
X; = pezﬁ
with:
o VI =B _PVP
2 33
and sinf = v-a >0
2p
- _1
cosf = > <0
T
Then 0 [271] €] + 5 +7, let:
T T 0 7 1 0 3
and:
1 0 3
1 < cos 3 < 1 (1.3.10)
hence the expression of Xj: ‘
Xy = pe~ (1.3.11)
Let:
u=re? (1.3.12)
-1+ 27
and j = —;l\/g =7 (1.3.13)
4 14+ -
L +2“@ = (1.3.14)

j is a complex cubic root of the unity <= j> = 1. Then, the solutions u and v are:

u = reth = \feS (1.3.15)
Uy = re'¥? = \f]e 5 = \fe i (1.3.16)
uz = re's = ypj’e 5 = e’ Fotis = \/ﬁe N (1.3.17)
and similarly:
v =re ¥ = {’/ﬁe’i% (1.3.18)
vy =re” 2 = prjze”g = \S/Eei%e’i% = Q/ﬁei# (1.3.19)
vy = re ¥ = prje’ig = pre"y (1.3.20)

We may now choose 1y and vj, so that uy + v, will be real. In this case, we have necessary :

01 =1 (1.3.21)
vy =15 (1.3.22)
vy =13 (1.3.23)
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We obtain as real solutions of the equation (1.3.5):

X1 =u+v = 2\3/50052 >0 (1.3.24)
Xy =ty + vy = 2ypeosHEE = —3/p (cos% + \@sing) <0 (1.3.25)
X3 = U3z + U3 = Zyﬁcos“% = Jp (—cos% + ﬁsin%) >0 (1.3.26)

We compare the expressions of x; and x3, we obtain:
?
2y/peos§”>"yp <—cos§ + \@sing)
?
3cosg > \@sing (1.3.27)

0 0 0
As 3 €]+ %, +g [, then sin§ and cos§ are > 0. Taking the square of the two members of the last
equation, we get:

1 0
1< coszg (1.3.28)
0
which is true since 3 el+ %, +§[ then x; > x3. As A", B" and —C! are the only real solutions of

(1.3.4), we consider, as A™ is supposed great than B", the expressions:

A" =x1 =u1 0 = 2\3/@:05%
0+4 0 0
B" = x3 = u3 + v3 = 23/pcos +3 o Ve <—C053 + \/§5i”3> (1.3.29)
0+2 0 6
Cl=x=u+uv,= 23/ pcos +3 T_ —J/p <c053 + \@Sin?))
]
1.4 Preamble of the Proof of the Main Theorem
Theorem 1.4.1. Let A, B,C,m,n, and | be positive integers with m,n,l > 2. If:
A" 4+ B" = (1.4.1)
then A, B, and C have a common factor.
9 . . 2 3 29 . .
Proof. A™ = 2\3/§cos§ is an integer = A*™ = 4¢/p%cos 3 s also an integer. But :
o2 =P 142
=1 (142)
Then: 0 0 A 0
AP =49 p20052§ = 4§.c052§ = p.g.coszg (1.4.3)
0
As A?™ is an integer and p is an integer, then c052§ must be written under the form:
6 1 0 a
20 _ 1 20 _ a4
cos 350 or cos 35 (1.4.4)
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with b € IN*; for the last condition 2 € IN* and 4, b coprime.

Notations: In the following of the paper, the scalars a,b,...,z, a,8,..., A,B,C,... and A, P, ...
represent positive integers except the parameters 6, p, or others cited in the text, are reals.

0 1
1.4.1 Case cosz5 S

b
We obtain: 4 o 4
A = = 022 = 2P 145
P39 3= 3p (145)
1 0 3 1 1 3
- e e z il Z =1,2,3.
As4<cos3<4:>4<b<4¢b<4<3b:>b ,2,3
b=1

b =1 = 4 < 3 which is impossible.

b=2
b=2= A = p%% = 2717 = 3| p = p = 3p’ with p’ # 1 because 3 < p, we obtain:
A= (AM)? = 237]9 =2p =2|p = p =22
with 2{p;, a+1=2p
A™ = 2Pp, (1.4.6)

B"C! = f/; (3 - 4c052§> =p =23 (14.7)

From the equation (1.4.6), it follows that 2 | A" = A = 2'A;,i > 1 and 2 { A;. Then, we have
B = i.m = im. The equation (1.4.7) implies that 2 | (B"C') =2 | B" or 2 | C.

Case2 | B": -If2| B" = 2 | B=> B = 2/B; with 21 B;. The expression of B"C! becomes:
p
B?Cl 22im—1—jnp%

-1f2im —1—jn > 1,2 | C' = 2| C according to C' = 2" A" 4 2/"B" and the conjecture (3.1.1) is
verified. ‘ ‘
-If2im—1—-jn<0=2¢ C!, then the contradiction with C! = 2Mm AN+ 2" BY.

Case 2 | C': If2 | C': with the same method used above, we obtain the identical results.

b=3

2 41 4P ! Ari / 2 / /
b:3:>Am:p.§.§:?:>9\p:>p:9p with p’ # 1, as 9 < p then A" = 4p'. If p
is prime, it is impossible. We suppose that p’ is not a prime, as m > 3, it follows that 2 | p’, then
2 | A™. But B"C' = 5p’ and 2 | (B"C'). Using the same method for the case b = 2, we obtain the

identical results.
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0 a
142 C a>1, cos’= = —
ase 37}
We have: 0 A 0 4
2 a 2m 2 -p-a
Z==. = p.~.c08*~ = 14.
cos 3= A p3cos 3 3D (1.4.8)
where a, b verify one of the two conditions:
{3|a and b|4p}|or|({3|p and b|4p} (1.4.9)

and using the equation (1.3.10), we obtain a third condition:

b<4a <3b (1.4.10)
For these conditions, A>" = 4/ pzcosze = 4P cos? g is an integer.

Let us study the conditions given by the equation (1.4.9) in the following two sections.

1.5 Hypothesis: {3 |a and b|4p}

We obtain :
3|la= 3 e N* / a=23d (1.5.1)
1.5.1 Caseb=2and3|a
A?™ is written as: 4 0 4 4 )
2m p 2 pa pa -p-a
_ Pt _Fp A _spa 152
A==, = 32 3 (15.2)
Using the equation (1.5.1), A%" becomes
/
A2 — 2"’;’” =2.p.4 (1.5.3)
0 a 34
but cos 355 2 > 1 which is impossible, then b # 2.
152 Caseb=4and3|a
A?" is written :
4.p 4pa 4pa pa p3d ,
AP = Zhpps? - = ZF 2 = T8 - T — = . 1.5.4
36053 3 34 3 3 I (154)
2
0 a 34 V3 3
27 = - = — —_ = — /
and cos b 1 < ( > ) 1 =—=a <1 (1.5.5)
which is impossible. Then the case b = 4 is impossible.
153 Caseb=pand3|a
We have : 0 20
2 a a
T_4_ 2% 1.5.6
oS =4 =, (1.5.6)
and:
/
AP = L%p coszg = 43;)3;1 =4d = (A")? (1.5.7)
Ja” ) a = a"? (1.5.8)

and B'C'=p—A* =b—4d =b—4a”

10
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The calculation of A™B" gives :

2
A"B" = p.\fsinf — 24
or A"B"+24 = p.\ggsinzﬁ (1.5.10)
o V3. 20
The left member of (1.5.10) is an integer and p also, then 275111? is written under the form :
V3 .20 kK
275171? % (1.5.11)
where kq, ky are two coprime integers and k | p = p = b = ka.k3, ks € IN*.
We suppose that k3 # 1
We obtain :
A"(A™ 4+ 2B") = ky1.k3 (1.5.12)

Let u be a prime integer with y | k3, then y | band p | A"(A™ 4+ 2B") = u | A" or u | (A™ +2B").

“*A-1-1-Ifu | A" = u | Aand u | A, but A" =4d' = u | 4d = (p=2,but2|a’)or
(| a’). Then u | a it follows the contradiction with a,b coprime.

* A-1-2-1f p | (A" +2B") = ut A™ and u 1 2B" then y # 2 and u 1 B". We write u | (A™ 4 2B")
as:
A™ 4 2B" = .t (1.5.13)

It follows :
Am + Bn — ,ut/ . Bn — AZm + BZn —|—2AmBn — VZt/Z . 2tl‘uBn —|—an

Using the expression of p:
p = t?u? —2¢'B"u + B"(B" — A™) (1.5.14)

Asp=0b=kyksand u | ks then u | b = Iy’ and b = pup’, so we can write:

Wy = pu(ut” —2¢'B") + B"(B" — A™) (1.5.15)
From the last equation, we obtain y | B"(B" — A™) = u | B" or u | (B" — A™).
** A-1-2-1- If p | B" which is in contradiction with u t B".

** A-1-2-2-If u | (B" — A™) and using that u | (A™ + 2B"), we arrive to :

u|B"
u|3B"< or (1.5.16)
p=3

** A-1-2-2-1-If p | B" = | B, it is the contradiction with u { B cited above.

** A-1-2-2-2- If = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

11
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We assume now k3 = 1

Then :
AP L DAMBY = |y (1.5.17)
b=k (1.5.18)
2v3 .20 Ky
Tszng =7 (1.5.19)

Taking the square of the last equation, we obtain:

4020 K
37 3 12

3 3 3712

Finally:
42d(p—a)=1 (1.5.20)

but a’ = a”?, then p — a is a square. Let:
M=p-—a=b-a=b—-3a""= A*+3a">=b (1.5.21)

The equation (1.5.20) becomes:
207\ =2 =k =4a"A (1.5.22)

taking the positive root, but ky = A™(A™ +2B") = 2a”(A™ + 2B"), then :
A™ £ 2B" =2\ = A = a” 4 B" (1.5.23)

#* A2-1- As A" = 20" = 2 | A" = 2 | A = A = 2iA,, w1thi21and2J(A1,then
A" = 240" = 2””A§” = a’ = 2””_1A’1”, butim > 3 = 4 | a” s A = a” + B", taking its
square, we obtain A2 = 4”2 +24”.B" + B = A?2 = B**(mod 4) = A? = B*" = 0(mod 4) or
A% = B = 1(mod 4).

** A-2-1-1- We suppose that A*> = B> = 0(mod4) == 4 | A> = 2 | (b —a). But 2 | a because
a =231 =3a"% =3x 22(””_1)A%m and im > 3. Then 2 | b, it follows the contradiction with a,b
coprime.

** A-2-1-2- We suppose now that A2 = B?" = 1(mod 4). As A™ = 2"m~1A" and im — 1 > 2, then
A™ = 0(mod 4). As B¥" = 1(mod 4), then B" verifies B = 1(mod 4) or B" = 3(mod 4) which
gives for the two cases B"C' = 1(mod 4).

We have also p = b = A?" + A"B" + B?" = 44’ + B".C! = 40" + B"C! = B"C' = \? —a"? =
B".C!, then A, a” € IN* are solutions of the Diophantine equation :

-y =N (1.5.24)

with N = B"C! > 0. Let Q(N) be the number of the solutions of (1.5.24) and T(N) is the number of
suitable factorization of N, then we announce the following result concerning the solutions of the
equation (1.5.24) (see theorem 27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

12
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[x] is the integral part of x for which [x] < x < [x] + 1.

In our case, we have N = B".C! = 1(mod 4), then Q(N) = [t(N)/2]. As A,a” is a couple of
solutions of the Diophantine equation (1.5.24), then 3 d, d’ positive integers withd > d’ and N = d.d’
so that :

d+d =2 (1.5.25)
d—d =2a" (1.5.26)

#* A-2-1-2-1- As C! > B", we take d = C! and d’ = B". It follows:

C'+B" =2A = A™ 4 2B" (1.5.27)
C'—B"=20" = A" (1.5.28)

Then the case d = C and d’ = B" gives no contradictions.

** A-2-1-2-2- Now, we consider the case d = Cl{_lq where ¢ is a prime integer with ¢; t C; and
C = c|Cy, r > 1. It follows that d’ = c1.B". We rewrite the equations (1.5.25-1.5.26):

r1Ch 4 0. B" =2 (1.5.29)
clr1Cl — ¢1.B" = 2a” (1.5.30)

As | > 3, from the last two equations above, it follows that ¢; | (2A) and ¢; | (2a”). Then ¢; = 2, or
ci|Aand ey | a”.

** A-2-1-2-2-1- We suppose ¢; = 2. As2 | A" and 2 | C! because | > 3, it follows 2 | B", then
2| (p = b). Then the contradiction with a,b coprime.

** A-2-1-2-2-2- We suppose ¢; # 2 and c1 | a” and ¢1 | A. ¢1 | a” = ¢1 | aand ¢1 | (A" = 2a”).
B" = C! — A™ = ¢y | B". It follows that ¢; | (p = b). Then the contradiction with a, b coprime.

The others cases of the expressions of d and d’ with d,d" not coprime so that N = B"Cl = d.d'
give also contradictions.

#* A-2-1-2-3 Now, we consider the case d = b;.C! where by is a prime integer with b; { By and
B = b} By, r > 1. It follows that d' = bi”‘lB? We rewrite the equations (1.5.25-1.5.26):

biC + b IBE = 2A (1.5.31)
biC' — b/ 1B} = 2q” (1.5.32)

As n > 3, from the last two equations above, it follows that b; | 2A and by | (24”). Then by = 2, or
by | Aand by | a”.

** A-2-1-2-3-1- We suppose by =2 =2 | B". As2 | (A" =2a" =2 |a”" =2 | a,but2 | B" and
2| A" then 2 | (p = ). It follows the contradiction with 4, b coprime.

** A-2-1-2-3-2- We suppose by # 2, then by [ A and by | a” == by | A" and by | a” == by | a, but b B"
and by | A™ then by | (p = D). It follows the contradiction with 4, b coprime.

The others cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C'B" = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found one suitable fac-
torization of N that gives no contradictions, it is the case N = B".C!, but 1 < T(N), it follows the
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contradiction with Q(N) = [t(N)/2] < 1. We conclude that the case A-2-1-2 is to reject.
Hence, the case k3 = 1 is impossible.

Let us verity the condition (1.4.10) given by b < 4a < 3b. In our case, the condition becomes :
p < 3A¥ <3p with p= A* 4 B* + A"B" (1.5.33)

and 3A%" < 3p = A>" < p that is verified. If :

2

p < 3AY" = 2AP _ AMB" - B>"" >0

Studying the sign of the polynomial Q(Y) = 2Y? — B"Y — B> and taking Y = A™ > B", the condi-
tion 2A%™ — A™B" — B2" > () is verified, then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies to verify that
A™ > B" which is true.

154 Caseb|p= p=bp,p'>1,b#2,b#4and3|a

4pa 4bp' 3.4
on _ =P 4 _ p — A
AT = 3 3D 4pa (1.5.34)
We calculate B"C: o 0 0
ne~l 3/ 02 2V 27 ) _ 3/42 _ 2Y
B"C 1Y <3sm 3~ COs 3> \/; <3 4cos 3> (1.5.35)
3/ o _ P 20 _ 3.4 .
but \ﬁ X using cos 3 b we obtain:
/ /
B = /o2 (3—4c0s2?) = P (3-4>T) = p (1= 2%) = (b —aa) (1.5.36)
3 3 b b
Asp="b.p',and p’ > 1, so we have :
B"C! = p/(b— 4d’) (1.5.37)
and A =4.p'.qd (1.5.38)

** B-1- We suppose that p’ is prime, then A?" = 44'p’ = (A™)?2 = p' | 4. But B"C! =
p'(b—4a'") = p' | B"or p' | C".

* B-1-1-If p’ | B* = p' | B = B = p/B; with By € N*. Hence : p" 'B!C! = b —4d’. But
n>2= (n—1)>1and p’ | d, then p' | b = a and b are not coprime, then the contradiction.

* B-1-2-If p’ | C' = p’ | C. The same method used above, we obtain the same results.
** B-2- We consider that p’ is not a prime integer.

** B-2-1- p/, a are supposed coprime: A*" = 4a'p’ => A™ = 2a”.p; with ' = a”? and p’ = p3, then
a”, py are also coprime. As A™ = 2a".p; then2 | a” or 2 | p;.

** B-2-1-1- 2 | a”, then 2 { p1. But p’ = p?.

** B-2-1-1-1- If p; is prime, it is impossible with A™ = 2a”.p;.

14
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** B-2-1-1-2- We suppose that p; is not prime, we can write it as p; = w” = p’ = w?", then:
B"C! = w?™(b — 4a").

** B-2-1-1-2-1- If w is prime, it is different of 2, then w | (B"C') = w | B" or w | C.
** B-2-1-1-2-1-1- If w | B* = w | B=> B = w/B; with w { By, then B}.C! = w?"~"i(b—4d’).
** B-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' =b—4a’. AsC' = A" +B" = w | C' = w | C,

and w | (b —44"). But w # 2 and w is coprime with a’ then coprime with 4, then w 1 b. The conjec-
ture (3.1.1) is verified.

** B-2-1-1-2-1-1-2- If 2m — nj > 1, in this case with the same method, we obtain w | C! = w | C
and w | (b —44a’) and w { a and w 1 b. The conjecture (3.1.1) is verified.

* B-2-1-1-2-1-1-3- If 2m — nj < 0 = w™/~?"B}.C' = b—4d’. As w | C using C' = A™ + B" then
C=uwh(C = w”'f*2m+h'lB?.Ci =b—4d. Ifnj—-2m+hl<0= w| B?Cl, it follows the contra-
diction that w t By or w { C;. Then if n.j —2m + h.l > 0 and w | (b — 4a’) with w, a,b coprime and
the conjecture (3.1.1) is verified.

** B-2-1-1-2-1-2- We obtain the same results if w | C'.

** B-2-1-1-2-2- Now, p’ = w?" and w not prime, we write w = w{ Q with w; prime t Q and f > 1
an integer, and w; | A. Then B"C! = w%f'szm(b —44") = wy | (B"C!) = wy | B" or wy | C.

# B-2-1-1-2-2-1-If w; | B" = wy | B=> B = w!B; with wy { By, then B".C! = ™/ 102" (b — 4a'):
** B-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C! = Q*"(b—4d’). As C' = A" + B" = w |

C' = w; | C = wy | (b—4a"). But w; # 2 and w; is coprime with a’, then coprime with a, we
deduce wy 1 b. Then the conjecture (3.1.1) is verified.

# B-2-1-1-2-2-1-2- If 2f.m —n.j > 1, we have w; | C' = w; | C = w; | (b—44’) and w; { a and
w1 1 b. The conjecture (3.1.1) is verified.

** B-2-1-1-2-2-1-3- If 2f.m — n.j < 0 = WP B Cl = 2 (b — 4a’). As wy | C using C! = A" +
B", then C = w!.C; = w™i=2mfHhign Cl = 02"(b —4a'). If n.j — 2m.f + hl < 0 = w; | BIC!, it
follows the contradiction with wy { By and wy 1 Cy. Then if n.j — 2m.f + h.l > 0 and w; | (b —44’)
with wq,a,b coprime and the conjecture (3.1.1) is verified.

** B-2-1-1-2-2-2- We obtain the same results if w; | C'.

* B-2-1-2-1f 2 | py, then 2 | p; => 24a’ = 2{a. But p’ = p3.

** B-2-1-2-1- If p; = 2, we obtain A™ = 4a” = 2 | a” as m > 3, then the contradiction with a,b
coprime.

** B-2-1-2-2- We suppose that p; is not prime and 2 | p;, as A™ = 2a”py, p1 is written as p; =
M=l = p' = 22M=2?" Tt follows B"C! = 22"~2w?" (b —4a') = 2 | B" or 2 | C\.

#* B-2-1-2-2-1-1f 2 | B" = 2 | B, as 2 | A, then 2 | C. From B"C! = 222" (b — 4a’), it follows
if2|(b—4a") = 2| bbutas2td, there is no contradiction with a,b coprime and the conjecture

(3.1.1) is verified.

** B-2-1-2-2-2-1f 2 | cl, using the same method as above, we obtain the identical results.
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** B-2-2- p/, a’ are supposed not coprime. Let w be a prime integer so that w | ' and w | p'.

** B-2-2-1- We suppose firstly w = 3. As A = 4a'p’ = 3 | A,but3 | p = 3 | p,asp =
A?" 4 B2" 4 AMB" = 3 | B¥" = 3| B, then 3 | C! = 3 | C. We write A = 3/A;, B = 3/B,,
C = 3"C; and 3 coprime with A;, By and Cy and p = 3% A" 4 320jp2n - gim+jn AmpBi — 3k ¢ with
k = min(2im,2jn,im + jn) and 3 1 g. We have also (w = 3) | a and (w = 3) | p’ that gives a = 3%a; =
3¢ = a’' =3%ay, 31 a; and p’ = 3¥py, 31 p1 with A?" = 4a'p’ = F2MAI" = 4 x 3% 1 gy .p) =
a+pu—1=2im. Asp = bp’ = b.3"p; = 3".b.p1. The exponent of the term 3 of p is k, the exponent of
the term 3 of the left member of the last equation is p. If 3 | b it is a contradiction with a,b coprime.
Then, we suppose that 3 1 b, and the equality of the exponents: min(2im,2jn,im + jn) = u, recall that
&+ —1 = 2im. But B"C! = p/(b— 4a’) that gives 3"+ BICL = 31p; (b — 4 x 34" Va;). We have
also A™ + B" = C! gives 3™ Al + 3/"B = 3MCl. Let € = min(im, jn), we have € = hl = min(im, jn).
Then, we obtain the conditions:

k = min(2im,2jn,im + jn) = p (1.5.39)

64 p—1=2im (1.5.40)

€ = hl = min(im, jn) (1.5.41)

3tk grcl — 3k p (b — 4 x 30 Vgy) (1.5.42)

** B-2-2-1-1- « = 1 = a = 3a; = 34’ and 3 { 41, the equation (1.5.40) becomes:
U =2im
and the first equation (1.5.39) is written as:
k = min(2im,2jn,im + jn) = 2im

- If k = 2im, then 2im < 2jn = im < jn = hl = im, and (1.5.42) gives u = 2im = nj+ hl =
im+nj=im = jn = hl. Hence 3 | A,3 | B and 3 | C and the conjecture (3.1.1) is verified.

-If k = 2jn = 2jn = 2im = im = jn = hl. Hence 3 | A,3 | B and 3 | C and the conjecture (3.1.1)
is verified.

-lfk =im+jn = 2im = im = jn = € = hl = im = jn case that is seen above and we deduce
that 3| A,3 | B and 3 | C, and the conjecture (3.1.1) is verified.

#* B-2-2-1-2-a > 1= a >2and a’ = 3*"1a;.
-If k = 2im = 2im = y, but y = 2im 4+ 1 — & that is impossible.
-Ifk =2jn =y = 2jn = 2im+1 — a. We obtain 2jn < 2im = jn < im = 2jn < im + jn,
k = 2jn is just the minimum of (2im, 2jn,im + jn). We obtain jn = hl < im and the equation (1.5.42)
becomes:
BIC) = p1(b—4 x 3@ Vay)

The conjecture (3.1.1) is verified.

-lftk=im+jn <2im = jn <imand k =im+jn <2jn = im < jn = im = jn = k =
im+jn = 2im = p but y = 2im + 1 — « that is impossible.

-Ifk =im+jn < 2im = jn < im and 2jn < im + jn = k that is a contradiction with
k = min(2im,2jn,im + jn).

** B-2-2-2- We suppose that w # 3. We write 2 = w"a; with w { a1 and p’ = w’p; with w { p1.
As A" = 4d'p’ = 4w a1p = w | A = A = w'A;, w { Ay. But B'"C! = p'(b—4a') =
whpy(b—4d") = w | B"C' = w | B"orw | C".

