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Abstract

This monograph presents the proofs of 4 important conjectures in the field of num-
ber theory:

- The Beal’s conjecture.

- The Riemann Hypothesis.

- The ¢ < R'%3 conjecture.

- The abc conjecture is true.

We give in detail all the proofs.

Résumé:
Cette monographie présente les preuves de 4 conjectures importantes dans le
domaine de la théorie des nombres a savoir:
- La conjecture de Beal.
- L’Hypothese de Riemann.
- La conjecture ¢ < R63,
- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.



Abdelmajid BEN HADJ SALEM, Ingénieur
Général

PROOFS OF FOUR
CONJECTURES IN NUMBER
THEORY : BEAL’S
CONJECTURE, RIEMANN
HYPOTHESIS, THE abc AND
c < R CONJECTURES

- JULY 2022 -




ABDELMAJID BEN HADJ SALEM, INGENIEUR
GENERAL
Résidence Bousten 8, Mosquée Raoudha, 1181 Soukra Raoudha, Tunisia.

E-mail : abenhadjsalem@gmail.com,
(©-2022- Abdelmajid BEN HADJ SALEM -



FIGURE 1. Photo of the Author

To the memory of my Parents, to my wife Wahida, my daughter
Sinda and my son Mohamed Mazen



PROOFS OF FOUR CONJECTURES IN
NUMBER THEORY : BEAL’S CONJECTURE,
RIEMANN HYPOTHESIS, THE abc AND
c < R CONJECTURES
- JULY 2022 -

Abdelmajid BEN HADJ SALEM, Ingénieur
Général

Abstract. — This monograph presents the proofs of 4 important conjectures
in the field of number theory:

- The Beal’s conjecture.

- The Riemann Hypothesis.

- The ¢ < R'53 conjecture.

- The abc conjecture is true.

We give in detail all the proofs.

Résumé. — Cette monographie présente les preuves de 4 conjectures
importantes dans le domaine de la théorie des nombres a savoir:

- La conjecture de Beal.

- L’Hypothese de Riemann.

- La conjecture ¢ < RY3,

- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.



CONTENTS

|1. A Complete Proof of Beal’s Conjecture|.......................o..c. ool 9
T P eors T tets 1o A 9
T N T ) O T 11

[L.2.1. Case 1 A] =1 == C1 = 1| ouueiii e 11
11.2