** B-2-2-2-1-w | B" = w | B= B = w/B; and w { B;. From A" + B" = C' = w | C' = w | C.

As p = bp' = whbp; = k(WM kA 4 GUNKBIN 4 imtin=k AMBIY) with k = min(2im, 2jn, im +
jn). Then :
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- If u =k, then w { b and the conjecture (3.1.1) is verified.
-If k > p, then w | b, but w | a we deduce the contradiction with a,b coprime.
- If k < p, it follows from :

wybpl — wk(wZim—kA%m + ijn—kB%n 4 wim—&-]’n—kA;nBiZ)
that w | A; or w | By that is a contradiction with the hypothesis.
#* B2-222-fw | ¢! = w | C = C = w"C; with w { C;. From A" +B" = C! = w
(C! — A™) = w | B. Then, we obtain the same results as B-2-2-2-1- above.
1.55 Caseb=2pand3|a

We have :

6 a 34 4p.a  4p 3d
2 2m l my2 !
—=-=—=A"=——="——=21"=(A")Y"=2 =2
COS3 b 2p 3b 3 2p @ =(4") |4 @

Then 2 | a and 2 | b that is a contradiction with a, b coprime.

1.5.6 Caseb=4pand3|a
We have :

6 a 34 4p.a  4p 3d’
2 2m

— — A — — .
€os 3 b 4p 3b 3 4p

Let us calculate A" B", we obtain:

/
ATB = p;/é-smze L2l PV 20

3 3 3 3 3 2

2m
A"B" + AT P\—@ sin%

2 3 3
Let:
2 2
A2 4 2 AMBH = p;/gsin; (1.5.43)
o o 2V3 . 20 . .
The left member of (1.5.43) is an integer and p is an integer, then 5 Sino will be written as :
72\551.”@ _hk
3 3 k

where ki, ky are two integers coprime and k; | p = p = ko.ks.
** C-1- Firstly, we suppose that k3 # 1. Then :
AP+ 2AMB" = k3.ky
Let u be a prime integer and y | k3, then u | A" (A™ +2B") = u | A" or u | (A™ + 2B").

*CA-1-Ifu | (A" =a") = u|(@?=d)=u|(Bd =a). Asu|ks=u|p=ul| (4p =),
then the contradiction with a,b coprime.

#*C-1-2-1f p | (A™ +2B") = ut A™ and p 1 2B", then:

w#2 and pfB" (1.5.44)
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i | (A™+2B"), we write:
A" +2B" = u.t'

Then:

A™ L B" :‘ut/_Bn :>A2m—|-an—|—2AmBn :]/lZflz—Zt/]an—i—an
— p= t/2y2—2t/B”y+B”(B”—Am)

As b =4p = 4ky.kz and p | k3 then p | b = 3y’ so that b = p.u’, we obtain:

Wy = pu(4ut'* — 8t'B") +4B"(B" — A™)
The last equation implies u | 4B"(B" — A™), but u # 2 then u | B" or u | (B" — A™).
** C-1-1-1- If p | B" = then the contradiction with (1.5.44).

** C-1-1-2-If u | (B" — A™) and using u | (A™ +2B"), we have :

p|B"
#|3B" = ¢ or
p=3

#* C-1-1-2-1- If p | B" then the contradiction with (1.5.44).
** C-1-1-2-2- If u = 3, then 3 | b, but 3 | a then the contradiction with 4, b coprime.

** C-2- We assume now that k3 = 1, then:

A?™ L DA™B" = Ky (1.5.45)
p =k
—2\651'11% = ﬁ
3 3 p

We take the square of the last equation, we obtain :

Finally:
a'(4p —3d) = k3 (1.5.46)

but a’ = a”?, then 4p — 34’ is a square. Let :
AN =4p-3d =4p—a=b—a

The equation (1.5.46) becomes :
A=k =k =a"A (1.5.47)

taking the positive root. Using (1.5.45), we have:

ki = A"(A™ +2B") = a”(A™ + 2B")
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Then :
A" +2B" = A

Now, we consider that b —a = A2 = A2 + 34”2 = b, then the couple (A,a”) is a solution of the
Diophantine equation:
X2 +3Y? =10 (1.5.48)

with X = A and Y = a”. But using one theorem on the solutions of the equation given by (1.5.48), b
is written under the form (see theorem 37.4 in [1]):

b =2%x 3t.p§1 ce p;gq%sl RN q%sr

where p; are prime integers so that p; = 1(mod 6), the g; are also prime integers so that g; =
5(mod 6). Then, as b = 4p :
-If t > 1= 3| b, but 3| 4, then the contradiction with a,b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

t
p=p-piat g
with p; = 1(mod 6) and q; = 5(mod 6). Finally, we obtain that :
p = 1(mod 6) (1.5.49)

We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A?" + A"™B" + B?" in function of the values
of A™, B"(mod 6). We obtain the table below:

Table 1.1: Table of p (mod 6)

A", B" 0 1 2 3 4 5
0 0 1 4 3 4 1
1 1 3 1 1 3 1
2 4 1 0 1 4 3
3 3 1 1 3 1 1
4 4 3 4 1 0 1
5 1 1 3 1 1 3

#* C-2-2-1-1- Case A = 0(mod 6) = 2 | (A" =a”) = 2| (¢’ = a”?) = 2| a, but 2 | b, then the
contradiction with a, b coprime. All the cases of the first line of the table 1.1 are to reject.

#* (C-2-2-1-2- Case A™ = 1(mod 6) and B" = 0(mod 6), then 2 | B" = B" = 2B’ and p is written as
p = (A™ + B')? 4+ 3B"? with (p,3) = 1, if not 3 | p, then 3 | b, but 3 | 4, then the contradiction with
a,b coprime. Hence, the pair (A™ + B/, B') verifies the equation:

(A" +B')*43B% =p (1.5.50)

that we can write it as:

(A™ 4+ B')? = B? = p —4B"? = A¥™ + B + A"B" — B>" = C'A" = N (1.5.51)
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Then (A™ + B/, B') is a solution of the Diophantine equation:
X —y* =N (1.5.52)

where N = C'A™ = 1(mod 6). Let Q(N) be the number of the solutions of (1.5.52) and 7(N) is the
number of suitable factorization of N, then we recall the following result concerning the solutions
of the equation (1.5.52) (see theorem 27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].

-If N = 0(mod 4), then Q(N) = [t(N/4)/2].

As N = C'A™ = 1(mod 6) = N is odd, the cases Q(N) = 0 and Q(N) = [t(N/4)/2] are
rejected.

As A™ + B/, B is a couple of solutions of the Diophantine equation (1.5.52), then 3 d,d’ positive
integers with d > d’ and N = d.d’ so that :

d+d =2(A" +B) (1.5.53)
d—d =2B = B" (1.5.54)

#* (C-2-2-1-2-1 As C! > A™, we take d = C! and d’ = A™. Tt follows:
C'+ A" =2(A™ + B') = 2A™ 4 B"
C' — A™ = B" = 2B’
The above two equations do not give contradictions. As 2 | B” and n > 3 = B" = 0(mod 4), we

obtain that N = C'A™ = 1(mod 4) and Q(N) = [t(N)/2].

** (C-2-2-1-2-2 Now, we consider the case d = cl{’lC{ where ¢ is a prime integer with ¢; 1 C; and
C = c{Cy, r > 1. It follows that d’ = c1.A™. We rewrite the equations (1.5.53-1.5.54):

Cllrflci + . AT = z(Am + B’) (1.5.55)
cr1ct —¢.A" = 2B' = B" (1.5.56)

As 1 > 3, from the last two equations above, it follows that c¢; | 2(A™ + B’) and ¢; | (2B’). Then
c1=20rc;| (A" +B')and ¢; | B.

#* C-2-2-1-2-2-1- We suppose ¢; = 2. As | > 3, from the equation (1.5.58) it follows that 2 | B”, then
2| (A" =0a") = 2| (a"* =d') = 2| (a = 3a’), but b = 4p (see 1.5.6), then the contradiction with
a,b coprime.

#* C-2-2-1-2-2-2- We suppose ¢; # 2, then ¢; | (A" + B’) and ¢; | B'. It follows ¢; | A™ and
c1|(B"=2B)=c1|p=c1|b=4p. Fromc | (A" =a") = c1 | (a?=d') = c1 | (a =3a),
then the contradiction with a,b coprime. The others cases of the expressions of d and d’ with d,d’
not coprime and d > d’ so that N = C'A™ = d.d’ give also contradictions.

#* (C-2-2-1-2-3 Now, we consider the case d = a;.C! where 4 is a prime integer with a; { A; and
A =a]A;, r > 1. It follows that d’ = u;"r_lAT. We rewrite the equations (1.5.53-1.5.54):

tC o+ " AT = 2(A7 1 B (1557)
a,C! — ailnrflAiln — 2B/ — B" (1.5.58)

As m > 3, from the last two equations above, it follows that a; | 2(A™ + B’) and a; | (2B’). Then
ay =2,0ra; | (A"+B)and a; | B'.
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** C-2-2-1-2-3-1- We suppose a1 =2 = 2 | (A" =a") = a; | (0"?> =d') = a1 | (a = 34'). But
b = 4p, then the contradiction with a, b coprime.

** C-2-2-1-2-3-2- We suppose a1 # 2, then a; | (A™ + B’) and a; | B'. It follows a; | A™ and a7 |
(B"=2B) = a) |p= a1 | b=4p. Froma; | (A" =a") = a; | (4" =4d') = a1 | (a = 3d'),
then the contradiction with a, b coprime.

The others cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C'A™ = d.d" give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found one suitable
factorization of N that gives no contradictions, it is the case N = CLA™ butl < T(N), it follows
the contradiction with Q(N) = [t(N)/2] < 1. We conclude that the case A" = 1(mod 6) and
B" = 0(mod 6) of the paragraph C-2-2-1-2 is to reject.

** C-2-2-1-3- Case A™ = 1(mod 6) and B" = 2(mod 6), then B" is even, see C-2-2-1-2-.

** C-2-2-1-4- Case A™ = 1(mod 6) and B" = 3(mod6), then 3 | B = B" = 3B. Asp =
AP 4 AMB" 4 B2 — p = 5(mod 6) #= 1(mod 6) (see (1.5.49)), then the contradiction and the
case C-2-2-1-4- is to reject.

*#* C-2-2-1-5- Case A" = 1(mod 6) and B" = 5(mod 6), then C' = 0(mod 6) = 2 | C/, see C-2-2-1-
2-.

#* C-2-2-1-6- Case A" = 2(mod 6) = 2 | a” = 2 | a, but 2 | b, then the contradiction with a,b
coprime.

** C-2-2-1-7- Case A" = 3(mod 6) and B” = 1(mod 6), then C' = 4(mod 6) = 2 | C' = C! =
2C’, and C is even, see C-2-2-1-2-.

#* (C-2-2-1-8- Case A™ = 3(mod 6) and B" = 2(mod 6), then B" is even, see C-2-2-1-2-.
#* C-2-2-1-9- Case A™ = 3(mod 6) and B" = 4(mod 6), then B" is even, see C-2-2-1-2-.

** C-2-2-1-10- Case A™ = 3(mod 6) and B" = 5(mod 6), then C! = 2(mod 6) = 2 | C!, and C is
even, see C-2-2-1-2-.

** C-2-2-1-11- Case A™ = 4(mod 6) = 2 | a” = 2 | a, but 2 | b, then the contradiction with a,b
coprime.

#* C-2-2-1-12- Case A™ = 5(mod 6) and B" = 0(mod 6), then B" is even, see C-2-2-1-2-.

*#* C-2-2-1-13- Case A" = 5(mod 6) and B" = 1(mod 6), then C! = 0(mod 6) = 2 | C!, C is even,
see C-2-2-1-2-.

** C-2-2-1-14- Case A" = 5(mod 6) and B" = 3(mod 6), then C! = 2(mod 6) = 2 | C! = C! =
2C’, C is even, C-2-2-1-2-.

** C-2-2-1-15- Case A™ = 5(mod 6) and B" = 4(mod 6), then B" is even, see C-2-2-1-2-.
We have achieved the study all the cases of the table 1.1 giving contradictions.

Then the case k3 = 1 is impossible.
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1.5.7 Case3|aandb=2p', b #2withp' |p
3la=a=23d,b=2p with p =kp/, then:

a
—. = =2.k.a
3b 6p’
We calculate B"C: o 0 0
B"C! = {/p2 <3sin23 — C0523> =/ p? <3 — 4c0523>

3/ P : 20 _ 34
but {/p? = 3,’chen using cos” > D

6 3.4’ 4.4
nel — 3/02 (2 arne2? Ps_ _ — k(v — 24
B"C' = y/p <3 4cos 3> 3 (3 4 5 > p. <1 5 > k(p"—2a")

As p =0b.p/, and p’ > 1, then we have:

B"C' = k(p' —24') (1.5.59)
and A% = 2k.d (1.5.60)

** D-1- We suppose that k is prime.

* D-1-1- If k = 2, then we have p = 2p’ = b = 2 | b, but A? = 4a' = (A™)? = A™ = 2a” with
a' =a"%, then2 | a” = 2| (a = 3a"?), it follows the contradiction with a, b coprime.

* D-1-2- We suppose k # 2. From A*" = 2ka’ = (A")> = k| d and 2 | @ = 4 =
2ka? — A" = 2ka”. Thenk | A" — k | A = A = k.A; with i > 1 and k { Ay,
kMmAM = 2ka” = 2a” = k"™ 1A". From B"C' = k(p’' —24') = k | (B"C!) = k | B" or
k| cCl.

** D-1-2-1- We suppose that k | B" = k | B = B = k/.B; with j > 1 and k { By. It follows

ki=1BiCl = p' — 24’ = p' —4ka”?. Asn >3 =>nj—1>2,thenk|p' butk #2 = k| (2p' =b),
but k | ' = k | (34’ = a). It follows the contradiction with a,b coprime.

* D-1-2-2- If k | C! we obtain the identical results.

** D-2- We suppose that k is not prime. Let w be an integer prime so that k = w® ky, withs > 1, w 1
k1. The equations (1.5.59-1.5.60) become:

B"C! = w ki (p' —24")
and A" = 2w k.d

** D-2-1- We suppose that w = 2, then we have the equations:

AP =25 ! (1.5.61)
B"Cl = 2%k, (p' — 2d) (1.5.62)

** D-2-1-1- Case: 2 | a’ = 2 | a, but 2 | b, then the contradiction with a,b coprime.

** D-2-1-2- Case: 2 1 a’. As 21 ky, the equation (1.5.61) gives 2 | A?" = A = 2iA;, withi > 1 and
21 A;. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 { (p’ —24’) = 2 { p’. From the equation (1.5.62), we obtain that
2| B"C' =2 |B"or2|C.
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* D-2-1-2-1-1- We suppose that 2 | B* = 2 | B = B = 2/B; with 2 { B; and j > 1, then
BiCh = 2571k (p' — 24'):

-Ifs—jn > 1, then 2 | C' = 2| C, and no contradiction with C! = 2™ A" + 2/"B", and the
conjecture (3.1.1) is verified.

-If s—jn < 0, from BIC' = 257/"k;(p’ — 2a’) = 2 { C!, then the contradiction with C! =
2mAm 4 2"BY = 2 | Cl.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if 2 | cl.

** D-2-1-2-2- We suppose now that 2 | (p' —24') = p' — 24’ = 2.0, with p > 1 and 2 { Q. We
recall that 2 { a’. The equation (1.5.62) is written as:

B"C! = 251 k1.0
This last equation implies that 2 | (B"C') = 2 | B" or 2 | C~.

** D-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/B; with j > 1 and 2 { B;. Then
BCl = 251 1.0

-Ifs+u—jn >1, then 2 | C! = 2| C, no contradiction with C! = ZiMAT + Zj”By, and the
conjecture (3.1.1) is verified.

-Ifs+u—jn <0, from B?Cl = 25tH—ing O — 2 " C!, then contradiction with C! =
2mAm 4 2jnB — 2 | Cl.

** D-2-1-2-2-2- We obtain the identical results if 2 | C.

** D-2-2- We suppose that w # 2. We have then the equations:

A2 = 20° ky.a' (1.5.63)
B"C' = W' ky.(p' —24") (1.5.64)

As w # 2, from the equation (1.5.63), we have 2 | (ki.a’). If 2 | a/ = 2 | a, but 2 | b, then the
contradiction with a, b coprime.

** D-2-2-1- Case: 214’ and 2 | ky = k; = 2".QQ with y > 1 and 2 1 Q). From the equation (1.5.63),
we have 2 | A?" = 2 | A = A = 2!A; withi > 1and 2 { Ay, then 2im = 1+ u. The equation
(1.5.64) becomes:

B"C' = w* 2" Q.(p' —24) (1.5.65)

From the equation (1.5.65), we obtain 2 | (B"C') =2 | B" or 2 | C'.
** D-2-2-1-1- We suppose that 2 | B" = 2 | B= B = 2/B;, with j € N* and 2 { B;.

** D-2-2-1-1-1- We suppose that 2 { (p’ — 24), then we have B{C! = w*2¢=1"Q)(p’ — 24'):
-Ify—jn>1=2|C' = 2| C, no contradiction with C' = 2™ AI" + 2/"B" and the conjecture
(3.1.1) is verified.
-If 4 — jn <0 = 24 C' then the contradiction with C! = 2im Am 4 2In Bl

** D-2-2-1-1-2- We suppose that 2 | (p' —24') = p’ — 24’ = 2*.P, with « € N* and 2 1 P. It follows
that BIC! = w®21+e=inQ).p:

-Ifu+a—jn>1= 2| C = 2| C, no contradiction with C! = 2/ A" 4 2/"B! and the
conjecture (3.1.1) is verified.

-If p+a — jn <0 =24 C then the contradiction with C' = 2/ A" 4 2/"B?.

** D-2-2-1-2- We suppose now that 2 | C" = 2 | C. Using the same method described above, we
obtain the identical results.
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1.5.8 Case3|aandb=4p', b #4withp' |p

3|a=a=23d",b=4p withp = k.p’, k # 1 if not b = 4p this case has been studied (see paragraph
1.5.6), then we have :
_ 4kp 3.4

4.p a
2m _ %P g — !
A = 3D 12y k.a
We calculate B"Cl: o 0 o
ne~l 3/ 2 . 2V 2V ) _ 3/ 2 _ 27
B"C' = {/p <3sm 3~ Cos 3> =4/p <3 4cos 3>

/
but {/p? = g, then using coszg = 3'701:

6 3.4 4.4’
nel 3/ 0 (2 2V _P(,5_ — ) = —
B"C' = p<3 4c053> 3(3 4b> .<l b) k(p' —a')

Asp="0.p/,and p' > 1, we have :
B"C' = k(p' —a') (1.5.66)
and A?" =k.ad (1.5.67)

** E-1- We suppose that k is prime. From A*" = k.a’ = (A™)> = k | @’ and @' = k.a"* = A™ =
ka”. Thenk | A" = k| A= A =k'.Ay withi > 1and k{ Ay. K" Al = ka” = a” = k™LA
From B"C! = k(p' —a') = k| (B"C!') = k| B" or k | C".

** E-1-1- We suppose that k | B = k | B = B = K.B; with j > 1 and k { B;. Then

ki 1BIC! = p' —a'. Asnj—1>2=k| (p' —a'). Butk |a' =k |a, thenk | p' =k | (4p' =)
and we arrive to the contradiction that 4, b are coprime.

** E-1-2- We suppose that k | C!, using the same method with the above hypothesis k | B", we obtain
the identical results.

** E-2- We suppose that k is not prime.
** E-2-1- We take k = 4 = p = 4p’ = b, it is the case 1.5.3 studied above.

** E-2-2- We suppose that k > 6 not prime. Let w be a prime so that k = w’.kj, withs > 1, w { k1.
The equations (1.5.66-1.5.67) become:

B'C! = w'ki(p' — d') (1.5.68)
and AY = k. (1.5.69)

** E-2-2-1- We suppose that w = 2.
#E-2-2-1-1-1f2 | a' = 2| (34’ = a), but 2 | (4p’ = b), then the contradiction with a,b coprime.

** E-2-2-1-2- We consider that 2 { a’. From the equation (1.5.69), it follows that 2 | A*" =2 | A =
A =2'A; with 2{ Ay and:

B"C! = 2k (p' — a')
** B-2-2-1-2-1- We suppose that 2 { (p’ — a’), from the above expression, we have 2 | (B"C!) = 2 | B"
or2 | ChL

* E-2-2-1-2-1-1-1f 2 | B* = 2 | B—> B = 2/B; with 2{ By. Then BIC! = 22m~ink,(p' — d'):

-If 2im—jn > 1 = 2 | C' = 2 | C, no contradiction with C' = 2™AI" 4 2/"B? and the
conjecture (3.1.1) is verified.
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- If 2im — jn < 0 = 21 C', then the contradiction with C! = 2" A 4+ 2/"B" = 2 | C/.

#* E-2-2-1-2-1-2- If 2 | Cl =2 | C, using the same method described above, we obtain the identical
results.

** E-2-2-1-2-2- We suppose that 2 | (p' —a'). As2ta = 2+p', 2| (p' —a') = p' —a’ = 2*.P with
a > 1and 21 P. The equation (1.5.68) is written as :

Bncl — 25+D¢kl.P — 22im+‘xk1.P (1570)
then 2 | (B"C') = 2| B"or2 | C.

** E-2-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/B;, with 2 { B;. The equation (1.5.70)
becomes B?Cl = pZim+ta—jnj. p.

-If2im+a—jn > 1= 2| C = 2| C, no contradiction with C! = 2" A" 4 2/"B" and the
conjecture (3.1.1) is verified.

-If 2im +a — jn < 0 = 2+ C!, then the contradiction with C! = 2im A" 4 2/"B — 2 | C.

** E-2-2-1-2-2-2- We suppose that 2 | C! = 2 | C. Using the same method described above, we
obtain the identical results.

** E-2-2-2- We suppose that w # 2. We recall the equations:

AP = W ky.a' (1.5.71)
B'C! = w'ki(p' — d') (1.5.72)

** E-2-2-2-1- We suppose that w,a’ are coprime, then w { a’. From the equation (1.5.71), we have
w| A" = w| A= A=w'A; withw{ A and s = 2im.

** E-2-2-2-1-1- We suppose that w { (p’ —a’). From the equation (1.5.72) above, we have w |
(B"C") = w | B"or w | C".

** E-2-2-2-1-1-1- If w | B" = w | B=> B = w/B; with w { By. Then B{C! = 22"~i"j,(p’ — a'):

-If 2im—jn > 1 = w | C' = w | C, no contradiction with C' = w™Al' + w/"B! and the
conjecture (3.1.1) is verified.

-If 2im — jn < 0 = w { C', then the contradiction with C! = w™Al' + w/"B! = w | C.

** F-2-2-2-1-1-2- If w | C' = w | C, using the same method described above, we obtain the identical
results.

** E-2-2-2-1-2- We suppose that w | (p' —a') = w t p’ as w and 4’ are coprime. w | (p' —d') =
p' —a = w*.P witha > 1 and w t P. The equation (1.5.72) becomes :
B"C! = w*t%ky.P = W? "k, P (1.5.73)
then w | (B"C') = w | B" or w | Cl.
** E-2-2-2-1-2-1- We suppose that w | B" = w | B= B = w/ By, with w { By. The equation (1.5.73)
is written as By C! = 22m+a=jn, p; ' ‘
-If 2im+a—jn > 1= w | C' = w | C, no contradiction with C! = w™ A" + w/"B? and the

conjecture (3.1.1) is verified. ' .
-If 2im +a — jn < 0 = w { C/, then the contradiction with C! = w™ A" + w/"B! = w | C\.

** B-2-2-2-1-2-2- We suppose that w | C' = w | C, using the same method described above, we
obtain the identical results.

25



Chapter 1 A Complete Proof of Beal’s Conjecture

* [-2-2-2-2- We suppose that w,a’ are not coprime, then a’ = wf.a” with w { a”. The equation
(1.5.71) becomes:
A = wkia' = w*TPkya”

We have w | A?" = w | A= A = w'A; with w | A and s + B = 2im.

** E-2-2-2-2-1- We suppose that w { (p/ —a') = w t p = w { (b = 4p’). From the equation
(1.5.72), we obtain w | (B"C!) = w | B" or w | C.

** E-2-2-2-2-1-1-If w | B" = w | B= B = w/B; with w { B;y. Then B/C! = 25=I"k(p' — a'):
-Ifs—jn > 1= w | C' = w | C, no contradiction with C' = w™A" + w/"B? and the
conjecture (3.1.1) is verified.
-If s — jn <0 => w{ C!, then the contradiction with C! = w™ A" + w/"B} = w | C'.

#* [-2-2-2-2-1-2-If w | C! = w | C, using the same method described above, we obtain the identical
results.

** E-2-2-2-2-2- We suppose that w | (p' —a’ = p' —wPa”) = w | p = w | (4p' = b), but
w | @ = w | a. Then the contradiction with a,b coprime.

The study of the cases of 1.5.8 is achieved.

1.59 Case3|aandb |4p

4 0 4 !
a =3a’ and 4p = k1b. As A?" = ?pc052§ = ?p%z = kya’ and B"C:

6 6 6 3a' k
nel _ 3/ 220 2V _ P (s 29\ _ P [4_ _ M a4
B"C' = /p <3sm 3~ cos 3> 3 <3 4cos 3> 3 (3 4 b > 1 (b—4a")

As B"C! is an integer, we must obtain 4 | ki, or 4 | (b —4a’) or (2 | ky and 2 | (b — 4a’)).
*F-1-1f ky =1 = b = 4p : it is the case 1.5.6.

*F-2-1fky =4 = p = b :itis the case 1.5.3.

* F-3-If ky = 2 and 2 | (b—4d’): in this case, we have A*" = 27/ = 2 | d/ = 2 | a.
2| (b—4a") = 2| b then the contradiction with a,b coprime.

*F4-1f2 | kyand 2 | (b—4a'): 2| (b—4d") = b—4a" = 2", aand A € N* > 1 with 2 1 A;
2| k1 = ki = 2'k} with t > 1 € IN* with 2 { K} and we have:

A2 =2tk a (1.5.74)
B"Cl =222kl A (1.5.75)

From the equation (1.5.74), we have 2 | A?" =2 | A = A = 20A;,i>1and 21 A;.
** F-4-1- We suppose that t = & = 1, then the equations (1.5.74-1.5.75) become :

A% = 2kha/ (1.5.76)
B"C' = KA (1.5.77)

From the equation (1.5.76) it follows that 2 | ' = 2| (a = 34’). But b = 44’ + 2A = 2 | b, then
the contradiction with a, b coprime.

** F-4-2- We suppose that t +a — 2 > 1 and we have the expressions:

A" =2tk a (1.5.78)
B"Cl = 2t =2K A (1.5.79)
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** F-4-2-1- We suppose that 2 | a/ = 2 | a, but b = 2*A + 44’ = 2 | b, then the contradiction with
a,b coprime.

** F-4-2-2- We suppose that 2 { a’. From (1.5.78), we have 2 | A?" = 2 | A = A = 2/A; and
B"Cl = 2t+a2)l A = 2| B"C' = 2 | B"or 2 | C.

** F-4-2-2-1- We suppose that 2 | B". We have 2 | B = B = 2/B;, j > 1 and 2 { B;. The equation
(1.5.79) becomes BI'C! = 2t+&=2=jnf] )

-Ift+a—-2—jn>0= 2| C = 2| C, no contradiction with C' = 2" A + 2/"B! and the
conjecture (3.1.1) is verified.

-Ift+a—2—jn<0=2]|kjA but2{k} and 21 A. Then this case is impossible.

-Ift+a—2—jn = 0 = BIC' = kK{A = 2 { C! then it is a contradiction with C! =
2im A 4- 2/ BY

** F-4-2-2-2- We suppose that 2 | C'. We use the same method described above, we obtain the iden-
tical results.

** F-5- We suppose that 4 | k; with k1 > 4 = ky = 4k}, we have :

A% = 40 (1.5.80)
B"C! = Kk, (b — 4a’) (1.5.81)

** F-5-1- We suppose that k is prime, from (1.5.80), we have k, | a’. From (1.5.81), k}, | (B"C!) =
k| B* or kj | CL.

** F-5-1-1- We suppose that k), | B" =k}, | B= B = k’f.Bl with B > 1 and k) { B;. It follows that

we have k,znﬂ “'BuC! = b — 44’ = K|, | b then the contradiction with a, b coprime.

** F-5-1-2- We obtain identical results if we suppose that k, | C'.
** F-5-2- We suppose that k) is not prime.

** F-5-2-1- We suppose that k) and a’ are coprime. From (1.5.80), k) can be written under the

f(;rm Ky, = 7.3 and g1 | g2 and gq; prime. We have A?" = 443 .g3' — q; | A and B"C! =

q;-q3(b—4a') => g1 | B" or q1 | C.

** F-5-2-1-1- We suppose that g1 | B* = q1 | B= B = q{.Bl with g1  B;. We obtain B/C! =
2j—fn_2 b—44'):

9y 7 a3( a'):

-If2j— fn>1=q1 | C' = g1 | Cbut C' = A™ + B" gives also q; | C and the conjecture (3.1.1)

is verified.

-1f 2j — f.n = 0, we have BI'C! = g3(b —4a’), but C' = A™ + B" gives q1 | C, then q1 | (b —4a’). As

g1 and a’ are coprime, then g; 1 b, and the conjecture (3.1.1) is verified.

-1f2j— fn <0 =gy | (b—4a’) = q1 1 b because a’ is coprime with g1, and C! = A™ + B" gives

71 | C, and the conjecture (3.1.1) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that q; | C'.

** F-5-2-2- We suppose that k},a’ are not coprime. Let q; be a prime so that g1 | k, and g1 | a’. We
write kj under the form 7,-q2 with j > 1, g1 { g2. From A?" = 4kha' = g1 | A" => g1 | A. Then
from B"C' = q)q2(b — 4a’), it follows that q; | (B"C') = g, | B" or q1 | C.

** F-5-2-2-1- We suppose that q; | B' = g1 | B= B = q’f.Bl with B > 1 and ¢q; { B;. Then, we
have qTﬁB{lCl = q)q2(b—4a') = BIC' = qjl_"ﬁqz(b —44").
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-Ifj—nB >1,thenq | C' => g1 | C, but C' = A™ + B" gives q; | C, then the conjecture (3.1.1) is
verified.

-If j — nB = 0, we obtain B/C' = g»(b —4a’), but C' = A™ + B" gives q1 | C, then g1 | (b —44a') =
q1 | b because g1 | ' = g1 | a, then the contradiction with a,b coprime.

-Ifj—np<0=q1| (b—44a") = q1 | b, because q1 | '’ = ¢1 | 4, then the contradiction with a, b
coprime.

** F-5-2-2-2- We obtain identical results if we suppose that g; | C'.

* F-6- If 4 { (b—4a’) and 4 1 k; it is impossible. We suppose that 4 | (b —44a’) = 4 | b, and
b—4a' =4'.g,t > 1 with4+{g, then we have :

AZm = kla'
B'Cl =k 4" lg

** P-6-1- We suppose that k; is prime. From A?" = kja’ we deduce easily that k; | 4. From
B"C! = k;.4'"1.g we obtain that k; | (B"C!) = k; | B" or ky | C~.

** F-6-1-1- We suppose that k; | B = k; | B = B = k]i.B1 with j > 0 and k; { By, then
k'BiCl = k4l — k'f']_lB’fCl =4"1¢ Butn >3andj > 1, then n.j—1 > 2. We deduce as
ki # 2 thatky | g = k1 | (b —4da"), but ky | @’ = ky | b, then the contradiction with 4, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k; | C'.
** F-6-2- We suppose that k; is not prime # 4, (k; = 4 see case F-2, above) with 4 1 k;.

“ F-6-2-1- If k; = 2k’ with k' odd > 1. Then A?" = 2k'a’ = 2 | a’ = 2| a, as 4 | b it follows the
contradiction with a, b coprime.

** F-6-2-2- We suppose that k; is odd with ky and a’ coprime. We write k; under the form k; = q]i.qz
with g1 1 g2, g1 prime and j > 1. B"C! = ¢{.q24'"1¢ = g1 | B" or q1 | C\.

** F-6-2-2-1- We suppose that q; | B* = ¢q1 | B= B = q{.Bl with g1  B;. We obtain B/C! =
g g4,

-Ifj—fn>1=¢q;|C' = q1 | C,but C' = A™ + B" gives also q; | C and the conjecture (3.1.1)
is verified.

-1If j — f.n = 0, we have B/C! = g,4'"1g, but C' = A™ + B" gives q1 | C, then q; | (b —4d'). As q
and a’ are coprime then g; 1 b and the conjecture (3.1.1) is verified.

-Ifj— fn < 0=>qy | (b—4a’) = q1 1 b because qy,a’ are primes. C' = A™ + B" gives q; | C and
the conjecture (3.1.1) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that q; | C'.

** F-6-2-3- We suppose that k; and a’ are not coprime. Let 41 be a prime so that g1 | k; and g1 | a'.
We write k1 under the form ¢}.q2 with g1 1 go. From A?" = kja' = q; | A* = ¢q; | A. From
B"C! = ¢ q2(b — 4a’), it follows that g1 | (B"C') = g1 | B or g1 | C.

** F-6-2-3-1- We suppose that g1 | B' = ¢q1 | B= B = qf.Bl with B > 1 and ¢ 1 B;. Then we have
B BIC = glga(b — 4a') = BIC! = g "Pqa(b — 4a):

-1f j—nB >1,then g1 | C' = g1 | C, but C' = A™ + B" gives g1 | C, and the conjecture (3.1.1)
is verified.

-If j — nB = 0, we obtain BI'C' = q,(b —4a’), but g1 | A and g1 | B then g1 | C and we obtain
q1 | (b—4a") = q1 | b because g1 | '’ = 4 | a, then the contradiction with a,b coprime.
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-Ifj—np<0=q1 | (b—44a") = g1 | b, then the contradiction with 4, b coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q; | C.

1.6 Hypothesis: {3 |p and b|4p}

1.6.1 Caseb=2and3|p
3| p=p=3p with p’ # 1 because 3 < p, and b = 2, we obtain:

/

_4pa  43pa  4pa ,

2m _ _ _
AT = - 3 2 =2p.a
As: 1 0 3 0 1
4<cos3 5 2<4:>1<2a<3:>a 1:>cos3 >

but this case was studied (see case 1.4.1).
1.6.2 Caseb=4and3|p
we have 3 | p = p = 3p/ with p’ € IN¥, it follows :

_4pa  43p'a

2m _ — 4./
A =gy T g P
and: , o 3
L v _4_a _ o -
4<COS3_b 4<4:>1<u<3:>a 2

as a,b are coprime, then the case b = 4 and 3 | p is impossible.

1.6.3 Case:b #2,b#4,b#3,b|pand3|p
As 3| p, then p =3p’ and :

4 0 4pa 4x3pa 4y
A _3cos3 35 3 b b

a

We consider the case: b | p’ = p' = bp” and p” # 1 (If p” = 1, then p = 3D, see paragraph 1.6.8
Case k' = 1). Finally, we obtain:

_ 4bp”a

2m
A b

= 4ap”; B"C' = p”.(3b — 4a)

** G-1- We suppose that p” is prime, then A?" = 4ap” = (A™)> = p” | a. But B"C! =
p”(3b —4a) = p” | B" or p” | C.

# G-1-1- If p” | B" = p” | B => B = p”By with B; € N*. Then p”" 'BIC! = 3b—4a. Asn > 2,
then (n —1) > 1and p” | a, then p” | 3b = p” =3 or p” | b.

* G-1-1-1- If p” = 3 = 3 | a, with a that we write as a = 34?2, but A" = 64/ = 3 | A" =
3| A= A =3A then 3" 1AM =24 = 3 | a’ = a' = 3a”. As p”" !BiC! = 3""1piC! =
3b —4a — 3”_2B§“C’ =b—36a"%. Asn>2=—=n—-2>1,then 3 | b and the contradiction with
a,b coprime.

** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with 4, b coprime.
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** G-1-2- If we suppose p” | C!, we obtain identical results (contradictions).
** G-2- We consider now that p” is not prime.

** G-2-1- p”,a coprime: A?" = 4ap” = A™ = 24'.p; with a = a’? and p” = p3, then @, p; are also
coprime. As A™ =2a'.p;, then2 | a’ or 2 | p;.

** G-2-1-1- We suppose that 2 | @, then 2 | a’ = 21 py, but p” = p3.
** G-2-1-1-1- If pq is prime, it is impossible with A™ = 24’.p;.

** (G-2-1-1-2- We suppose that p; is not prime so we can write p; = W™ = p” = w?". Then
B"C! = w?"(3b — 4a).

#* G-2-1-1-2-1- If w is prime, w # 2, then w | (B"C!) = w | B" or w | C'.
* G-2-1-1-2-1-1- If w | B" = w | B=> B = w/B; with w { By, then B.C! = w?"~"(3b — 4a).

** G-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B/.C' =3b—4a. AsC' = A" + B" = w | C' = w |
C, and w | (3b —4a). But w # 2 and w,a’ are coprime, then w,a are coprime, it follows w 1 (3b),
then w # 3 and w 1 b, the conjecture (3.1.1) is verified.

** G-2-1-1-2-1-1-2- If 2m — nj > 1, using the method as above, we obtain w | C' = w | C and
w | (3b—4a) and w{a and w # 3 and w 1 b, then the conjecture (3.1.1) is verified.

** G-2-1-1-2-1-1-3- If 2m — nj < 0 = w™~2"Br.C! = 3b — 4a. From A"+ B" =C' = w | C' =
w | C, then C = w".Cy, with w { C;, we obtain w”'j*2m+h'lB?.Ci =3b—4a. lfnj—2m+hl<0=
w | BIC! then the contradiction with w { By or w { Cy. It follows n.j — 2m + h.l > 0 and w | (3b — 4a)
with w, a,b coprime and the conjecture is verified.

** (G-2-1-1-2-1-2- Using the same method above, we obtain identical results if w | C!.
f

** (G-2-1-1-2-2- We suppose that p” = w?" and w is not prime. We write w = wy;.Q with w; prime
1Q, f >1,and w; | A. Then B"C! = w%f'mﬂzm(% —4a) = w; | (B"C!) = w; | B" or wy | C\.

 G-2-1-1-2-2-1-If w; | B" = w; | B=> B = w) By with wy { By, then BI.C! = " (2" (3b — 4a):
** G-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = O*"(3b — 4a). As C' = A" + B" = w |
C!' = wy | C, and w; | (3b —4a). But w; # 2 and wj,a’ are coprime, then w,a are coprime, it

follows w;y 1 (3b), then wy # 3 and w; 1 b, and the conjecture (3.1.1) is verified.

#* G-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have w; | C' = w; | C and w; | (3b — 4a) and w; 1 a and
w1 # 3 and wi 1 b, it follows that the conjecture (3.1.1) is verified.

# G2-1-1-2-2-1-3- I 2f.m — n.j < 0 = ! 2"/ B1.C! = 0?"(3b — 4a). As w; | C using C' = A™ +
B", then C = wf.C; = w”-f—2m~f+h-lB?.c§1 = (" (3b — 4a). If n.j —2m.f + hl < 0 = w; | BIC],
then the contradiction with wj { By and wq 1 Cy. Then if n.j —2m.f + h.l > 0 and w; | (3b — 4a) with
w1,a,b coprime and the conjecture (3.1.1) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if w; | Cl.

** (G-2-1-2- We suppose that 2 | py: then 2 | p; => 24a’ = 2{a, but p” = p.
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** G-2-1-2-1- We suppose that p; = 2, we obtain A” = 44’ = 2 | @/, then the contradiction with 4, b
coprime.

* G-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2a'p;, p1 can written as
p1 = 2" 1w = p” = 22"=2?" Then B"C! = 22"~2w?"(3h — 4a) = 2 | B" or 2 | C\.

** G-2-1-2-2-1- We suppose that 2 | B* = 2 | B. As 2 | A, then 2 | C. From B"C! = 22"~2¢?"(3p —
4a) it follows that if 2 | (3b —4a) = 2 | b but as 2 { a there is no contradiction with a,b coprime
and the conjecture (3.1.1) is verified.

** (G-2-1-2-2-2- We suppose that 2 | C!, using the same method above, we obtain identical results.
** (3-2-2- We suppose that p”,a are not coprime: let w be a prime integer so that w | 2 and w | p”.

** (G-2-2-1- We suppose that w = 3. As A% = 4ap” = 3 | A,but3 | p. Asp = A" +
B + A"B" = 3 | B = 3 | B, then 3 | C' = 3 | C. We write A = 3/A;, B = 3/B,,
C = 3"C; with 3 coprime with A1, By and C; and p = 32 A" 4 321ip2n 4 3im+jn Ampn — 3K ¢ with
k = min(2im,2jn,im + jn) and 3 t g. We have also (w = 3) | a and (w = 3) | p” that gives a = 3"a;,
31 a; and p” = 3tpy, 31 p1 with AP = dap” = 3¥MA2" = 4 x 3 Hg1.p) = a+p = 2im.
As p = 3p' = 3b.p” = 3b.3¥p; = 3#*1b.p;, the exponent of the factor 3 of p is k, the exponent
of the factor 3 of the left member of the last equation is y + 1 added of the exponent B of 3 of
the term b, with B > 0, let min(2im,2jn,im + jn) = u + 1+ p and we recall that « + y = 2im. But
B"C! = p”(3b —4a), we obtain 30+ BrC = 31+1p, (b —4 x 38 Vgay) = 34+l p; (38; — 4 x 30+ Vgy),
3 1 b;. We have also A™ + B" = C! = 3™mAm + 3B} = 34 Cl. We call € = min(im, jn), we have
€ = hl = min(im, jn). We obtain the conditions:

k = min(2im,2jn,im + jn) = u+1+p (1.6.1)
X4y =2im
€ = hl = min(im, jn)
3t gncl = 3u41y, (3Pby — 4 x 30+ Vgy)

** G-2-2-1-1- « = 1 = a = 34y and 3 { a3, the equation (1.6.2) becomes:
1+ p =2im
and the first equation (1.6.1) is written as:
k = min(2im,2jn,im + jn) = 2im + B

-If k = 2im = B = 0 then 3 1 b. We obtain 2im < 2jn = im < jn, and 2im < im + jn = im < jn.
The third equation gives hl = im and the last equation gives nj +hl = y +1 = 2im = im = nj,
then im = nj = hl and BJC} = p1(b —4a;). As a,b are coprime, the conjecture (3.1.1) is verified.

-If k = 2jn or k = im + jn, we obtain B = 0, im = jn = hl and B/C| = p1(b —4ay). As a, b are
coprime, the conjecture (3.1.1) is verified.

*G22-12-a> 1= a > 2.
-Ifk=2im=2im=pu+1+p,but y =2im—athatgivesa =1+p>2= B #0=3 |0,
but 3 | a then the contradiction with a,b coprime.
-Ifk=2n=pu+1+B<2im=—=pu+1+p<pyta=—=14+p<a=—=p>1LIBL>1=3|b
but 3 | 4, then the contradiction with 4, b coprime.
-ltk=im+jn = im+jn < 2im = jn < im, and im + jn < 2jn = im < jn, then im = jn.
Ask=im+jn=2im=1+pu+pPand a +p = 2im, weobtaina =1+ >2= f>1= 3|,
then the contradiction with a, b coprime.
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** G-2-2-2- We suppose that w # 3. We write 2 = w*a; with w { a1 and p” = w¥p1 with w { p1.
As AP = dap” = 4w Ma1p = w | A = A = w'Aj, w { A;. But B"C! = p”(3b —4a) =
whp1(3b —4a) = w | B"C' = w | B"or w | C..

** (G-2-2-2-1- We suppose that w | B* = w | B== B = w/B; and w { B;. From A" + B" = C! =
w|C = w|C. Asp=bp =3bp” = 3whbp; = wr(w?MFAMM 4 UN—kBIn 4 imtin=k gmpn)
with k = min(2im,2jn,im + jn). Then:

- If k = p, then w 1 b and the conjecture (3.1.1) is verified.

-If k > p, then w | b, but w | a then the contradiction with a,b coprime.

- If k < p, it follows from:

360”1?]91 — wk(wZimka%m + ijnka%n + wierjnka;nB?)
that w | A1 or w | B; then the contradiction with w 1 A; or w { By.

#* G2222-Ifw | C' = w | C = C = &"C; with w { C;. From A" +B" = C! = w |
(C! — A™) = w | B. Then, using the same method as for the case G-2-2-2-1-, we obtain identical
results.

1.64 Caseb=3and3|p
As3 | p = p=3p/, We write :

2

0
As A?" is an integer and a,b are coprime and cos 3 < 1 (see equation (1.3.9)), then we have

necessary 3 | p) = p’ = 3p” with p” # 1, if not p = 3p' =3 x3p” =9, but9 < (p =
A?™ 4 B2 4 AMB"), the hypothesis p” = 1 is impossible, then p” > 1, and we obtain:

_4p'a 4 x3p”a

A 3 3 =4p”a; B"C'=p”.(9 — 4a)
1 0
ASZl <c052§:%:g<Z:>3<4a<9=>asa>1,a:2andweobtain:
7 _ 4
AP = 4p”a = 8p”; B'C' = 3p”00 —4a) (93 a) _ p” (1.6.3)

The two last equations above imply that p” is not a prime. We can write p” as : p” = [[ic; p;"
where p; are distinct primes, «; elements of N* and i € I a finite set of indexes. We can write also
p” = pi'.q1 with p; 1 q1. From (1.6.3), we have p; | A and p; | B"C' = p; | B" or p; | C\.

** H-1- We suppose that p; | B = B = pfl.Bl with p; 1 By and B; > 1. Then, we obtain
BiC! = p;”*"ﬁ '.q1 with the following cases:

-Ifay —npy > 1= p; | C' = p; | C, in accord with p; | (C! = A™ + B"), it follows that the
conjecture (3.1.1) is verified.

-lfag —np =0= B?Cl = g1 = p11Cl, it is a contradiction with p; | (A™ — B") = p; | C\.
Then this case is impossible.

-1f &y — nBy < 0, we obtain p}P' "BIC! = q; = p; | qu, it is a contradiction with p; { g;. Then
this case is impossible.

** H-2- We suppose that p; | C!, using the same method as for the case p; | B", we obtain identical
results.
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1.6.5 Case3|pandb=yp

We have COSZg = % 4 and:

_ 4 4

A2m il

3°

As A?" is an integer, it implies that 3 | a, but 3 | p = 3 | b. As a and b are coprime, then the
contradiction and the case 3 | p and b = p is impossible.

1.6.6 Case3|pandb=4p
3| p=p=23p,p #1because 3 < p, thenb = 4p = 12p’.

4 0 4pa a
2m _ 2P 20 =P
A = 50Ty == 3:>3|a

as A% is an integer. But 3 | p = 3 | [(4p) = b], then the contradiction with a,b coprime and the
case b = 4p is impossible.

1.6.7 Case3|pandb=2p
3| p=p=23p,p' #1because 3 < p, then b = 2p = 6p'.

A2m:4—pc052€—4—pg—2a:>3|a

373 3b 3
as A?" is an integer. But 3 | p = 3| (2p) = 3 | b, then the contradiction with a, b coprime and
the case b = 2p is impossible.
1.6.8 Case 3| pand b # 3 a divisor of p

We have b = p’ # 3, and p is written as p = kp’ with 3 |k = k =3k" and :

4 0 4pa
2m __ p 27 p pig— /
A ——30053 3 4ak
B'C! = g (3 —4c052§) =k'(3p’ —4a) = k' (3b — 4a)

#[1- kK £ 1

** [-1-1- We suppose that k is prime, then A?" = 4ak’ = (A™)? = k' | a. But B"C! = k' (3b — 4a) =
kK'| B"or k' | C.

*1-1-1-1- If k' | B* = K’ | B=> B = KBy with B; € N*. Then k"*"!BJC! = 3b —4a. As n > 2, then
(n—1)>1and k' | a, thenk’ |3b = k' =3 or k' | b.

#* 1-1-1-1-1- If K = 3 = 3 | a, with a that we can write it under the form a = 3a’2. But A" =
60’ => 3| A" = 3| A= A =3A; with A} € N*. Then 3" A" =24 = 3 |/ = o' = 3a”.
But k" 1By C! = 3"~ 1BIC! = 3b —4a = 3" 2BfC' = b—36a"%. Asn >3 =>n—2>1,then3 | b.
Hence the contradiction with a, b coprime.

*#* 1-1-1-1-2- We suppose that k' | b, but K’ | 4, then the contradiction with 4, b coprime.

*#*1-1-1-2- We suppose that k’ | cl, using the same method as for the case k' | B", we obtain identical
results.
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** ]_1-2- We consider that k’ is not a prime.

** ]-1-2-1- We suppose that k/, a coprime: A?" = 4ak’ = A™ = 24'.p; with a = a’? and k' = p?3, then
a’, py are also coprime. As A" = 2a'.p; then 2 | a’ or 2 | p;.

** [-1-2-1-1- We suppose that 2 | a’, then 2 | ' => 21 py, but k' = p3.
#* 1-1-2-1-1-1- If pq is prime, it is impossible with A™ = 24’.p;.

** [-1-2-1-1-2- We suppose that p; is not prime and it can be written as p; = w™ = k' = w?". Then
B"C! = w?"(3b — 4a).

** [-1-2-1-1-2-1- If w is prime # 2, then w | (B"C!) = w | B" or w | C.

** [-1-2-1-1-2-1-1- If w | B" = w | B=> B = w/B; with w { By, then B}.C! = "~ (3b — 4a).

- If 2m — n.j = 0, we obtain B}.C! = 3b —4a, as C' = A" +B" = w | C' = w | C, and
w | (83b —4a). But w # 2 and w, a’ are coprime, then w 1 (3b) = w # 3 and w 1 b. Hence, the
conjecture (3.1.1) is verified.

-1f 2m — nj > 1, using the same method, we have w | C! = w | Cand w | (3b — 4a) and w 1 a
and w # 3 and w t b. Then the conjecture (3.1.1) is verified.

-1f 2m —nj < 0 = w™2"BL.C! =3b—4a. AsC! = A" + B" = w | C then C = w".C; =
I~2mthlpn Cb = 3p — 4a. If n.j —2m +hl < 0 = w | BIC!, then the contradiction with w { By
orwtCy. Ifnj—2m+hl>0= w| (3b — 4a) with w, a,b coprime, it implies that the conjecture
(8.1.1) is verified.

** 1-1-2-1-1-2-1-2- We suppose that w | C!, using the same method as for the case w | B", we obtain
identical results.

f

** 1-1-2-1-1-2-2- Now k' = w?" and w not a prime, we write w = w;.Q with w; a prime { Q) and
f > 1an integer, and w; | A, then B"C! = w%f'mﬂzm(% —4a) = wy | (B"C!) = w; | B"or wy | CL.

# 1-1-2-1-1-2-2-1- If wy | B" => wy | B = B = w!B; with w; 1 By, then B.C! = w/™ " 2m (3 —
4a).

-1f 2f.m — n.j = 0, we obtain B!.C' = Q*"(3b —4a). AsC! = A" + B" = w; | C' = w; | C,
and wq | (3b —4a). But wy # 2 and wy,a’ are coprime, then w,a are coprime, then w; 1 (3b) =
w1 # 3 and wq 1 b. Hence, the conjecture (3.1.1) is verified.

-If 2f.m —n.j > 1, we have w | C! = w; | Cand w; | (30 —44a) and w; { a and w; # 3 and
w1 1 b, then the conjecture (3.1.1) is verified.

S 2fm—nj < 0 = w7 Br.Cl = OP(3b—4a). As C' = A"+ B" = w; | C, then
C = wh.C; = @™i=2mf+hipn Cl = O (3b — 4a). If n.j —2m.f + h.l < 0 => w; | B{C}, then the
contradiction with wq 1 By and wy 1 Cq. Then if n.j —2m.f + h.l > 0 and w; | (3b — 4a) with wy,a,b
coprime, then the conjecture (3.1.1) is verified.

#* 1-1-2-1-1-2-2-2- As in the case w; | B", we obtain identical results if w; | C'.
*[-1-2-1-2-1f 2 | p1: then 2 | py = 2ta’ = 2fa, but k' = p3.

#* 1-1-2-1-2-1- If p; = 2, we obtain A™ = 44’ = 2 | a/, then the contradiction with 2 { a’. Case to
reject.

** 1-1-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2a’py, p; is written under the
form p; = 2" lw™ = p? = 222" Then B"C! = K'(3b — 4a) = 22" 2w?"(3b — 4a) => 2 | B"
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or2 | ChL

#*1-1-2-1-2-2-1-1f2 | B* = 2| B,as 2 | A = 2 | C. From B"C! = 22"~2?"(3b — 4a) it follows that
if 2| (3b —4a) = 2 | b but as 2 { a, there is no contradiction with a,b coprime and the conjecture
(3.1.1) is verified.

** [-1-2-1-2-2-2- We obtain identical results as above if 2 | C'.
** [-1-2-2- We suppose that k, a are not coprime: let w be a prime integer so that w | 2 and w | p3.

** 1-1-2-2-1- We suppose that w = 3. As A?" = 4ak’ = 3 | A, but3 | p. Asp = A+
B + A"B" = 3 | B* = 3 | B, then 3 | C' = 3 | C. We write A = 3'A;, B = 3/B,,
C = 3"C; with 3 coprime with A;,B; and C; and p = 32imA%m -1-32”fo” +3im+f”A1mB? = 3.9
with s = min(2im,2jn,im + jn) and 3 t g. We have also (w = 3) | a and (w = 3) | K’ that give
a=3%1,3ta; and k' = 3¥py, 31 pp with AZ" = dak’ = 3% A3 = 4 x 3% gy.pp => o+ p = 2im.
As p = 3p' = 3b.k' = 3b.3#p, = 3#*1.b.p,. The exponent of the factor 3 of p is s, the exponent
of the factor 3 of the left member of the last equation is u + 1 added of the exponent B of 3 of
the factor b, with B > 0, let min(2im,2jn,im + jn) = u+ 1+ B, we recall that « + y = 2im. But
B"C! = K'(4b — 3a) that gives 3" BICl = 30+ py (b — 4 x 306~ Vay) = 3#F1py(3Pby — 4 x 304 Vgy),
3 f b;. We have also A™ + B" = C! that gives 3™ A" 4 3/"B? = 3MCl. We call € = min(im, jn), we
obtain € = hl = min(im, jn). We have then the conditions:

s = min(2im,2jn,im+jn) =u+1+p (1.6.4)
x4y =2im (1.6.5)

€ = hl = min(im, jn) (1.6.6)

3tk gt — 341y, (3Ph; — 4 x 3(+" V) (1.6.7)

#1-1-2-2-1-1- « = 1 = a = 347 and 3 { a1, the equation (1.6.5) becomes:
1+p=2im
and the first equation (1.6.4) is written as :
s = min(2im,2jn,im + jn) = 2im + B

-If s = 2im = B = 0 = 3t b. We obtain 2im < 2jn = im < jn, and 2im < im + jn = im < jn.
The third equation (1.6.6) gives hl = im. The last equation (1.6.7) gives nj + hl = y +1 = 2im —
im = jn, then im = jn = hl and B/C! = p,(b —4a;). As a,b are coprime, the conjecture (3.1.1) is
verified.

-If s = 2jn or s = im + jn, we obtain B = 0, im = jn = hl and B/C! = p,(b —4a;). Then as a,b
are coprime, the conjecture (3.1.1) is verified.

*#*1-1-2-2-1-2-0 > 1= a > 2.

-If s =2im = 2im=pu+1+p,buty =2im—unitgivesa =1+p>2=p#0=3|0,
but 3 | a then the contradiction with a,b coprime and the conjecture (3.1.1) is not verified.

Slfs=2n=pu+1+p<2im=pu+1+p<puy+ta=14+p<a=p=10p=1=3|b
but 3 | g, then the contradiction with 4, b coprime and the conjecture (3.1.1) is not verified.

-Ifs =im+ jn = im+ jn < 2im = jn < im, and im + jn < 2jn = im < jn, then im = jn.
Ass=im+jn=2im=1+pu+Pfanda+p =2imitgivesa =1+p>2=— f>1= 3|0, then
the contradiction with a,b coprime and the conjecture (3.1.1) is not verified.

** 1-1-2-2-2- We suppose that w # 3. We write a = w1 with w { a1 and k' = wtp, with w 1 p.

As A’ = dak’ = 4w Ma1py = w | A = A = w'A;, w { A, But B"C! = K'(3b — 4a) =
whpy(3b —4a) = w | B"C' = w | B" or w | C.
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#* 1-1-2-2-2-1- w | B* = w | B = B" = w/B; and w { B;. From A" + B" = C! = w |
Cl= w | C. Asp = bp’ = 3bk' = 3whbp; = W’ (W™ S A" + W?"=SB2" 4 ™ F/"=5 AMBY) with
s = min(2im,2jn,im + jn). Then:

-If s = p, then w 1 b and the conjecture (3.1.1) is verified.

-1f s > p, then w | b, but w | a then the contradiction with a, b coprime and the conjecture (3.1.1)
is not verified.

- If s < u, it follows from:

3(4)”1)[)1 — CL)S((,(]ZlmiSA%m + wZ]nfsB%n + wler]nfsAlmBif)

that w | A or w | By that is the contradiction with the hypothesis and the conjecture (3.1.1) is not
verified.

#*[1-2222-f w | C!' = w | C = C = "C; with w { C;. From A" +B" = C! = w |
(C' — A™) = w | B. Then we obtain identical results as the case above I-1-2-2-2-1-.

** [-2- We suppose k' = 1: then k' = 1 = p = 3b, then we have A?" = 4q = (2¢')? = A™ = 24/,

then a = a’? is even and :
0 20
A"B" = Z\fcos— N{Y (\fsm cos3> = p;@sing —2a
and we have also:
A2m LD AMpT — 2’2/551'712; — Zbﬁsin? (1.6.8)

26
The left member of the equation (1.6.8) is a naturel number and also b, then 2\/351'11? can be written

under the form :

2[51 29 k]
Tk

where ki, k; are two natural numbers coprime and k2 | b = b = ky.ks.

“*[-2-1- k' = 1 and k3 # 1: then A?" +2A™B" = k3.ky. Let u be a prime integer so that u | k3. If
#=2=2|Db but2|a,itis a contradiction with a,b coprime. We suppose that p # 2 and yu | k3,
then p | A"(A™ 4+ 2B") = u | A" or u | (A™ +2B").

12-1-1-pu | A" Ifpu | A" = u | A2 = u|4a = u | a. As u | ks = p | b, the contradiction
with a, b coprime.

#*1-2-1-2-u | (A" +2B"): If u | (A" +2B") = u t A™ and u { 2B", then p # 2 and u { B".
u| (A™+2B"), we can write A" +2B" = u.t'. It follows:

A™ 4+ B" = ut' — B" = A* 4 B> + 2A"B" = y?*t"> — 2t uB" + B*"
Using the expression of p, we obtain:
p = t?u? —2t'B"u + B"(B" — A™)
As p =3b=3ky.kz and y | k3 then y | p = p = ./, then we obtain:
W= u(ut” —2t'B") + B"(B" — A™)
and yu | B"(B" — A™) = u | B or u | (B" — A™).

#*1-2-1-2-1- pu | B*: If u | B* = p | B, that is the contradiction with I-2-1-2- above.
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#1-2-1-2-2-p | (B" — A™): If | (B" — A™) and using that p | (A™ + 2B"), we obtain :

p|B"=p|B
U ’ 3B" — or
p=3
#1-2-1-2-2-1- u | B": If u | B* = p | B, that is the contradiction with I-2-1-2- above.
#1-2-1-2-2-2-u = 3: If y =3 = 3 | ks = k3 = 3k}, and we have b = kyks = 3kykj, it follows
p = 3b = 9k,k}, then 9 | p, but p = (A™ — B")2 + 3A™B" then:
9kky —3A™B" = (A™ — B")?
that we write as:
3(3kyky — A™B") = (A™ — B")? (1.6.9)

then:

3| (3koky — A"B") => 3| A"B" =3 | A" or 3| B"
*1-2-1-2-2-2-1- 3 | A™: If 3| A" = 3 | A and we have also 3 | A?", but A>" = 4a = 3 | 4a —
3 | a. As b = 3kyk} then 3 | b, but a, b are coprime, then the contradiction and 3 { A.

* [-2-1-2-2-2-2- 3 | B™: If 3 | B* = 3 | B, but the equation (1.6.9) implies 3 | (A" — B")? = 3 |
(A" — B") = 3 | A" = 3| A. The last case above has given that 3 { A. Then the case 3 | B" is to
reject.

Finally the hypothesis k3 # 1 is impossible.
** 1-2-2- Now, we suppose that k3 =1 = b = ky and p = 3b = 3k;, then we have:

2xf35in239 = % (1.6.10)

with k1, b coprime. We write (1.6.10) as :

0 0 k
4\f35in§cos§ = ?1

Taking the square of the two members and replacing coszg by %, we obtain:

3x4%a(b—a) =k} = ki =3 x4%.4%*(b—a)
it implies that :
b—a=3a% a e N* = b=0d? 430> = k1 = 12d'a

As:
ky =12d'a = A™(A™ 4+ 2B") = 3a = a’ + B"

We consider now that 3 | (b —a) with b = a’?> + 3a®. The case « = 1 gives a’ + B" = 3 that is
impossible. We suppose & > 1, the pair (4’,a) is a solution of the Diophantine equation:

X?4+3Y2=1b (1.6.11)

with X = 4’ and Y = «. But using a theorem on the solutions of the equation given by (1.6.11), b is
written as (see theorem in [7]):

b= 225 X 3t.p§1 cee p(tggqisl Ce q%sr
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where p; are prime numbers verifying p; = 1(mod 6), the g; are also prime numbers so that q; =
5(mod 6), then :

-If s >1=2|b,as 2| a, then the contradiction with 4, b coprime.

-Ift>1=3|b,but3| (b —a) = 3| a, then the contradiction with a,b coprime.

** ]-2-2-1- We suppose that b is written as :

b = pil P p?q%sl .. .q%sf
with p; = 1(mod 6) and q; = 5(mod 6). Finally, we obtain that b = 1(mod 6). We will verify then
this condition.

**1.2-2-1-1- We present the table below giving the value of A + B" = C! modulo 6 in function of the
value of A™, B"(mod 6). We obtain the table below after retiring the lines (respectively the colones)
of A" = 0(mod 6) and A™ = 3(mod 6) (respectively of B" = 0(mod 6) and B" = 3(mod 6)), they
present cases with contradictions:

Table 1.2: Table of C!(mod 6)

A", B" 1 2 4 5
1 2 3 5 0
2 3 4 0 1
4 5 0 2 3
5 0 1 3 4

** 1.2-2-1-1-1- For the case C! = 0(mod 6) and C! = 3(mod 6), we deduce that 3 | C' =3 | C =
C = 3"Cy, with h > 1 and 3 1 C;. It follows that p — B"C! = 3b — 3!'CIB" = A?" — 3 | (A¥" =
4a) = 3 | a = 3 | b, then the contradiction with a,b coprime.

** [.2-2-1-1-2- For the case C' = 0(mod 6), C' = 2(mod 6) and C' = 4(mod 6), we deduce that
2|Cl=2|C= C=2"C;, withh > 1and 2 { C;. It follows that p = 3b = A?" + B"C! =
4a +2""C!B" = 2| 3b = 2| b, then the contradiction with a,b coprime.

** 1-2-2-1-1-3- We consider the cases A" = 1(mod6) and B" = 4(mod6) (respectively B" =
2(mod6)): then 2 | B* = 2 | B = B = 2/B; with j > 1 and 2 { B;. It follows from
3b = AZ" 4 B"Cl = 4a + 21”B¥Cl that 2 | b, then the contradiction with 4, b coprime.

** 1-2-2-1-1-4- We consider the case A™ = 5(mod 6) and B" = 2(mod 6): then 2 | B" ‘
= 2| B= B = 2/B; withj > 1and 2 { B;. It follows that 3b = A?>" + B"C! = 4a + 2/"BiC/,
then 2 | b and we obtain the contradiction with a,b coprime.

** ]-2-2-1-1-5- We consider the case A™ = 2(mod 6) and B" = 5(mod 6):
As A" = 2(mod 6) = A™ = 2(mod 3), then A™ is not a square and also for B". Hence, we can
write A™ and B" as:

A" = ao.yAz
B" = bouB®

where ay (respectively bp) regroups the product of the prime numbers of A™ with exponent 1 (re-
spectively of B") with not necessary (ag, #A) = 1 and (by,uB) = 1. We have also p = 3b =
A% 4 AMBM 4 B2 = (A™ — B")? 4+ 3A"B" = 3 | (b— A"B") = A"B" = b(mod3) but
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b =a+3% = b =a = a?(mod3), then A"B" = a?(mod3). But A" = 2(mod6) =
2a' = 2(mod 6) = 44”? = 4(mod6) = a’> = 1(mod3). It follows that A"B" is a square,
let A"B" = uN? = uA%uB%ag.by. We call uN? = ag.by. Let p; be a prime number so that
p1 | a0 = ap = p1.a1 with p1 1 a1. p1 | ;l/lle = p1 | N1 = uN; = piuNj with t > 1 and
p1 1 uNj, then p%t’lny =a1.bp. As2t >2 = 2t—1>1= py | a1.bp but (p1,a1) = 1, then
p1|bo = p1 | B" = p1 | B. But p1 | (A" = 24’), and p; # 2 because p; | B” and B" is odd, then
the contradiction. Hence, p; | ' = p1 | a. If py = 3, from 3 | (b —a) = 3 | b then the contradic-
tion with a,b coprime. Then p; > 3 a prime that divides A”™ and B", then p; | (p =3b) = p1 | b,
it follows the contradiction with a, b coprime, knowing that p = 3b = 3(mod 6) and we choose the
case b = 1(mod 6) of our interest.

** [-2-2-1-1-6- We consider the last case of the table A™ = 4(mod6) and B" = 1(mod6). We return to
the equation (1.6.11) that b verifies :
b= X>+3Y? (1.6.12)
with X=d; Y=u
and 3a =a + B"
But p = A" + A™B" + B?* = 3b = 3(3a® + a'?) = A?" + C'B" = 34> + 9a2. As A?" = (24')? =

44", we obtain:
9a% — o = C'.B"

Then the pair (3a,4’) € N* x IN* is a solution of the Diophantine equation:
X —y*=N (1.6.13)
where N = C!.B™ > 0.

Let Q(N) be the number of the solutions of (1.6.13) and T(N) the number of ways to write
the factors of N, then we announce the following result concerning the number of the solutions of
(1.6.13) (see theorem 27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].
-If N =0(mod 4), then Q(N) = [t(N/4)/2].

As A" =2a',m >3 = A™ = 0(mod 4). Concerning B", for B" = 0(mod 4) or B" = 2(mod 4), we
find that 2 | B" = 2 | &« = 2 | b, then the contradiction with a, b coprime.

For the last case B" = 3(mod4) = C! = 3(mod4) = N = B"C' = 1(mod4) = Q(N) =
[t(N)/2] > 1.

As (3a,a’) is a couple of solutions of the Diophantine equation (1.6.13) and 3a > 4/, then 3 d,d’
positive integers with d > d’ and N = d.d’ so that :

d+d = 6a (1.6.14)
d—d =24 (1.6.15)

** [-2-2-1-1-6-1 Now, we consider the case d = cl{*lCi where c; is a prime integer with ¢; { C; and
C =c[Cy, r > 1. It follows that d’ = ¢1.B". We rewrite the equations (3.2.36-3.2.37):

r1Ch 4 ¢1.B" = 6a (1.6.16)
r1Ch — ¢.B" = 24/ (1.6.17)

As | > 3, from the last two equations above, it follows that ¢; | (6a) and ¢ | (24’). Then ¢; = 2, or
ci=3and3|a orc; #3|aand 1 | a.
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** [-2-2-1-1-6-1-1 We suppose ¢; = 2. As 2 | (A" =24a') = 2 | a and 2 | C! because | > 3, it follows
2| B", then 2 | (p = 3b). Then the contradiction with a,b coprime.

#* [-2-2-1-1-6-1-2 We suppose ¢1 =3 = ¢1 | (a = 3d’) and ¢; = 3 | a'. It follows that (c; = 3) | (b =
a'? + 3a?), then the contradiction with a, b coprime.

*#* [-2-2-1-1-6-1-3 We suppose ¢1 # 3 and ¢; | 3w and ¢ | a’. It follows that ¢; | a and ¢ | b, then the
contradiction with a, b coprime.

The others cases of the expressions of d and d’ not coprime so that N = B"C! = d.d’ give also
contradictions.

#+ 1.2-2-1-1-6-2 The last case is to consider d = C! and d’ = B", it verifies the two equations (3.2.36-
3.2.37). It is the only suitable factorization of N that gives no contradictions, it follows the contra-
diction with Q(N) = [t(N)/2] < 1. Then the contradiction and the equation (1.6.13) is to reject.

It follows that the condition 3 | (b — a) is a contradiction.

The study of the case 1.6.8 is achieved.

1.69 Case3|pandb |4p

The following cases have been soon studied:
*3|p,b=2=10|4p: case 1.6.1,
*3|p,b=4=Db|4p: case 1.6.2,
*Blp=p=3p,b|p = p =bp”, p” # 1: case 1.6.3,
*3|p,b=3=Db|4p: case 1.6.4,
*Blp=p=3p,b=p = b|4p: case 1.6.8.

** J-1- Particular case: b = 12. In fact 3 | p = p = 3p' and 4p = 12p’. Taking b = 12, we have
b|4p. Butb < 4a < 3D, that gives 12 < 40 < 36 = 3 <a < 9. As2 | band 3 | b, the possible
values of a are 5 and 7.

4 / /
#]1-1-a=5and b = 12 = 4p = 12p' = bp'. But A¥" = ?p% - 525 - 57’7 — 3|y = =
3p” with p” € IN*, then p = 9p”, we obtain the expressions:
AP = 5p” (1.6.18)
B'C! = g <3 - 4(:0522) = 4p” (1.6.19)

As n,1 > 3, we deduce from the equation (1.6.19) that 2 | p” = p” = 2%p; witha > 1 and 2 ¢ p1.
Then (1.6.18) becomes: A?" = 5p” =5 x2%p; => 2| A= A =2'A;,i > 1and 2{ A;. We have
also B"C! = 2¢+2p; =2 | B" or 2 | C'.

**J-1-1-1- We suppose that 2 | B* => B = 2/B;, j > 1 and 2 { By. We obtain BI'C! = 2%2-/np;:

-Ifa+2—jn>0=>2|Cl, there is no contradiction with C! = 2™ A" 4+ 2/"B" = 2 | C! and
the conjecture (3.1.1) is verified.

-Ifa+2—jn=0= B'C' = p;. From C=2"A" 4 2/"B" = 2 | C! that implies that 2 | py,
then the contradiction with 2 { p;.

-Ifa+2—jn < 0= 2""*2BIC! = py, it implies that 2 | p;, then the contradiction as above.
** J-1-1-2- We suppose that 2 | c!, using the same method above, we obtain the identical results.
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_12p 7

4
** J-1-2- We suppose that a = 7 and b = 12 = 4p = 12p’ = bp’. But A?" = ?P 313

S

/
771? = 3| p = p = 9p”, we obtain:
AZm — 7p//
B"C! = g (3 - 4c052§> =2p”

The last equation implies that 2 | B"C!. Using the same method as for the case J-1-1- above, we
obtain the identical results.

We study now the general case. As3 | p = p =3p’ and b | 4p = Jk; € N* and 4p = 12p’ = kb.

#*J2-k =1:1Ifky = 1thenb = 12p/, (p) # 1, if not p = 3 < A?" + B¥ + A™B"). But
4 0 12¢p’ 4y’

AZm — ?p.coszg = 3p g = 13; = % = 3 | a because A?" is a natural number, then the contra-

diction with a, b coprime.

#]3-k; =3:Ifk; = 3, then b = 4p’ and A?" = 43’” coszg = kl; —a=(A")Y=d"= A" =4
The term A™B" gives A™B" = p;f no - g then:
A2 LD AMBN — 2’”3 ; = 2p'/3si n— (1.6.20)

26
The left member of (1.6.20) is an integer number and also p’, then Zﬁsin? can be written under
the form:

2\[51 k2
" ks

where k, k3 are two integer numbers and are coprime and k3 | p’ = p’ = ks.ks.
*#*J-3-1- k4 # 1 : We suppose that k4 # 1, then:

A% L2 AMB" = ko ky (1.6.21)
Let y be a prime number so that y | ky, then p | A™(A™ +2B") = u | A" or u | (A™ + 2B").

#J3-1-1-p | A" M u | A" = u | A2 = p|a. Asyu|ks=u|p = u| (4p' =b). Buta,b are
coprime, then the contradiction.

J-3-1-2-pu | (A" +2B") : If u | (A" +2B") = u{ A™ and pu t 2B", then y # 2 and u { B".
i | (A™+2B"), we can write A™ 4+ 2B" = p.t'. It follows:

AM +Bn — ]/ltl _B" — A2m —|—an +2AmBn —_ Vzt/z —2t’yB” —|—an

Using the expression of p, we obtain p = t?u? — 2¢'B"u + B*(B" — A™). Asp=3p and u | p' =
ul| (3p') = u| p, we can write : Iy’ and p = up’, then we arrive to:

Wop = p(ut” —2¢'B") + B"(B" — A™)
and y | B"(B" — A™) = u | B" or u | (B" — A™).

#7J-3-1-2-1- pu | B" : If u | B" = u | B, it is in contradiction with J-3-1-2-.
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#]-3-1-2-2-pu | (B" — A™) : If u | (B" — A™) and using y | (A™ + 2B"), we obtain :
wlB
ul|3B" =< or
p=3
#*]-3-1-2-2-1- u | B" : If u | B* = u | B, it is in contradiction with J-3-1-2-.

1-3-1-2-2-2- y =3: If y =3 = 3 | ky = kg4 = 3k)}, and we have p’ = kzky = 3ksk), it follows that
p = 3p' = 9ksk,, then 9 | p, but p = (A™ — B")? + 3A™B", then we obtain:

9kskl —3A™B" = (A™ — B")?

that we write : 3(3ksk), — A"B") = (A™ — B")?, then : 3 | (3ksk), — A"B") = 3| A"B" = 3| A™
or 3| B".

*]-3-1-2-2-2-1-3 | A" : If3 | A" = 3| A2 = 3 |a,but3|p = 3| (4p') = 3 | b, then the
contradiction with a,b coprime and 3 1 A.

#*]-3-1-2-2-2-2-3 | B" : If 3 | B" but A™ = ut' — 2B" = 3t — 2B" — 3 | A", it is in contradiction
with 31 A.

Then the hypothesis k4 # 1 is impossible.

** J-3-2- kg = 1: We suppose now that ks =1 = p’ = kzks = k3. Then we have:

zﬂsinzf = ’;2, (1.6.22)
with ky, p’ coprime, we write (1.6.22) as :

.0 0 ko
4\@szn§cos§ = ?

Taking the square of the two members and replacing cosz?3 by % and b = 4p’, we obtain:

3.a(b—a) =k
As AP = g = ¢, it implies that :
3|(b—a), and b—a=0b—a?=3a% acN*

As ky = A™(A™ + 2B") following the equation (1.6.21) and that 3 | k, = 3 | A"(A™ 4 2B") —
3| A™or 3| (A™+2B").

** J-3-2-1- We suppose 3 | A™: If 3 | A" = 3 | A = 3 | a,but3 | (b —a) = 3| b, then the
contradiction with a, b coprime.

** ]-3-2-2- We suppose 3 | (A™ +2B") = 31 A" and 31 B". As k3 = 9aa® = 9a?a®? = k, = 3d'a =
A™(A™ +2B"), then :
3q = A™ 4 2B" (1.6.23)

As b can be written under the form b = a’? + 342, then 3b = 12p’ = 4p = 3a’? 4 9a?, we obtain that
the pair (3a,a’) verifies:
9a* — a'> = 4B"C’
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Then the couple (3, a") is a solution of the Diophantine equation:
x> —y*=N (1.6.24)

with N = 4B"C! = 0(mod 4). As seen above, we will use the theorem 27.3 in in [7]:

Theorem 1.6.1. Let Q(N) be the number of the solutions of (1.6.24) and T(N) the number of ways to
write the factors of N, then we announce the following result concerning the number of the solutions
of (1.6.24) :

-If N =2(mod 4), then Q(N) = 0.

-IfN=1or N =3(mod 4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

For our case, Q(N) = [t(N/4)/2].

As (3a,a’) is a couple of solutions of the Diophantine equation (1.6.24) and 3a > a’, then 3 d,d’
positive integers with d > d’ and N = d.d’ so that :

d+d = 6 (1.6.25)
d—d =24 (1.6.26)

** J-3-2-2-1 We begin to consider the case d = 4B"C!,d" = 1, we obtain:

4B"C' +1 = 6u
4B"C! — 1 =24’ = 2(2B"C! — a’) = 1 = then the contradiction

++7-3-2-2-2 We consider the case d = 2B"C!,d’ = 2, we obtain:

2B"C' +2 = 6u
2B"C! —2 =24’ = A™(B" — 1) + B?* = 1 = then the contradiction

++7.3-2-2-3 We consider the case d = B"C!,d’ = 4, we obtain:

B"C!' 4+ 4 = 6u

— 2B"C! = 60 + 24’ = B"C! =3a +d' = 2C!
B"C' —4 =24’

Then the contradiction.

**J-3-2-2-4 We consider the case d = b;"_lB?Cl and d’ = 4b; where B = b"B; with by a prime integer,
r > 1and by { By, By > 1, we obtain:

b IBIC! + 4by = 6a
b IBrCl — 4by = 24

The first equation of the system above gives by (0" ?BIC! +4) = 6a.

- If by = 3 = 3|B", then the contradiction with 3 { B".

-If by = 2 = 2|B", from the second equation, we obtain Zr”_zB?Cl —4=4. Asn >3 =
rm—2>1=2|a’ = 2|a. But 2" 2BC! 4+ 4 = 3x = 2|a = 2|b. Then the contradiction with a,b
coprime.

- If by # 2,3 it follows by |a and by|a’ = by|a, then by |(b = 3a® + a?) and b;|a. Then the contra-
diction with a, b coprime.
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#+7-3-2-2-5 Now we consider the case d = 4C!,d’ = B" = d > d’, we obtain:

4C! + B" = 6

(1.6.27)
4C! — B" = 24’

The first equation of the system (1.6.27) gives 2A™ + B" = 0, then the contradiction and the case
d = 4C!,d" = B" is rejected.

*#* J.3-2-2-6 Now we consider the case d = 2C!,d’ = 2B" = d > d’, we obtain:

2C! +2B" = 6

(1.6.28)
2C! —2B" =24’

The first equation of the system (1.6.28) gives C' + B" = 3x = 3a = A™ + 2B", the second equation
gives A™ = a’, then there are no contradictions.
** J-3-2-2-7 Now we consider the case d = C!,d’ = 4B" supposing C' > 4B", we obtain:

C! +4B" = 61 Lo
C! — 4B" =24/ (1629)

The first equation of the system (1.6.29) gives A™ = B", then the contradiction and the case
d = C!,d" = 4B" is rejected.
** J-3-2-2-8 Now we consider the case d = C!,d’ = 4B" supposing C' < 4B", we obtain:

4B" + Cl = 6a .
1Bl — oyt (1.6.30)

The first equation of the system (1.6.30) gives A™ = B", then the contradiction and the case
d = 4B",d’' = C! is rejected.

** J-3-2-2-9 Now, we consider the case d = 4cll”1Ci where ¢ is a prime integer with ¢; t C; and
C =c[Cy, r > 1. It follows that d’ = ¢1.B". We rewrite the equations (1.6.25-1.6.26):

4cr1Ch 4 ¢1.B" = 6a

(1.6.31)
4cr1CL — ¢.B" = 24

As | > 3, from the last two equations above, it follows that ¢; | (6a) and ¢ | (24’). Then ¢; = 2, or
ci=3and3|a’ orc; #2,3|aand 1 | 4.

** ]-3-2-2-9-1 We suppose ¢; = 2. We obtain A™ + 2B" = 3a and C' — B" = A™, then no contradic-
tions.

*#* J-3-2-2-9-2 We suppose c1 = 3 and ¢; | (a’ = A™), then the contradiction because 3 1 A™.

** ]-3-2-2-9-3 We suppose ¢; # 2,3 |aand ¢; | (a/ = A™) = ¢1 | (a = a?) and ¢1 | B" = ¢1 |
p = c1 | (3b = 4p, then the contradiction with 4, b coprime.

The others cases of the expressions of d and d’ not coprime so that N = B"C! = d.d’ give also
contradictions.
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** J-3-2-2-10 Now, we consider the case d = 2cllr*1C{ where c; is a prime integer with ¢; 1 C; and
C = c[Cy, r > 1. It follows that d’ = 2c1.B". We rewrite the equations (1.6.25-1.6.26):

2c11’_1Ci +2¢1.B" = 6u . cl{_lCi +¢1.B" = 3u

(1.6.32)
2cl{_1Ci —2¢1.B" =24’ cl{_lq —c1.B" =4

As [ > 3, from the first equation of the last system (1.6.32) we obtain c¢1|3a = ¢1|3a%. From the

second equation of the same system ¢1|a’ = c1]a, but b = 3a® + 4%, it follows that ¢ | b. Then the

contradiction with a, b coprime.

** J-3-2-2-11 Now, we consider the case d = cl{’lCi where c; is a prime integer with ¢; 1 C; and
C = |Cy, r > 1. It follows that d’ = 4c;.B". Considering d > d’, we rewrite the equations (1.6.25-
1.6.26):

cl{_lq +4¢1.B" = 6a

(1.6.33)
cl{_lq —4¢q1.B" =24’

It follows ¢; = 2 or 2|C; = 2|C’. For the two cases, we verifies easily that 2|a and 2|a, then 2|b and
the contradiction with a,b coprime. We obtain the same result if d = 4¢1.B" > d' = cl{_lq.

** J-3-2-2-12 Now, we consider the case d = cl{_lCi where c; is a prime integer with ¢; { C; and
C = c|Cy, v > 1. Tt follows that d’ = 4c;.B". Considering d > d’, we rewrite the equations (1.6.25-
1.6.26):

cl{’lCi +4c¢q.B" = 6u

(1.6.34)
cl{’lCi —4c¢1.B" =24’

It follows ¢; = 2 or 2|C; == 2|C. For the two cases, we verifies easily that 2|a and 2|«, then 2|b and
the contradiction with 4, b coprime. We obtain the same result if d = 4¢1.B" > d' = cllr’lCi.

In conclusion, the only suitable factorization of N that gives no contradictions is N = 2C'.2B" =
d.d" with d = 2C!,d' = 2B", as T(N) is large, then 1 < Q(N) = [t(N)/2]. It follows the contradic-
tion and the equation (1.6.13) is to reject.

We have achieved the study of the case ]J-3-2-2- . It gives contradictions.

** J-4- We suppose that ki1 # 3 and 3 | ki = k; = 3k} with k| # 1, then 4p = 12p’ =
/
kib = 3kib = 4p’ = Kib. A*" can be written as A*" = 4?pcoszg = 3];117; = kia and B"C! =
k/
g 3— 4c052§ = Zl(% —4a). As B"C! is an integer number, we must have 4 | (3b —4a) or 4 | k|
or 2|k} and 2 | (3b — 4a)].

** J-4-1- We suppose that 4 | (3b — 4a).

** J-4-1-1- We suppose that 3b —4a =4 =>4 | b = 2 | b. Then, we have:

A?" = Kia
B"C! =Kk

** J-4-1-1-1- If k| is prime, from B"C' = kj, it is impossible.

**J-4-1-1-2- We suppose that k} > 1 is not prime. Let w be a prime number so that w | k}.
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**J-4-1-1-2-1- We suppose that k] = w®, with s > 6. Then we have :

A" = wa (1.6.35)
B'Cl = & (1.6.36)

** J-4-1-1-2-1-1- We suppose that w = 2. If 4,k} are not coprime , then 2 | 4, as 2 | b, it is the
contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose w = 2 and a,k} are coprime, then 2 { a. From (1.6.36), we deduce
that B=C =2and n+1 = 5, and A?" = 254, but A" = 2/ - 2" = A2 = (2! —2")2 =
220 4 22n (M) = 221 4 221 D % 25 = 24 == 2% + 22" = 25(a+2). If | = n, we obtain
a = 0 then the contradiction. If | # n, as A™ = 202" > 0 = n < | = 2n < s, then
221 (1 4 2272 _psH1=2m)y — gl g We call | = n+np = 142272 —25F1=20 — 2m g but the
left member is odd and the right member is even, then the contradiction. Then the case w = 2 is
impossible.

** J-4-1-1-2-1-3- We suppose that k} = w® with w # 2:

** J-4-1-1-2-1-3-1- Suppose that a,k} are not coprime, then w | 4 = a = w'.a; and ¢ t a;. Then, we
have:

AP = Wty (1.6.37)
B"C! = w* (1.6.38)

From (1.6.38), we deduce that B" = w",C" = w!, s =n+land A" = ' —w" >0 =1 > n.
We have also A?" = w'ttay = (W — w")? = W + W =2 x w®. As w # 2 = w is odd, then
A = @ty = (w' — w")? is even, then 2 | a; = 2 | 4, it is in contradiction with a,b coprime,
then this case is impossible.

** J-4-1-1-2-1-3-2- Suppose that a, k) are coprime, with :

AP = wa (1.6.39)
B"C! = w* (1.6.40)

From (1.6.40), we deduce that B" = ", C! = w! and s = n+1. As w # 2 = w is odd and
AP = w.a = (w' — w")? is even, then 2 | a. It follows the contradiction with a,b coprime and this
case is impossible.

** J-4-1-1-2-2- We suppose that k] = w®.kp, with s > 6, w { k. We have :

A% = o ky.a
BnCl = a}s.kz

** J-4-1-1-2-2-1- If k; is prime, from the last equation above, w = ky, it is in contradiction with w 1 kj.
Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that kj = w®.kp, with s > 6, w t k, and k; not a prime. Then, we have:

A% = @ ky.a
B"C! = w'ky (1.6.41)
** J-4-1-1-2-2-2-1- We suppose that w,a are coprime, then w { a. As A?" = W’hkra — w | A =

A = w'.A; withi > 1 and w { Ay, then s = 2i.m. From (1.6.41), we have w | (B"C!) = w | B" or
w | Cl.
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** ]-4-1-1-2-2-2-1-1- We suppose that w | B* = w | B== B = w/.B; with j > 1 and w { B;. then :
Bizcl — wZimfjnkz

-1f 2im — jn > 0, w | C' = w | C, no contradiction with C' = w™ A" + w/"B} and the conjecture
(3.1.1) is verified.

-If 2im — jn = 0 = B/C! = ky, as w { ky => w { C/, then the contradiction with w | (C! =
A"+ B").

-1t 2im—jn < 0 = wf”_ZimBilCl = kp = w | ky, then the contradiction with w { k.

** J-4-1-1-2-2-2-1-2- We suppose that w | C'. Using the same method used above, we obtain identical
results.

** J-4-1-1-2-2-2-2- We suppose that 4, w are not coprime, then w | a = a = w'.a; and w { a;. So we
have :

AP = W kg (1.6.42)
B"Cl = W ky (1.6.43)

As A" = Wt kpa = w | A = A = w'A; withi > 1 and w { Ay, then s +t = 2im. From
(1.6.43), we have w | (B"C!) = w | B" or w | C.

** ]-4-1-1-2-2-2-2-1- We suppose that w | B* = w | B== B = w/B; with j > 1 and w { B;. then:
B{lcl — w2im—t—jnk2
-If2im—t—jn >0, w | Cl—= w | C, no contradiction with Ccl = cuimAT + wf”Bl” and the conjecture
(3.1.1) is verified.
-lf2im—t—jn =0 = B?C’ = ky, As w { kp = w t C!, then the contradiction with

w | (Cl= A™ 4 B"). ' '
-lf2im—t—jn <0 = w]"“_z””BilCl = ky = w | ky, then the contradiction with w 1 k.

** J-4-1-1-2-2-2-2-2- We suppose that w | C'. Using the same method used above, we obtain identical
results.

**J-4-1-2-3b —4a # 4 and 4 | (3 — 4a) = 3b — 4a = 4°Q) with s > 1 and 4 { Q). We obtain:

A% = Kia (1.6.44)
B"C! = #7K0 (1.6.45)

** J-4-1-2-1- We suppose that k] = 2. From (1.6.44), we deduce that 2 | a. As 4 | (3b —4a) = 2| b,
then the contradiction with a, b coprime and this case is impossible.

** J-4-1-2-2- We suppose that k| = 3. From (1.6.44) we deduce that 3° | A%™. From (1.6.45), it follows
that 3% | B" or 3% | C'. In the last two cases, we obtain 3% | p. But 4p = 3k}b = 9b => 3 | b, then the
contradiction with a, b coprime. Then this case is impossible.

** J-4-1-2-3- We suppose that k) is prime > 5:

** J-4-1-2-3-1- Suppose that k} and a are coprime. The equation (1.6.44) gives (A™)? = k/.a, that is
impossible with k) 1 a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k| and a are not coprime. Let k| | 4 = a = k{*a; with « > 1 and k] 1 a;.
The equation (1.6.44) is written as :

AP = Kha = ke
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The last equation gives k| | A?" = k| | A = A = k}.Ay, with K} 1 Ay. If 2im # (a+ 1), it is
impossible. We suppose that 2i.m = a + 1, then k} | A™. We return to the equation (1.6.45). If k
and ) are coprime, it is impossible. We suppose that k] and Q) are not coprime, then k} | Q and
the exponent of k} in Q) is so the equation (1.6.45) is satisfying. We deduce easily that k] | B". Then
K2 | (p = A" + B>" + A™B"), but 4p = 3k|b = k| | b, then the contradiction with a, b coprime.

** J-4-1-2-4- We suppose that k} > 4 is not a prime.

** J-4-1-2-4-1- We suppose that k| = 4, we obtain then A?" = 4a and B"C' = 3b —4a = 3p’ — 4a.
This case was studied in the paragraph 1.6.8, case ** I-2-.

—————— e suppose that k7 > 4 1s not a prime.
** J-4-1-2-4-2- We supp hat kj > 41i pri
** J-4-1-2-4-2-1- We suppose that a, k] are coprime. From the expression A?" = k.a, we deduce that
a = a% and k} = k3. It gives :
A" = al.k”l
Bncl — 45_1](”%.0
Let w be a prime so that w | k”; and k"1 = w'.k”; with w t k”;. The last two equations become :

A" = a0 k7 (1.6.46)
B"C! = 45 1w k2.0 (1.6.47)

From (1.6.46), w | A" = w | A = A = w'.A; with w | A1 and im = t. From (1.6.47), we obtain
w|B'"C' = w|B"orw | C.

“* J-4-1-2-4-2-1-1- If w | B" = w | B = B = w/.B; with w { B;. From (1.6.46), we have
BiC! = w-ings—1k"3.Q).

** ]-4-1-2-4-2-1-1-1- If w = 2 and 2t Q, we have B/C' = 2%+%/1=2k"2 (): ‘
-1f 2t + 25 — jn — 2 < 0 then 2 1 C!, then the contradiction with C! = w™ Al + w/"BY.
-1f2t+2s —jn —2 >1=2| C' = 2| C and the conjecture (3.1.1) is verified.

#* J-4-1-2-4-2-1-1-2- If w = 2 and if 2 | QO = Q = 2.0 because 4 { (), we have B?Cl =
22t+25+17j.n72k//%(21:

-If 2t +2s — jn —3 < 0 then 2 ¢ C!, then the contradiction with C! = wi’”AT + wf”Bf.
-1f2t+2s—jn —3 >1=2| C' = 2| C and the conjecture (3.1.1) is verified.

** J-4-1-2-4-2-1-1-3- If w # 2, we have B{C! = w? /"4~ 1 k"3.00: ‘
-If 2t — jn <0 = w { C! it is in contradiction with C! = w™ A" + w/"BY.
If 2t — jn > 1= w | C' = w | C and the conjecture (3.1.1) is verified.

#* J-4-1-2-4-2-12- lf w | C' = w | C = C = w".Cy, with w { C;. Using the same method as in the
case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k| are not coprime. Let w be a prime so that w | a and w | k. We
write:

a=w".a
k/l = w”.k”l

with a1, k"1 coprime. The expression of A% becomes A2 = w*tH a1.k",. The term B"C! becomes:

B"C! = 4571wt k71.Q (1.6.48)
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* J-4-1-2-4-2-2-1- If w = 2 = 2 | a, but 2 | b, then the contradiction with a,b coprime, this case is
impossible.

** J-4-1-2-4-2-2-2- If w > 3, we have w | a. If w | b then the contradiction with a,b coprime. We
suppose that w { b. From the expression of A%", we obtain w | A>" = w | A = A = w'.A; with
w{ Ay, i>1and 2i.m = « + . From (1.6.48), we deduce that w | B" or w | cl.

** J-4-1-2-4-2-2-2-1- We suppose that w | B" = w | B = B = w/By with w { By and j > 1. Then,
BiC! = 4~ k=i k"1.Q)

*wtQ):

-If y — jn > 1, we have w | C! => w | C, there is no contradiction with C! = w™A" + w/" B!
and the conjecture (3.1.1) is verified.

-If 4 — jn <0, then w 1 C and it is a contradiction with C! = w™ A" + w/"B?. Then this case is
impossible.

*w | Q: we write QO = wP.Oq with B> 1and w1t Q. As 3b—4a = 4.0 = £.wP.0) = 3b =
da + 4°.wP.Oy = 4w*.a; + £.0P.Q = 3b = dw(w* Lay + 4 LwPLOy). fw=3and =1, we
obtain b = 4(3*1a; +4°"10);) and B{ZCI = g5~ 13utl=jn 7 0.

-If p —jn+1 > 1, then 3 | C! and the conjecture (3.1.1) is verified.

-Ifu—jn+1<0, then 3¢ C! and it is the contradiction with C! = 3””/1{” + 3j”B{’.

Now, if B > 2 and a = im > 3, we obtain 3b = 4w?(w®2a; + 45 'whP~2()). If w = 3 or not, then
w | b, but w | a, then the contradiction with a,b coprime.

** J-4-1-2-4-2-2-2-2- We suppose that w | C! = w | C = C = w"C; with w { C; and h > 1. Then,
B”Ci = 45" 1r—H |, Q). Using the same method as above, we obtain identical results.

** J-4-2- We suppose that 4 | k}.

* J-4-2-1- ki = 4 = 4p = 3k}b = 12b = p = 3b = 3p/, this case has been studied (see case I-2-
paragraph 1.6.8).
]-4-2-2- k) > 4 with 4 | k] = k| =4°k"; and s > 1, 4 { k”;. Then, we obtain:
A2m — 4:Sk”1ﬂ — 22Sk”1€l
B"C! = 4" k"1 (3b — 4a) = 2% %k"1(3b — 4a)
** J-4-2-2-1- We suppose that s = 1 and k| = 4k”; with k”; > 1, so p = 3p’ and p’ = k”1b, this is the
case 1.6.3 already studied.
----- e suppose that s > 1, then k7 = 1 — =3 X 1b and we obtain:
** ]-4-2-2-2- We supp h 1, then k| = 4°k” 4p = 3 x 4°k”1b and btai
AP = &5k a (1.6.49)
B"C! = 457 1k"(3b — 4a) (1.6.50)

** J-4-2-2-2-1- We suppose that 2 t (k”1.a) => 21 k”; and 2 { a. As (A™)? = (2%)2.(k";.a), we call
d? = k”1.a, then A" = 25d = 2 | A" = 2 | A = A = 2/A; with 2 A; and i > 1, then:
2imAmM = 25 d = s = im. From the equation (1.6.50), we have 2 | (B"C') = 2| B" or 2 | C".

** ]-4-2-2-2-1-1- We suppose that 2 | B* = 2 | B = B = 2/.B;, with j > 1 and 2 B;. The equation
(1.6.50) becomes: ' o
BTCI — 225—]n—2k//1 (3b _ 4a) — 221m—]n—2k,/1 (3b _ 4&)

* We suppose that 2 { (3b — 4a):
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- If 2im — jn —2 > 1, then 2 | C/, there is no contradiction with C! = 2" A" + 2/"B" and the
conjecture (3.1.1) is verified. ‘ _
- If 2im — jn — 2 < 0, then 2 { C!, then the contradiction with C! = 2/ A" 4 2/" B!

* We suppose that 2* | (3b — 4a), u > 1:

-1f2im+pu—jn—2>1,then?2 | C!, no contradiction with C! = 21"”A’1’1 + 27”Bf and the conjecture
(3.1.1) is verified.

-If 2im+pu—jn—2 <0, then2¢ C!, then the contradiction with C! = 2””14’1’1 + 27”B{1.

** 1-4-2-2-2-1-2- We suppose that 2 | C! = 2 | C = C = 2".C;, with h > 1 and 2 { C;. With the
same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2 | (k”1.4):
** J-4-2-2-2-2-1- We suppose that k”; and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 {a and 2 | k”; => k”; = 2% k"5 and a = a3, then the equations
(1.6.49-1.6.50) become:

AP = 45 02203 — A = 25TH K750 (1.6.51)
B"C! = 47 12%k"2(3b — 4a) = 2212 2k"3(3b — 4a) (1.6.52)

The equation (1.6.51) gives 2 | A" = 2 | A = A = 21.A; with2{ A, i > 1 and im = s + p. From
the equation (1.6.52), we have 2 | (B"C!) =2 | B" or 2 | C\.

** J-4-2-2-2-2-1-1-1- We suppose that 2 | B* = 2 | B = B = 2/.By, 2 { By and j > 1, then
BiCl = 22%t21=in=2k"3(3h — 4a):

* We suppose that 2 { (30 — 4a):

-If 2im + 2 — jn — 2 > 1 = 2 | C!, then there is no contradiction with C! = 2" A" 4 2/" B! and
the conjecture (3.1.1) is verified.

-If 2im +2p — jn —2 < 0 = 24 C!, then the contradiction with C! = 2" A" 4 2" B,

* We suppose that 2* | (3b —4a), « > 1 so that 4, b remain coprime:

-If 2im 4+ 2u +a — jn —2 > 1 = 2 | C!, then no contradiction with C! = 2™ A" 4 2/"B" and the
conjecture (3.1.1) is verified.

-If2im +2u +a — jn —2 < 0 = 24 C!, then the contradiction with C' = 2™ A% 4 2/" B2,

** J-4-2-2-2-2-1-1-2- We suppose that 2 | C' = 2 | C = C = 2".C;, with h > 1 and 2 { C;. With the
same method used above, we obtain identical results.

** J-4-2-2-2-2-1-2- We suppose that 21 k”; and 2 | a = a = 2%.a% and k”; = k”3, then the equations
(1.6.49-1.6.50) become:

AP = 43 M a3k"5 = A™ = 25TH a1 k7. (1.6.53)
B"C' = 4°k"5(3b — 4a) = 2% 2k"3(3b — 4a) (1.6.54)

The equation (1.6.53) gives 2 | A" = 2 | A = A = 21.A; with2{ Ay, i > 1 and im = s + p. From
the equation (1.6.54), we have 2 | (B"C!) =2 | B" or 2 | C\.

** J-4-2-2-2-2-1-2-1- We suppose that 2 | B* => 2 | B= B = 2/.B;,2{ B; and j > 1. Then we obtain
BiCl = 2%-in=2k"3(3b — 4a):

* We suppose that 2 { (3b —4a) = 2t b:
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-If2im—jn—2>1=2| C!, then no contradiction with C! = 21"”A’1’1 + Zj”Bf and the conjecture
(3.1.1) is verified. ' ‘
-If 2im — jn —2 < 0 = 21 C!, then the contradiction with C! = 2" A" 4 2i"BlI.

* We suppose that 2* | (3b — 4a), « > 1, in this case a, b are not coprime, then the contradiction.

** ]-4-2-2-2-2-1-2-2- We suppose that 2 | C! = 2 | C = C = 2".C;, with & > 1 and 2 { C;. With the
same method used above, we obtain identical results.

** J-4-2-2-2-2-2- We suppose that k”; and a are not coprime 2 | a and 2 | k”;. Let a = 2'.a; and
k”1 = 2Mk”5 and 2 { a; and 2 1 k”,. From (1.6.49), we have y +t = 2A and a;.k”, = w?. The equations
(1.6.49-1.6.50) become:

AP = &5k = 2220k 2 g = 25T Wt = AT =2 w (1.6.55)
B"C! = 457121k, (3b — 4a) = 2211 2k"(3b — 4a) (1.6.56)

From (1.6.55) we have 2 | A" =2 | A = A =2'A1,i > 1and 2{ A;. From(1.6.56), 25 + u —2 > 1,
we deduce that 2 | (B"C') =2 | B" or 2 | C\.

** J-4-2-2-2-2-2-1- We suppose that 2 | B" = 2 [ B= B = 2/.B1, 21 By and j > 1. Then we obtain
BiCl = 2% +u=in=2k"2(3p — 4a):

* We suppose that 2 { (30 — 4a):

- 2s+pu—jn—-2>1= 2| C!, then no contradiction with C! = ZimAT + Zj”B’f and the
conjecture (3.1.1) is verified. ‘ '
SIf2s+u—jmn—2<0=2¢ C!, then the contradiction with C! = 2 AN 4 2 BY

* We suppose that 2 | (3b — 4a), for one value « > 1. As 2 | a, then 2* | (3b —4a) = 2 |
(3b — 4a) = 2| (3b) = 2| b, then the contradiction with a,b coprime.

** 1-4-2-2-2-2-2-2- We suppose that 2 | C' = 2 | C = C = 2".C;, with h > 1 and 2 { C;. With the
same method used above, we obtain identical results.

** J-4-3- 2 | k] and 2 | (3b — 4a): then we obtain 2 | k} = k} = 2'.k”; with t > 1 and 2 { k"3,
2| (3b—4a) = 3b —4a = 2'.d with y > 1 and 2 1 d. We have also 2 | b. If 2 | a, it is a contradition
with a, b coprime.

We suppose, in the following, that 2 { a. The equations (1.6.49-1.6.50) become:

AP =2t k7.0 = (A™M)? (1.6.57)
B'C! =2tk 201 d = 2t E 2k 4 (1.6.58)

From (1.6.57), we deduce that the exponent f is even, let t = 2A. Then we call w? = k”1.a, it gives
A" =20 w = 2| A" = 2| A= A =2\.A; withi > 1and 2| A;. From (1.6.58), we have
2A+u—2>1,then2| (B"C') = 2| B"or2| C:

** J-4-3-1- We suppose that 2 | B" = 2 | B => B = 2/B;, with j > 1 and 2 { B;. Then we obtain
BiCl = 22Mu=in=2 k7, 4.

-2 A+ pu—jn—2>1=2| C! = 2| C, there is no contradiction with C! = 2imA1m + 2f”B1”
and the conjecture (3.1.1) is verified.

-If2s+t+pu — jn —2 < 0 = 2 C, then the contradiction with C' = 2™ A" 4 2/" B!

** ]-4-3-2- We suppose that 2 | C' = 2 | C. With the same method used above, we obtain identical
results.
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O

The Main Theorem is proved.

1.7 Examples and Conclusion

1.7.1 Numerical Examples
Example 1:

We consider the example : 6% + 3% = 3° with A" = 63, B" = 3% and C! = 3°. With the notations
used in the paper, we obtain:

p=3"%x73 g=8x3"1, A=4x3803"x42-73%) <0

38 x 731/73 4x3x+/3
=——, ¢c0sh=———""— (1.7.1)
V3 73\/73
4 ) A2 24
As A" = —p.coszg — c0s%~ = 3 = 3x _2 — g =3 x 2% b= 73; then we obtain:
3 3 3 4p 73 b
0 43 6
c0S— = ——, =3%b 1.7.2
3= P (172

We verify easily the equation (1.7.1) to calculate cos® using (1.7.2). For this example, we can use
the two conditions from (1.4.9) as 3 | a,b | 4p and 3 | p. The cases 1.5.4 and 1.6.3 are respectively
used. For the case 1.5.4, it is the case B-2-2-1- that was used and the conjecture (3.1.1) is verified.
Concerning the case 1.6.3, it is the case G-2-2-1- that was used and the conjecture (3.1.1) is verified.

Example 2:

The second example is: 74+ 73 = 143, We take A™ = 74 B" = 7% and C! = 143. We obtain
p = 57 x 7 = 3 x 19 x 7°, qg = 8§x 710 A = 27q2—4p3 = 27 x4 x 718(16 x 49 — 193) =

4x7 4 0
7 xAXTE 6075 < 0, p=19x7 x V19, cosb = — L As A = P o) —
, , 194/19 3 3
m
coszg = 34 = 7 _ 1 = a="72,b=4x19, then cosg = 7 and we have the two
3 4p  4x19 b 3 2V19

principal conditions 3 | p and b | (4p). The calculation of cosf from the expression of cosg is

confirmed by the value below:

0 0 7 \° 7 4x7
c0s0 = c0s3(0/3) = 4cos®~ — 3cos~ = 4 <> -3 = —
( ) 3 3 24/19 2v/19 19v19

Then, we obtain 3 | p = p = 3p/, b | (4p) with b # 2,4 then 12p’ = kib = 3 x 7%D. It concerns the
paragraph 1.6.9 of the second hypothesis. As k; = 3 x 76 = 3k} with k] = 7% # 1. It is the case
J-4-1-2-4-2-2- with the condition 4 | (3b — 4a). So we verify :

3b—4a=3x4x19—-4x7>=32= 4| (3b— 4a)
with A?" =78 =76 x 72 = k{.a and k] not a prime, with a and k| not coprime with w =7 { Q(= 2).

We find that the conjecture (3.1.1) is verified with a common factor equal to 7 (prime and divisor of
K = 7°).
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Example 3:

The third example is: 19* 4 38% = 57° with A™ = 19*, B" = 38% and C! = 57%. We obtain p =
190 x 577, q =8x27x1910, A =274 —4p3 = 4 x 1918278 x 16 x 19> —577%) < 0, p =

19° x 577+/577 4x3*x1 4 A 192
X—, cost) = —M. As A?" = —p.coszg = COSzQ = 3 = 3x19 =

3V3 577\/577 3 3 3 4p  4x577
a 5 0 193 . .
— — a =3x19%, b = 4 x 577, then cos= = and we have the first hypothesis 3 | a and
b 3 2577
b | (4p). Here again, the calculation of cosf from the expression of cosg is confirmed by the value
below:

3
4
cos = cos3(0/3) = 4c053€ - 3cos€ =4 19v3 -3 19v3 _ _4x3x 19v3
3 3 2+/577 2v/577 577+/577

Then, we obtain 3 | a = a =34’ =3 x 192, b | (4p) with b # 2,4 and b = 4p’ with p = kp' soit p’ =
577 and k = 19°. This concerns the paragraph 1.5.8 of the first hypothesis. It is the case E-2-2-2-2-1-
with w = 19, a’, w not coprime and w = 191 (p' —a') = (577 —19?) withs —jn =6—-1x3 =3 > 1,
and the conjecture (3.1.1) is verified.

1.7.2 Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases,
using elementary number theory and the results of some theorems about Diophantine equations.
We have confirmed the method by three numerical examples. In conclusion, we can announce the
theorem:

Theorem 1.7.1. Let A, B,C, m,n, and | be positive natural numbers with m,n,l > 2. If :

A" 4+ B" =C! (1.7.3)

then A, B, and C have a common factor.
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Chapter 2

Is The Riemann Hypothesis True? Yes It
Is

Abstract

In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Rie-
mann Hypothesis : The nontrivial roots (zeros) s = o + it of the zeta function, defined by:

+001

7(s) =Y, . for R(s) > 1

n=1

1
have real part ¢ = 5

. 1 . . . . .
We give a proof that o = 5 using an equivalent statement of the Riemann Hypothesis concerning the

Dirichlet 1 function.

Résumé

En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture suivante, dite Hypothese
de Riemann: Les zéros non triviaux s = o + it de la fonction zeta définie par:

+00

I(s)=)_ %, pour R(s)>1

n=1

. 1
ont comme parties réelles o = 5

On donne une démonstration que o = 5 en utilisant une proposition équivalente de I’"Hypothése de Riemann.

2.1 Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 2.1.1. Let {(s) be the complex function of the complex variable s = o + it defined
by the analytic continuation of the function:

—+o0

Gi(s) =), %f for R(s) =c >1

n=1

over the whole complex plane, with the exception of s = 1. Then the nontrivial zeros of
{(s) = 0 are written as :

s—1+it
2

\. J

In this paper, our idea is to start from an equivalent statement of the Riemann Hypothesis,
namely the one concerning the Dirichlet # function. The latter is related to Riemann’s { function
where we do not need to manipulate any expression of {(s) in the critical band 0 < R(s) < 1. In
our calculations, we will use the definition of the limit of real sequences. We arrive to give the proof

1
that o = —.
ato =3

2.1.1 The function (.
We denote s = ¢ + it the complex variable of C. For R(s) = ¢ > 1, let {; be the function defined by

+001

Ti(s) =Y - for R(s)=0>1
n=1
We know that with the previous definition, the function {; is an analytical function of s. Denote by
{(s) the function obtained by the analytic continuation of {1 (s) to the whole complex plane, minus
the point s = 1, then we recall the following theorem [2]:

Theorem 2.1.2. The function {(s) satisfies the following :

1. {(s) has no zero for R(s) > 1;

2. the only pole of {(s) is at s = 1; it has residue 1 and is simple;

3. {(s) has trivial zeros at s = =2, —4,...;

4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the critical strip) and are symmetric

about both the vertical line R(s) = % and the real axis J(s) = 0.

The vertical line R(s) = % is called the critical line.

The Riemann Hypothesis is formulated as:

Conjecture 2.1.3. (The Riemann Hypothesis,[2]) All nontrivial zeros of {(s) lie on the critical

line R(s) = >

In addition to the properties cited by the theorem 2.1.2 above, the function {(s) satisfies the
functional relation [2] called also the reflection functional equation for s € C\{0,1} :

{(1—s)= 21’Sn’scos%r(s)§(s) (2.1.1)
where T'(s) is the gamma function defined only for £(s) > 0, given by the formula :

T(s) = / Tetrlat, R(s) >0
0
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So, instead of using the functional given by (2.1.1), we will use the one presented by G.H. Hardy [3]
namely Dirichlet’s eta function [2]:

n

- (_1)11—1 1-s
n(s) =), —5—=(1-27){(s)
n=1
The function eta is convergent for all s € C with R(s) > 0 [2].

We have also the theorem (see page 16, [3]):

Theorem 2.1.4. Forall t € R, {(1 +it) # 0.

So, we take the critical strip as the region defined as 0 < $(s) < 1.

2.1.2 A Equivalent statement to the Riemann Hypothesis.

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet function eta
which is stated as follows [2]:

Equivalence 2.1.5. The Riemann Hypothesis is equivalent to the statement that all zeros of
the Dirichlet eta function :

—+o0
n(s)=Y_ = (1-2"97(s), o>1 (2.1.2)

1
that fall in the critical strip 0 < R(s) < 1 lie on the critical line £(s) = =

The series (2.1.2) is convergent, and represents (1 —217%)Z(s) for R(s) = ¢ > 0 ([3], pages 20-21).
We can rewrite:
(-1

n(s) = f n)sn_l = (1-2"97(s), R(s)=c>0 (2.1.3)
n=1

1(s) is a complex number, it can be written as :

n(s) = p.e™ = p* = 5(s)n(s) (2.1.4)

and 7(s) =0 <= p = 0.

2.2 Preliminaries of the proof

Proof. . We denote s = 0 + it with 0 < ¢ < 1. We consider one zero of 7(s) that falls in critical strip
and we write it as s = ¢ + it, then we obtain 0 < ¢ < 1 and 7(s) = 0 <= (1 —2!7%)(s) = 0. We
verifies easily the two propositions:

s, is one zero of 1(s) that falls in the critical strip, is also one zero of {(s) (2.2.1)

Conversely, if s is a zero of {(s) in the critical strip, let {(s) = 0 = 75(s) = (1 —217%){(s) = 0, then
s is also one zero of 7(s) in the critical strip. We can write:

s, is one zero of {(s) that falls in the critical strip, is also one zero of 1(s) (2.2.2)
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Let us write the function #:

+oo
Z (_1)n7167(0+it)Logn —

n=1

+oo (_1)11—1 +o
17(5) — _ — Z(_l)nflestogn —
n=1 n n=1
—+00
— Z(_l)n—le—ULogn.e—itLogn
n=1
+o0

n=1

The function # is convergent for all s € C with £(s) > 0,
one zero of the function eta, then :

Z(—1)”_16_"L03”(cos(tLogn) -

isin(tLogn))

but not absolutely convergent. Let s be

+o0o -1 n—1
o,
n=1 n
or:
, N (_1)n—1 ,
Vel >0 Fng YN > o, |Y | <
n=1

We definite the sequence of functions ((#7,)nen+(s)) as:
3
B k=1

with s = o 4 it and t # 0.

k-1

™=

. (_1) ko

1

k—1c0s(tLogk)

1 5in(tLogk)
~1) —

Let s be one zero of 7 that lies in the critical strip, then 77(s) = 0, with 0 < ¢ < 1. It follows that

we can write lit, 1 1n(s) = 0 = 5(s). We obtain:
n

limn%«koo 2(_
k=1

n
k=1

ko

k(7

1 Sin(tLogk)

1)1 cos(tLogk)

=0

Using the definition of the limit of a sequence, we can write:

Ye; > 03n, YN > n,, [R(7(s)n)| < €1 = R(5(s)n)? < €12 (2.2.3)
Vey > 03n;, VN > n;, |S(17(s)n)] < €2 = S((s)n)?* < €2

Then:

N cos?(tLogk) N

0< +2

(—1)**¥ cos(tLogk).cos(tLogk’)

2
<€

cos
2 k2¢7

k=1

Z

kK =1;k<k'

sin®(tLogk) N

+2

k(Tk/O’

(—1)%¥sin(tLogk).sin(tLogk’)

T 20
= k k' =1;k<k

kok'o <€

Taking € = €; = € and N > max(n,, n;), we get by making the sum member to member of the last

two inequalities:

N N /
1 kx cos(tLog(k/k')) )
0<) & +2 (1) e <2 (2.2.5)
k=1 k' =1k<k’
We can write the above equation as :
0 < px <26 (2.2.6)

or p(s) = 0.
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1
23 C = .
ase o >

—_

We suppose that o = ~. Let’s start by recalling Hardy’s theorem (1914) ([2], page 24):

2

Theorem 2.3.1. There are infinitely many zeros of {(s) on the critical line.

From the propositions (2.2.1-2.2.2), it follows the proposition :

Proposition 2.3.2. There are infinitely many zeros of #(s) on the critical line.

Let s; =  + itj one of the zeros of the function 7(s) on the critical line, so 7/(sj) = 0. The equation
(2.2.5) is written for s;:

%* i’: (_1)k+k,cos(t]-L0g(k/k’)) 92
ok e S VEVE
or: N N
/
21 02 Z (_1)k+k/cos(thog(k/k))

N
1
If N — +o0, the series Z T is divergent and becomes infinite. then:

too ,cos(tiLog(k/K'))
Tpeadoz ¥ (e

kK =1;k<k'
Hence, we obtain the following result:
N ,cos(tiLog(k/K'))
limN_—+o0 ) =00 231
T P .

if not, we will have a contradiction with the fact that :

. 11 . 1 .
lszH%ok;(— k 1@ = 0 <= 1(s) is convergent for s; = 5 Tt
1
24 Case (0 < R(s) < >

. 1
2.4.1 Case where there are zeros of 77(s) withs = o +itand 0 < 0 < 5

Suppose that there exists s = o + it one zero of 77(s) or n7(s) =0 = p*(s) = Owith0 <o <} =
lies inside the critical band. We write the equation (2.2.5):

N N /
0<Y L2 Y (CpFF COS(tL‘;g,(f/k ) <9
o1k Kk =Tk<k' k7k
or: N N
rcos(tLog(k/k'))
< 26 — (—1)FHk
L2 L ok
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N
But 20 < 1, it follows that limy_ 1 Z a — +o0 and then, we obtain :
k=1
= rcos(tLog(k/k'))
kK =Tk<k (=D k‘fi’a - (241)
K =1:k<k!

1
2.5 Case 5 < R(s) < 1.

Let s = o + it be the zero of 7(s) in 0 < R(s) < %, object of the previous paragraph. From
the proposition (2.2.1), {(s) = 0. According to point 4 of theorem 2.1.2, the complex number
s =1-0+it=0+it' witho’ =1—0, ¢ =tand ; < ¢’ < 1 verifies {(s') = 0, so s’ is also
a zero of the function {(s) in the band 3 < R(s) < 1, it follows from the proposition (2.2.2) that
7(s") =0 = p(s’) = 0. By applying (2.2.5), we get:

N9 N , T, '
0<) 5w t2 ), (~DF cos(t ;?g,f,’f/" ) < pe (2.5.1)
sk Kk =Tk<k’ kK

1
As0 <o <) =2>20"=2(1-0) > 1, then the series Y} o is convergent to a positive
constant not null C(¢”). As 1/k% < 1/k* for all k > 0, then :
s =1 =1 / / /

From the equation (2.5.1), it follows that :

(1) COS(t/kL;igf/ K) _ _C(ZU/) _ 3 (22‘” > —oo (2.5.2)

+o00

kK =1Lk<k

Caset =0
We suppose that t = 0 = t' = 0. The equation (2.5.2) becomes:

oo 1 c(¢’ 20"
(D) i == (2 ) _ _g(z ) 5 e (2.5.3)

kK =1;k<k'

Then s’ = ¢’ > 1/2 is a zero of (s), we obtain :

! = (_1)11—1
() =), —5—=0 (2.5.4)
n=1
Let us define the sequence S, as:
mo(_1 n—1 mo(_1 n—1
sl = 3o T = P EUT s ) @255)
n=1 h n=1 n
From the definition of S,,, we obtain :
litm—s+0oSm(s") = n(s") = 5(d’) (2.5.6)
We have also:
S1(d)=1>0 (2.5.7)
Sp(0’) =1-— % >0 because 2° > 1 (2.5.8)
1
S3(0’) = Sa(0’) + 3 >0 (2.5.9)
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We proceed by recurrence, we suppose that S,,(¢’) > 0.

, m+1 (_1)n—1 , (_1)m+1—1 o
1.m= 2q — Sm+1((7') = P nsl = Sm((T ) -+ W, it glves:
—1)24
Swi1(0") = Su(0)) + (i = Sul0) + (it > 0 Smia(e)) > 0

2. m = 2q+1, we can write S, 1+1(0”) as:

AN / (_1)m71 (_1)m+171
Sm+1((7) = Sm_l(o' ) + ma/ + (m T 1)0,,
_1\ym—1 _1\m
We have S,,,_1(c’) >0,1et T = ( rln)‘f' (17(1 _:>1)U,, we obtain:
—1)2q _1)2q+1
po V7o ev 1 1 (2.5.10)

(29+1)"  (29+2)7  (29+1)7 (29+2)”
and S, 41(c’) > 0.
Then all the terms S,,(0”) of the sequence S,, are great then 0, it follows that limm, 1 cSm(s’) =

n(s") =n(c’) > 0and 5(c’') < +o0 because R(s') = ¢/ > 0 and 5(s’) is convergent. We deduce the
contradiction with the hypothesis s is a zero of 7(s) and:

The equation (2.5.3) is false for the case t' =t = 0. (2.5.11)

Caset # 0

We suppose that t # 0. For each s’ = ¢/ 4 it' =1 — 0 + it a zero of 7(s), we have:

+E°° (_1)k+k/COS(t’If;i/g,c/k’)) _ _C(;’) _ _@(220") S —oo (2.5.12)

kK =1;k<k'

the left member of the equation (2.5.12) above is finite and depends of ¢’ and t', but the right
member is a function only of ¢’ equal to —{(2¢”)/2. But for all ¢” so that 2¢” > 1, we have {(20”) :

+o00 1
(20”) = §1(207) = k; a7 < T

It depends only of ¢”, then in particular for all ¢” with 2 > 20” > 1, {(20”) depends only of ¢”.
Let A > 0 be an arbitrary real number very infinitesimal so that ¢’ + A €]1/2,1][ is not the real part
of a zero of #(s). We can write to the first order:

020 +21) = £(20") + 200 (20”) (2.5.13)
{'(207) is given by:
+o00
7'(20) ==Y Lk‘;f,k > —c0 (2.5.14)
k=2

because we can choose & > 0 so that ¢/ > 1/2 4+ a = 20’ — 2a > 1 and we obtain:

1 &2 Logk* 1 18 1
/ /
|€ (20 )| < ﬂl; k2a  j2(o'—a) < ﬂg K20’ —a) < too
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Numerically, the left member of the equation (2.5.13) is independent of #', the preponderant term
of the right member {(2¢”) depends of #' using the equation (2.5.12), then the contradiction and we
conclude that the result giving by the equation (2.5.12) is false.

It follows that the equation (2.5.12) is false for the cases ' # 0. (2.5.15)

From (2.5.11-2.5.15), we conclude that the function 7(s) has no zeros for all s = ¢’ + it’ with

o’ €]1/2,1], it follows that the case of the paragraph (2.4) above concerning the case 0 < R(s) < %

1
is false. Then, the function 7(s) has all its zeros on the critical line o = 5 From the equivalent

statement (3.1.1), it follows that the Riemann hypothesis is verified. O

From the calculations above, we can verify easily the following known proposition:

Proposition 2.5.1. For all s = ¢ real with 0 < 0 < 1, 57(s) > 0 and {(s) < 0.

2.6 Conclusion.

In summary: for our proofs, we made use of Dirichlet’s 7(s) function:

+00 (_1)1171
) =), —5—=0a —27°)¢(s), s=oc+it
n=1
on the critical band 0 < R(s) < 1, in obtaining;:
1
- 17(s) vanishes for 0 < o = R(s) = 5
- 71(s) does not vanish for 0 < o = R(s) < % and % <oc=%R(s) <1

Consequently, all the zeros of 7(s) inside the critical band 0 < R(s) < 1 are on the critical line

R(s) = % Applying the equivalent proposition to the Riemann Hypothesis (3.1.1), we conclude
that the Riemann hypothesis is verified and all the nontrivial zeros of the function {(s) lie on the

critical line R(s) = % The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 2.6.1. The Riemann Hypothesis is true:
1
All nontrivial zeros of the function {(s) with s = o + it lie on the vertical line R(s) = .
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Chapter 3

Is The Conjecture ¢ < rad'-%(abc) True?

Abstract

In this paper, we consider the abc conjecture, we will give the proof that the conjecture ¢ <
rad'%3(abc) is true. It constitutes the key to resolve the abc conjecture.

Résumé:

Dans cet article, nous considérons la conjecture abc. Nous donnons la preuve de la conjecture
¢ < rad'%(abc) qui constitue la clé pour résoudre la conjecture abc.

3.1 Introduction and notations

Let a be a positive integer, a = []; 4", a; prime integers and a; > 1 positive integers. We call radical
of a the integer []; a; noted by rad(a). Then a is written as:

a=]]a = md(a).na‘;‘i*l (3.1.1)

We denote:
o =10} = a = porad(a) (3.1.2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of Basel
and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of
the prime factors of two integers with those of its sum. The definition of the abc conjecture is given
below:

Conjecture 3.1.1. (abc Conjecture): For each € > 0, there exists K(e) such that if a, b, c positive
integers relatively prime with ¢ = a + b, then :

¢ < K(e).rad" ¢ (abc) (3.1.3)

where K is a constant depending only of €.

. Logc .
—— < 1. 2].
We know that numerically, Log(rad(abc)) = 1.629912 [2]. It concerned the best example given
by E. Reyssat [2]:
2 +319.109 = 23° = ¢ < rad™*°'2(abc) (3.1.4)
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A conjecture was proposed that ¢ < rad?(abc) [3]. In 2012, A. Nitaj [4] proposed the following
conjecture:

Conjecture 3.1.2. Let g, b, c be positive integers relatively prime with ¢ = a + b, then:

¢ < rad'%(abc) (3.1.5)
abc < rad***(abc)

In this paper, we will give the proof of the conjecture given by (3.1.5) that constitutes the key to
obtain the proof of the abc conjecture using classical methods with the help of some theorems from
the field of the number theory.

3.2 The Proof of the conjecture ¢ < rad"®(abc), case c =a+b
Let a,b,c be positive integers, relatively prime, with ¢ = a+b,b < a and R = rad(abc), ¢ =

i=r
1_11 c?,”,,B]-/ > 1, ¢y > 2 prime integers.
j'=

In the following, we will give the proof of the conjecture ¢ < rad'%3(abc).

Proof. :
I- We suppose that ¢ < rad(abc), then we obtain:

¢ < rad(abc) < rad*®®(abc) =

and the condition (3.1.5) is satisfied.
II- We suppose that ¢ = rad(abc), then a, b, c are not coprime, case to reject.

III- In the following, we suppose that ¢ > rad(abc) and a,b and c are not all prime numbers.

c = pcrad(c) =a+b = pgrad(a) + pprad(b) ; rad"% (abc) (3.2.1)
III-1- We suppose p, < rad®®3(a). We obtain :

c=a+b<2a<2rad"®(a) < rad®*(abc) = ¢ < rad"®*(abc) =
Then (3.2.1) is satisfied.

I11-2- We suppose i < rad*%(c). We obtain :

¢ = perad(c) < rad*®3(c) < rad'%(abc) =

and the condition (3.2.1) is satisfied.
III-3- We suppose p > rad*%(c) and p, > rad®%(a).
I11-3-1- Case : rad®%(c) < u, < rad*®3(c) and rad®%®(a) < p, < rad'%3(a).
We can write:
pe < radt(c) = ¢ < rad*%3(c)
= ac < rad*%(ac) = a® < ac < rad*®(ac)
o < rad'B(a) = a < rad*%3(a)

— a < rad"3"(ac) = ¢ < 2a < 2rad™(ac) < rad" (abc)

:>‘c:a+b<R1'63‘
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I11-3-2- Case : y. > rad"®3(c) or u, > rad"%(a)
I11-3-2-1- We suppose that p. > rad'%(c) and y, < rad?(a):

I11-3-2-1-1- Case rad(a) < rad(c):
In this case a = pg.rad(a) < rad®(a) < rad“®(a)rad¥(a) < rad'%3(a).rad¥(c) = ¢ < 2a <

2rad" % (a).rad"¥ (c) < rad"%(abc) = m.

I11-3-2-1-2- Case rad(c) < rad(a) < radi¥(c): As a < rad"63(a).rad"¥ (a) < rad"®3(a).rad®3(c)
= ¢ < 2a < 2rad"®3(a).rad"%(c) < R18® —= .

I11-3-2-1-3- Case rad 1% (c) < rad(a):

I11-3-2-1-3-1- We suppose ¢ < rad>2?%(c), we obtain:
¢ < rad®*?°(c) = ¢ < rad"%(c).rad'%3(c) =
c < rad"®3(c).rad"¥ (a) < rad"(c).rad'%3(a).rad"%3(b) = RS —

III-3-2-1-3-2- We suppose ¢ > rad3'26(c) = U > Tﬂdz’zé(c)-

I11-3-2-1-3-2-1- We consider the case p, = rad*(a) = a = rad®(a). Then, we obtain that X = rad(a)
is a solution in positive integers of the equation:

X41l=c—b+1=¢ (3.2.2)

But it is the case ¢/ =1 + 4.

I11-3-2-1-3-2-1-1- We suppose that ¢’ = rad"(¢’) with n > 4, we obtain the equation:
rad"(c') — rad®(a) = 1 (3.2.3)

But the solutions of the equation (3.2.3) are

[5] :(rad(c’) = 3,n = 2,rad(a) = +2), it follows the
contradiction with n > 4 and the case ¢’ = rad"

(c),n > 4is to reject.

I11-3-2-1-3-2-1-2- In the following, we will study the cases o = A.rad"(c") with rad(c’) 1 A,n > 0.
The above equation (3.2.2) can be written as :

(X+1D)(X2-X+1)=¢ (3.2.4)

Let ¢ any divisor of ¢/, then:
X+1=6 (3.2.5)
X?—X+1:§:w”:ﬁ—3x (3.2.6)

We recall that rad(a) > radt (c).

I11-3-2-1-3-2-1-2-1- We suppose 6 = l.rad(c"). We have § = l.rad(c') < ¢’ = pg.rad(c’) =1 < pg.
As ¢ is a divisor of ¢/, then [ is a divisor of y, we write o = l.m. From po = l((S2 —3X), we obtain:

m = I’rad*(c') — 3rad(a) = 3rad(a) = *rad*(c') —m

A- Case 3|m = m = 3m’', m' > 1. As yo = ml = 3m’'l = 3|rad(c’) and (rad(c’), m") not coprime.

We obtain:
rad(c') -
3

rad(a) = PPrad(c").
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It follows that a, ¢’ are not coprime, then the contradiction.

B-Casem =3= us =3l = ¢’ =3lrad(c') =36 = 6(6*> —=3X) = 6* =3(1+X) =36 = 6 =
lrad(d') =3= ¢ =3=9=a+1=a=8 = ¢ < 15, then it is a trivial case.

I11-3-2-1-3-2-1-2-2- We suppose 6 = L.rad?*(c’),l > 2. If n = 0 then yy = A and from the equation
above (3.2.6):
y ¢ perad(c’)  Arad(c) A

= rad(c’)|A

5 Irad®(c)  Trad®(d)  Ilrad(c)
It follows the contradiction with the hypothesis above rad(c’) t A.

III-3-2-1-3-2-1-2-3- In the following, we suppose that n > 0.
If Irad(c’) 1 po then the case is to reject. We suppose lrad(c')|pe = po = m.rad(c’), then

o
C-Casem=1=c"/6=6*—3rad(a) =1 = (6 —1)(6 +1) =3rad(a) = rad(a)(6 +1) = 6 =
2 = Lrad*(c'), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = 6> = 36 = § = 3 = Irad?*(c’). Then the contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = I*rad*(c') — m = rad(a) and rad(c') are not coprime. Then
the contradiction.

I11-3-2-1-3-2-1-2-4- We suppose § = L.rad"(c'),] > 2 withn > 3. From ¢’ = py.rad(c’) = lrad"(c') (6> —
3rad(a)), we denote m = 6% — 3rad(a) = 5* — 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions, it follows the
reject of these cases.

G - Case m # 1,3. Let g be a prime that divides m, it follows g|yu. = q = c}(,] = c}6|52 =

c;.(,) |3rad(a). Then rad(a) and rad(c’) are not coprime. It follows the contradiction.

I11-3-2-1-3-2-1-2-5- We suppose 6 = [] ¢/, c;-ﬁ ', Bi > 1 with at least one jo € J; with Bj, > 2, rad(c’) { 6.
We can write:
0 =uysrad(s), rad(c') =mrad(s), m>1, (mus)=1 (3.2.7)

Then, we obtain:

¢ = pprad(c') = po.mrad(8) = 5(6*> — 3X) = ps.rad(6)(6*> — 3X) =
m.y = pus(6% — 3X) (3.2.8)
- We suppose uy = ps = m = 6> —3X = (yug.rad(6))? —3X. As 6 < 2 -3X = m > § =

rad(c’") > m > yg.rad(8) > rad>(c') because py > rad>?°(c’), it follows rad(c’) > rad?(c’). Then the
contradiction.

- We suppose po < ps. As rad(a) = psrad(5) — 1, we obtain:

rad(a) > py.rad(6) —1 > 0= rad(ac’) > c'.rad(6) — rad(c') > 0 =

!
dec) >0, rad(d)>2
c

= The contradiction (3.2.9)

¢ > rad(ac’) > ' .rad(8) —rad(c') >0 =1 > rad(s) —
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- We suppose i > ys. In this case, from the equation (3.2.8) and as (m, yt5) = 1, it follows we can
write:

e = U1.M2, M1, U2 > 1 (3.2.10)
¢ = pprad(c') = yy.po.rad(8).m = 6.(6*> — 3X) (3.2.11)
so that m.yu; = 5% —3X, Ho = ps => 6 = pp.rad(d) (3.2.12)

**1- We suppose (p1,pi2) # 1, then 3¢ so that ¢ [uy and ¢ |p2. But ps = po = cﬁ]é. From
3X = 6% —my; = c;0|3X = C;O|X or c}o =3.

- If ¢} | X, it follows the contradiction with (c’,a) = 1.

-If ¢} = 3. We have mpy = 6> —3X = 6 —3(6 —1) = 6 =36 +3 —m.py = 0. As 3|u; =
u1 = 3,314y, k > 1, we obtain:

6% =36 +3(1—-3"1mu}) =0 (3.2.13)

*#1-1- We consider the case k > 1 = 3 (1 — 3*"1my}). Let us recall the Eisenstein criterion [6]:

Theorem 3.2.1. (Eisenstein Criterion) Let f = ag+ - - - + a,X" be a polynomial € Z[X]. We
suppose that I p a prime number so that p { ay, pla;, (0 < i < n—1), and p? | ag, then f is
irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
R(Z) = 7% —3Z +3(1 — 3 Tmy}) (3.2.14)

then:
-311,-3[(=3),-3|3(1 — 3*"'mu}), and - 3% 1 3(1 — 3" mu}).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(J) = 0.

**1-2- We consider the case k = 1, then p; = 3 and (y},3) = 1, we obtain:
6% =35 +3(1 —muy) =0 (3.2.15)
**1-2-1- We consider that 3 { (1 — m.p}), we apply the same Eisenstein criterion to the polynomial
R'(Z) given by:
R'(Z) = 7% —3Z +3(1 — mu})

and we find a contradiction with R’(5) = 0.

*#1-2-2- We consider that 3|(1 — m.p}) = mp} —1=3"h,i > 1,31 h,h € N*. § is an integer root
of the polynomial R'(Z):

R'(Z) = 7Z* —3Z 4+ 3(1 — my})) = 0 = the discriminant of R'(Z)is:A = 3% +3! x 41 (3.2.16)

As the root § is an integer, it follows that A = I? > 0 with | a positive integer. We obtain:

A=3%1+43"1x4h) =17 (3.2.17)
— 14+3 ' x4h=¢g>>1,9g€N* (3.2.18)
We can write the equation (3.2.15) as :
. (o .
5(5 —3) = 3+ = 33, " 3( ). (#yrad(6) — 1) = 310 = (3.2.19)
rad (o
" 3( ) (4irad(6) = 1) = (3.2.20)
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We obtain i = 2 and g2 = 1+ 12k = 1 + 4y rad () (p)rad(5) — 1). Then, g satisfies :

g —1=12n = D W — 3 — (3 rad(8) — 1)1, rad(6) = (3.2.21)
q—1=2p\rad(6) —2 (3.2.22)
q+1=2ujrad(d) (3.2.23)

It follows that (g = x,1 = y) is a solution of the Diophantine equation:
X —y*=N (3.2.24)

with N = 12k > 0. Let Q(N) be the number of the solutions of (3.2.24) and 7(N) is the number of
suitable factorization of N, then we announce the following result concerning the solutions of the
Diophantine equation (3.2.24) (see theorem 27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod 4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

[x] is the integral part of x for which [x] < x < [x] + 1.
Let (a/,m'), &/, m" € N* be another pair, solution of the equation (3.2.24), then a’? — m? = x> — y? =
N = 12h, but g = x and 1 = y satisfy the equation (3.2.23) given by x +y = 2ujrad(é), it follows
o, m’" verify also o' +m’ = 2ujrad(J), that gives «’ —m’ = 2(pjrad(6) — 1), then o’ = x = q =
2pirad(8) and m" = y = 1. So, we have given the proof of the uniqueness of the solutions of the
equation (3.2.24) with the condition x +y = 2p{rad(6). As N = 12h = 4y rad(6). (uyrad(6) — 1) =
N = 0(mod 4) = Q(N) = [t(N/4)/2] = [t(3h)/2], the expression of 3h = yy.rad(6). (yjrad(s) — 1),
then Q(N) = [t(3h)/2] > 1. But Q(N) = 1, then the contradiction and the case 3|(1 — m.u}) is to
reject.

**2- We suppose that (p1,42) =1

From the equation mpu; = 6> —3X = 6% — 3(6 — 1), we obtain that 6 is a root of the following
polynomial :
R(Z)=7*>-3Z+3—mu; =0 (3.2.25)

The discriminant of R(Z) is:
AN=9—43 —mpuy) =4mpu; —3=4q> with g€ N* as 6 € N* (3.2.26)

- We suppose that 2|mu; = ¢’ is even. Then ¢*> = 5(mod 8), it gives a contradiction because a
square is = 0,1 or 4(mod 8).

- We suppose ¢’ an odd integer, then a is even. It follows a = rad®(a) = 0(mod8) = ¢
1(mod 8). As ¢’ = 62 —3X.5, we obtain 62 — 3X.6 = 1(mod8). If 5> = 1(mod 8) = —3X.0
0(mod 8) = 8|X.6 = 4|6 = (' is even. Then, the contradiction. If 6> = 4(mod 8) = ¢ =
2(mod 8) or 6 = 6(mod 8). In the two cases, we obtain 2|4. Then, the contradiction with ¢’ an odd
integer.

It follows that the case ¢ > rad>?%(c) and a = rad®(a) is impossible.

I11-3-2-1-3-2-2- We suppose ¢ > rad>?%(c) and large and u, < rad*(a). Then ¢ = rad®(c) + h,h >
rad®(c), h a positive integer and we can write a + [ = rad>(a), I > 0. Then we obtain :

rad>(c) +h = rad*(a) — 1+ b = rad®(a) —rad®(c) =h+1—-b >0 (3.2.27)
as rad(a) > rad1% (c). We obtain the equation:

rad®(a) —rad®(c) =h+1—b=m >0 (3.2.28)
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Let X = rad(a) — rad(c), then X is an integer root of the polynomial H(X) defined as:
H(X) = X®+3rad(ac)X —m =0 (3.2.29)

To resolve the above equation, we denote X = u + v, It follows that u3, 03 are the roots of the
polynomial G(t) given by:

G(t) = t* —mt — rad®(ac) =0 (3.2.30)
The discriminant of G(t) is A = m? + 4rad®(ac) = a?>, « > 0. The two real roots of (3.2.30) are:
t1:u3:m;_lx, h=v="_F (3.2.31)

As m = rad®(a) — rad®(c) > 0, we obtain that « = rad®(a) + rad®(c) > 0, then from the expression
of the discriminant A, it follows that (¢« = x,m = y) is a solution of the Diophantine equation:

X —y*=N (3.2.32)

with N = 4rad®(ac) > 0. From the expression of A above, we remark that a and m verify the
following equations:

x4y = 2u® = 2rad’(a) (3.2.33)
x —y = —20° = 2rad’(c) (3.2.34)
then x> —y? = N = 4rad®(a).rad’(c) (3.2.35)

As (a,m) is a couple of solutions of the Diophantine equation (3.2.32) and « > m, then 3 d,d’
positive integers with d > d’ and N = d.d’ so that :

d+d =2« (3.2.36)

d—d =2m (3.2.37)
I11-3-2-1-3-2-2-1- Now, we consider for example, the case d = 4rad>(a) and d’ = rad’(c) = d >
d'.We rewrite the equations (3.2.36-3.2.37):

4rad®(a) + rad®(c) = 2(rad®(a) + rad®(c)) = 2rad®(a) = rad®(c)) (3.2.38)
4rad®(a) — rad®(c) = 2(rad®(a) — rad®(c)) = 2rad®(a) = —rad’(c)) (3.2.39)

Then the contradiction.

I11-3-2-1-3-2-2-2- we consider the case d = 4rad>(c)rad®(a) and d' = 1 = d > d’'.We rewrite the
equations (3.2.36-3.2.37):

4rad®(c)rad®(a) + 1 = 2(rad®(c) + rad®(a)) = 2rad®(c) = 1 (3.2.40)
4rad®(c)rad®(a) — 1 = 2(rad®(c) — rad®(a)) = 2rad®(c) = —1 (3.2.41)

Then the contradiction.

I11-3-2-1-3-2-2-3- Let c; be the first factor of rad(c). we consider the case d = 4cirad®(a) and d’ =
rad(e) — g > d’. We rewrite the equation (3.2.36):

i
rad®(c)

= 2(rad®(a) + rad®(c)) = (3.2.42)
1

4eyrad®(a) +

rad>(c) (2¢1 — 1) = 2rad®(a) = radz(c).md(c)
C1 1

2rad®(a)(2c; — 1) = (3.2.43)

¢1 = 2 or not, there is a contradiction.
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The others cases of the expressions of d and d’ not coprime so that N = dd give also contradic-
tions.

Let Q(N) be the number of the solutions of (3.2.32), as N = 0(mod 4), then Q(N) = [t(N/4)/2].
From the study of some cases above, we obtain that Q(N) < [(T(N)/4)/2]. It follows the contra-
diction.

Then the cases y, < rad?(a) and ¢ > rad>?°(c) are impossible.
II1-3-2-2 We suppose that rad'%(c) < p. < rad®(c) and p, > rad™%3(a):

I11-3-2-2-1- Case rad(c) < rad(a) : Asc < rad®(c) = rad"9(c).rad"¥ (c) = ¢ < rad"(c).rad"¥ (a) <

rad'%3(ac) < rad"%(abc) = .

111-3-2-2-2- Case rad(a) < rad(c) < radt¥ (a):
As ¢ < rad®(c) < rad™3(c).rad¥ (c) = ¢ < rad"®3(c).rad"(a) < rad'®3(abc) = .

1.63

I11-3-2-2-3- Case rad1s7 (a) < rad(c):
I11-3-2-2-3-1- We suppose rad'®(a) < pu, < rad*?°(a) = a < rad"%®(a).rad"®(a) = a <
rad'®3(a).rad¥ (c) = c = a+b < 2a < 2rad"%(a).rad"%3(c) < rad"(abc) = ¢ < R'® —

c<RI®)

I11-3-2-2-3-2- We suppose i, > rad*?(a) and p. < rad?(c). Using the same method as it was expli-
cated in the paragraphs III-3-2-1-3-2- (permuting 4, c), we arrive at a contradiction (see the appendix
). It follows that the case y, = rad*(c) and p, > rad*?°(a) is impossible.

@

I11-3-2-2-3-2-2- We suppose a > rad>?°(a) and large and y. < rad*(c). Then a = rad>(a) + h,h >
rad>(a), h a positive integer and we can write ¢ + | = rad®(c), I > 0. Then we obtain :

rad(c) —rad*(a) =h+1+b>0 (3.2.44)

as rad(c) > rad%(a). Let X = rad(c) — rad(a), then X is an integer root of the polynomial H(X)
defined as:

H(X) = X®+3rad(ac)X —m =0 (3.2.45)
To resolve the above equation, we denote X = u + v, It follows that 13,03 are the roots of the

polynomial G(t) given by:
G(t) = t* —mt — rad®(ac) =0 (3.2.46)

The discriminant of G(t) is A = m? + 4rad®(ac) = a?, « > 0. The two real roots of (3.2.46) are:

3 m4a 3 m—uw
— , =0 = 3.2.47
2 270 2 ( )

h=1u

As m = rad®(c) — rad®(a) > 0, we obtain that « = rad®(a) + rad®(c) > 0, then from the expression
of the discriminant 4, it follows that (¢« = x,m = y) is a solution of the Diophantine equation:

X —y*=N (3.2.48)

with N = 4rad®(ac) > 0. It is the same case (permuting a and c) as the case above III-3-2-1-3-2-2-
and we obtain contradictions.
Then the cases ji. < rad?(c) and a > rad®>?%(a) are impossible.

II1-3-3- Case p, > rad%(a) and p, > rad"®3(c): Taking into account the cases studied above, it
remains to see the following two cases:
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- e > rad®(c) and p, > rad*%3(a),
- 4o > rad®(a) and pe > rad'%(c).

I11-3-3-1- We suppose i > rad*(c) and p, > rad"%(a) = ¢ > rad®(c) and a > rad*%(a). We can
write ¢ = rad>(c) + h and a = rad®(a) + [ with h a positive integer and | € Z.

I11-3-3-1-1- We suppose rad(c) < rad(a). We obtain the equation:
rad®*(a) —rad®(c) =h—1—b=m >0 (3.2.49)
Let X = rad(a) — rad(c), from the above equation, X is a real root of the polynomial:
H(X) = X® 4 3rad(ac)X —m =0 (3.2.50)

As above, to resolve (3.2.50), we denote X = u + v, It follows that u3,v> are the roots of the polyno-
mial G(t) given by :

G(t) = t> — mt —rad®(ac) = 0 (3.2.51)
The discriminant of G(#) is:
A = m* 4 4rad®(ac) = o®>, a>0 (3.2.52)
The two real roots of (3.2.51) are:
3 m+u« 3 m—uw
tl =u = B ’ t2 =0 = 5 (3253)

As m = rad®(a) — rad®(c) > 0, we obtain that « = rad®(a) + rad®(c) > 0, then from the equation
(3.2.52), it follows that (« = x,m = y) is a solution of the Diophantine equation:

X —y*=N (3.2.54)

with N = 4rad®(ac) > 0. From the equations (3.2.53), we remark that « and m verify the following
equations:

x4y =2u = 2rad’(a) (3.2.55)
x—y=—20 = 2rad®(c) (3.2.56)
then % —y? = N = 4rad’(a).rad®(c) (3.2.57)

Let Q(N) be the number of the solutions of (3.2.54) and 7(N) is the number of suitable factorization
of N, and using the same method as in the paragraph III-3-2-2-3-2-2- above, we obtain a contradic-
tion.

I11-3-3-1-2- We suppose rad(a) < rad(c). We obtain the equation:
rad®(c) —rad®(a) =b+1—h=m >0 (3.2.58)

Let X be the variable X = rad(c) — rad(a), we use the similar calculations as in the paragraph above
I11-3-3-1-1-, we find a contradiction.

It follows that the case y, > rad®(c) and p, > rad*®3(a) is impossible.

I11-3-3-2- We suppose 1, > rad®(a) and p. > rad'%3(c), we obtain a > rad>(a) and ¢ > rad*%(c).
We can write a = rad>(a) + h and ¢ = rad>(c) + [ with h a positive integer and € Z.

The calculations are similar to those in the case III-3-3-1-. We obtain a contradiction.

It follows that the case y, > rad%3(c) and p, > rad®(a) is impossible. O
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We can state the following important theorem:

Theorem 3.2.2. Let a, b, ¢ positive integers relatively prime with ¢ = a + b, then ¢ < rad"%(abc).

From the theorem above, we can announce also:

Corollary 3.2.2.1. Let a, b, ¢ positive integers relatively prime with ¢ = a + b, then the conjec-
ture ¢ < rad?(abc) is true.

Acknowledgments. The author is very grateful to Professors Mihdilescu Preda and Gérald
Tenenbaum for their comments about errors found in previous manuscripts concerning proposed
proofs of the abc conjecture.

Appendix
I11-3-2-2-3-2- We suppose i, > rad>**(a) and p. < rad*(c)

I11-3-2-2-3-2-1- We consider the case p. = rad?(c) = ¢ = rad>(c). Then, we obtain that Y = rad(c)
is a solution in positive integers of the equation:

YP+1l=a+b+1=¢ (3.2.59)

But it is the case ¢/ =1 +c.

I11-3-2-2-3-2-1-1- We suppose that ¢’ = rad"(c’) with n > 4, we obtain the equation:
rad" (') —rad>(c) =1 (3.2.60)

But the solutions of the equation (3.2.60) are [5] :(rad(c’) = 3,n = 2,rad(c) = +2), it follows the
contradiction with n > 4 and the case ¢/ = rad"(c’),n > 4 is to reject.

I11-3-2-2-3-2-1-2-In the following, we will study the cases o = A.rad"(c’) with rad(c’) t A,n > 0.
The above equation (3.2.59) can be written as :

Y+D(Y? =Y +1)=¢ (3.2.61)

Let ¢ any divisor of ¢/, then:
Y+1=94 (3.2.62)
YZ—Y+1:;/:c":(52—3Y (3.2.63)

We recall that rad(c) > radi% (a).

I1-3-2-2-3-2-1-2-1- We suppose § = l.rad(c"). We have 6 = l.rad(c') < ¢’ = pl.rad(c') =1 < pl. As
S is a divisor of ¢/, then [ is a divisor of u., we write y. = I.m. From p’. = (6> — 3Y), we obtain:

m = Prad*(c') — 3rad(c) = 3rad(c) = Prad*(') —m

A- Case 3|m = m =3m', m" > 1: As y. = ml = 3m'l = 3|rad(c’) and (rad(c’), m’) not coprime.
We obtain:

/
rad(c) = lzrad(c/).radg)(c ) _ m'

It follows that c,c” are not coprime, then the contradiction.
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B-Casem =3 = y. =3l = ¢ =3lrad(c') =36 =5(6> -3Y) = 6> =3(1+Y) =36 = 0 =
Irad(c') =3 = =30 =9 =c+ 1= ¢ =8, then it is a trivial case.

I11-3-2-2-3-2-1-2-2- We suppose 6 = L.rad*(c'),l > 2. If n = 0 then ys = A and from the equation
above (3.2.63):
y ¢ perad(c’)  Arad(c) A

5 Irad?(¢))  lrad?(c) - lrad(c’)
It follows the contradiction with the hypothesis above rad(c’) t A.

= rad(c')|A

III-3-2-2-3-2-1-2-3- In the following, we suppose that n > 0.
If Irad(c’) 1 po then the case is to reject. We suppose lrad(c’')|pe = po = m.rad(c’), then

— =m = *—3rad(c).

)
C-Casem=1=c/6=6>—3rad(c) =1 = (6 —1)(§+1) =3rad(c) = rad(c)(§ +1) = & =
2 = Lrad*(c'), then the contradiction.

D’ - Case m = 3, we obtain 3(1 + rad(c)) = 6> = 36 = § = 3 = Irad?(c’). Then the contradiction.

E’ - Case m # 1,3, we obtain: 3rad(c) = I?rad*(c') — m = rad(c) and rad(c’) are not coprime. Then
the contradiction.

I11-3-2-2-3-2-1-2-4- We suppose § = l.rad"(c’),] > 2 withn > 3. From ¢’ = py.rad(c’) = lrad"(c') (6% —
3rad(c)), we denote m = 6% — 3rad(c) = 6> — 3Y.

F’ - As seen above (paragraphs C’,I)’), the cases m = 1 and m = 3 give contradictions, it follows the
reject of these cases.

G’ - Case m # 1,3. Let g be a prime that divides m, it follows g|u, — g = c}(,) — c}6\52 —

c;.(,) |3rad(c). Then rad(c) and rad(c’) are not coprime. It follows the contradiction.

I11-3-2-2-3-2-1-2-5- We suppose 6 = []j¢j, c;ﬁ ', B > 1 with at least one jy € J; with Bj, > 2, rad(c’) { 6.
We can write:
8 =psrad(8), rad(c')=mrad(5), m>1, (mus)=1 (3.2.64)

Then, we obtain:
¢ = pp.rad(c") = po.mrad(8) = 5(6%> — 3Y) = ps.rad(6) (6> — 3Y) =
m.e = ps(62 — 3Y) (3.2.65)

- We suppose po = s => m = 6> —3Y = (po.rad(6))> —3Y. As 6 < 8> -3Y = m > § =
rad(c") > m > uo.rad(8) > rad®(c’) because o > rad*?(c’), it follows rad(c’) > rad®(c’). Then the
contradiction.

- We suppose po < ps. As rad(c) = psrad(6) — 1, we obtain:
rad(c) > po.rad(8) —1 >0 = rad(cc’) > '.rad(6) — rad(c’) > 0 =

/
mdsc) >0, rad(6)>2
C

—> The contradiction (3.2.66)

¢ >rad(cc’) > c'.rad(6) —rad(c’) > 0= 1> rad(6) —

- We suppose . > 5. In this case, from the equation (3.2.65) and as (m, ji5) = 1, it follows we can
write:

Mo = M1.M2,  pa,pH2 >1 (3.2.67)
¢ = yprad(c') = yuy.po.rad(8).m = 6.(6* — 3Y) (3.2.68)
sothat m.uy =06*—3Y, pp=ps = & = yp.rad(d) (3.2.69)
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**1- We suppose (y1,p2) # 1, then 3¢ so that ¢ [uy and ¢ |p2. But ps = p2 = cﬁ]é. From

3Y = ¢ —mpy = ¢} |3Y = ¢ |[Y or ¢ = 3.

- If c;o |Y, it follows the contradiction with (¢/,¢) = 1.
- If ¢;, = 3. We have mpy = 62-3Y =6*-3(6—-1) = 62 —-36+3 —mu; = 0. As 3|y =
w1 = 3%u4,3 1 u), k > 1, we obtain:
6% —3643(1—3tmu}) =0 (3.2.70)

*#1-1- We consider the case k > 1 = 3 { (1 — 3" 1mpu/). We apply Eisenstein criterion [6] to the
polynomial R(Z) given by:
R(Z) = 7% —3Z +3(1 — 3" Ymu}) (3.2.71)

then:
-311,-3[(=3),-3|3(1 — 3" 'mu}), and - 321 3(1 — 35" Lmu)).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(J) = 0.

**1-2- We consider the case k = 1, then iy = 3} and (y},3) = 1, we obtain:
6% =35 +3(1—muy) =0 (3.2.72)
*If 31 (1 — m.u}), we apply the same Eisenstein criterion to the polynomial R'(Z) given by:
R'(Z) = 7Z* - 3Z +3(1 — muy)
and we find a contradiction with R’(6) = 0.

*+1-2-2- We consider that 3|(1 — m.p}) = mu} —1=3"h,i > 1,3{h,h € N*. § is an integer root
of the polynomial R'(Z):

R'(Z) = Z?—-3Z +3(1—my}) = 0 = the discriminant of R'(Z)is:
A=3%+3%x4h (3.2.73)

As the root ¢ is an integer, it follows that A = I > 0 with [ a positive integer. We obtain:

A =32(1+3"1 x4h) = (3.2.74)
= 1+3"1x4h=¢>> 1,9 € N* (3.2.75)

We can write the equation (3.2.72) as :

(5 —3) = 3+ = 3% md;‘s). (#yrad(5) —1) = 310 = (3.2.76)
i ”’d;‘s). (#yrad(6) — 1) = h (3.2.77)

We obtain i = 2 and ¢> = 1+ 12k = 1 + 4} rad () (p)rad(5) — 1). Then, g satisfies :

G —1=12h = U WU — 3 — (W rad(s) — 1)1, rad(5) = (3.2.78)
q—1=2p\rad(6) —2 (3.2.79)
q+1=2ujrad (o) (3.2.80)

It follows that (§ = x,1 = y) is a solution of the Diophantine equation:
X —y*=N (3.2.81)

with N = 12h > 0. Let Q(N) be the number of the solutions of (3.2.81) and 7(N) is the number of
suitable factorization of N, then we announce the following result concerning the solutions of the
Diophantine equation (3.2.81) (see theorem 27.3 in [7]):
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-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].
Let (a/,m'), &', m" € N* be another pair, solution of the equation (3.2.81), then a’? — m2 = x> — y? =
N = 12h, but g = x and 1 = y satisfy the equation (3.2.80) given by x +y = 2ujrad(d), it fol-
lows o, m’" verify also &' +m' = 2y rad(s), that gives o' —m’' = 2(pjrad(6) — 1), then o’ = x =
q = 2ujrad(6) and m" = y = 1. So, we have given the proof of the uniqueness of the solutions
of the equation (3.2.81) with the condition x +y = 2ujrad(s). As N = 12h = 0(mod4) —
Q(N) = [t(N/4)/2] = [t(3h)/2], the expression of 3h = pf.rad(s). (ujrad(6) — 1), then Q(N) =
[T(3h)/2] > 1. But Q(N) = 1, then the contradiction and the case 3|(1 — m.p}) is to reject.

** We suppose that (u1, p2) = 1.

From the equation mu; = 6> —3X = 6% —3(6 — 1), we obtain that J is a root of the following
polynomial :
R(Z)=2?-3Z+3—mu; =0 (3.2.82)

The discriminant of R(Z) is:
A=9—48—mpuy) =4mu; —3=g> with g€ N* as 6 € N* (3.2.83)

- We suppose that 2|mu; = ¢’ is even. Then g*> = 5(mod 8), it gives a contradiction because a
square is = 0,1 or 4(mod 8).

- We suppose ¢’ an odd integer, then c is even. It follows ¢ = rad®(c) = 0(mod8) = ¢
1(mod 8). As ¢’ = 4% — 3Y.5, we obtain 52 — 3Y.6 = 1(mod8). If 5> = 1(mod8) =>—3Y.6
0(mod 8) = 8|Y.6 = 4|6 = ¢’ is even. Then, the contradiction. If > = 4(mod 8) = §
2(mod 8) or é = 6(mod 8). In the two cases, we obtain 2|d. Then, the contradiction with ¢’ an odd
integer.

It follows that the case p, > rad*?®(a) and u. = rad?(c) is impossible.
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Chapter 4

Is The abc Conjecture True?

Abstract

In this paper, we consider the abc conjecture. As the conjecture ¢ < rad?(abc) is true, then we give
the proof of the abc conjecture for € > 1 and for the case € €]0, 1], we consider that the abc conjecture
is false, from the proof, we arrive in a contradiction.

Résumé

Dans cet article, nous considérons la conjecture abc. Comme la conjecture ¢ < rad?(abc) est vraie,
nous donnons la preuve que la conjecture abc est vraie pour € > 1 et pour les cas € €]0,1], sup-
posant que la conjecture est fausse nous arrivons a une contradiction.

4,1 Introduction and notations

Let a positive integer a = []; 4", a; prime integers and «; > 1 positive integers. We call radical of a
the integer [, a; noted by rad(a). Then a is written as :

a= Ha?‘i = rad(a).Ha?‘f_l (4.1.1)
1 1

We note:
o =[]a"" = a = porad(a) (4.1.2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of Basel
and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [4]. It describes the distribution of
the prime factors of two integers with those of its sum. The definition of the abc conjecture is given
below:

Conjecture 4.1.1. (abc Conjecture): For each € > 0, there exists K(e) > 0 such that if a,b,¢
positive integers relatively prime with ¢ = a + b, then :

¢ < K(e).rad" ¢ (abc) (4.1.3)

where K is a constant depending only of €.
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The idea to try to write a paper about this conjecture was born after the publication in Septem-
ber 2018, of an article in Quanta magazine about the remarks of professors Peter Scholze of the
University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi
Mochizuki [2]. The difficulty to find a proof of the abc conjecture is due to the incomprehensibility
how the prime factors are organized in ¢ giving a,b with ¢ = a + b. So, I will give a simple proof
that can be understood by undergraduate students.

Logc
Log(rad(abc))
rad?(abc) [3]. Tt is the key to resolve the abc conjecture. In my paper, as the conjecture ¢ < rad?(abc)
holds (chapter 3), I propose an elementary proof of the abc conjecture.

We know that numerically, < 1.629912 [4]. A conjecture was proposed that ¢ <

4.2 The Proof of the abc conjecture

Proof. We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case c = a + 1.

421 Case:e>1

As ¢ < R? is true, we have Ve > 1:
c < R* <R < K(e).R'™¢, with K(e) =¢, e >1 (4.2.1)

Then the abc conjecture is true.

4.22 Case:e <1
From the statement of the abc conjecture 4.1.1, we want to give a proof that ¢ < K(e)R'*¢ —
LogK(e) + (1+€)LogR — Logc > 0.

For our proof, we proceed by contradiction of the abc conjecture. We suppose that the abc

conjecture is false:

deg €]0,1[,VK(e) >0, Fco=ap+bo; ao,bo,co coprime so that
co > K(eg)Ry"® and Ve €]0,1[, ¢o > K(e)R}™® (4.2.2)

1
We choose the constant K(e) = e€?. Let:

Y, (€) = 61—2 + (1+e€)LogRy — Logco, € €]0,1] (4.2.3)

From the above explications, if we will obtain Ve €]0,1[, Y, (€) > 0 => ¢y < K(e)Rj™® = ¢o <
K (eo)RéJreO, then the contradiction with (4.2.2).

About the function Y;,, we have:

lime_ 1Yy (€) =14 Log(R3/co) = A >0
lime_,0Ye,(€) = +o0

The function Y, (€) has a derivative for Ve € ]0,1[, we obtain:

2 e3LogRy — 2
Y/ (€) = 3 + LogRp = % (4.2.4)

[ 2
/ = = / = 3 >
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Y'(g) -
Y(g) \ Y(g) /

Figure 4.1: Table of variations

>0

Discussion from the table (Fig.: 4.1):

-If Y, (') > 0, it follows that Ve €]0,1[, Y, (€) > 0, then the contradiction with Y, (ey) < 0 =
co > K(eo)R(l)+€° and the supposition that the abc conjecture is false can not hold. Hence the abc
conjecture is true for € €]0,1[.

I Y (€¢) <0 = 30 < e <€ <e <1,sothat Y (e1) = Y (e2) = 0. Then we obtain
co = K(€1)R)™" = K(e2)Ry ™. We recall the following definition:

Definition 4.2.1. The number ¢ is called algebraic number if there is at least one polynomial:

I(x)=Ilo+hx+---+aux", a,#0 (4.2.5)

with integral coefficients such that /({) = 0, and it is called transcendental if no such polyno-
mial exists.

We consider the equality :

1

o)
= K(e)RM = 2 = __Ha___ epa 426
€0 (e1)Ry Ro  rad(agby) ¢ %o (4.26)

i) - We suppose that €; = B is an algebraic number then By = 1/€% and a1 = Ry are also algebraic
numbers. We obtain:

»—xm‘ —

Cfo — Heo — 66
Ro Tﬂd(ﬂobo)

From the theorem (see theorem 3, page 196 in [1]):

RS = efo. o (4.2.7)

Theorem 4.2.1. eﬁoocf o ucf" is transcendental for any nonzero algebraic numbers
0‘1/' . -/fxn/,BO/- . -/,Bn-

.”CO
Vﬂd(aobo)
gebraic number, then the contradiction and the case Y, (€¢’) < 0 is impossible. It follows Y, (¢’) > 0
then the abc conjecture is true.

we deduce that the right member elgO.thl1 of (4.2.7) is transcendental, but the term is an al-

ii) - We suppose that €; is transcendental, then 1/ (2), e/ (¢1) and Ry = e“1LogRo are also transcenden-
tal, we obtain that co/ Ry is transcendental, then the contradiction with cy/Ro an algebraic number.
It follows that Y, (¢’) > 0 and the abc conjecture is true.
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Then the proof of the abc conjecture is finished. As ¢ < R? is true, we obtain that Ve > 0, 3K(e) > 0,
if c = a + b with g, b, c positive integers relatively coprime, then :

¢ < K(e).rad" ¢ (abc) (4.2.8)

and the constant K(e) depends only of €.
QE.D

Ouf, end of the mystery!

4.3 Conclusion

As ¢ < R? is true, we have given an elementary proof of the abc conjecture. We can announce the
important theorem:

Theorem 4.3.1. The abc conjecture is true:
For each € > 0, there exists K(€) > 0 such that if a,b,c positive integers relatively prime with
c=a-+b, then:

¢ < K(€).rad "¢ (abc) (4.3.1)

where K is a constant depending of €.
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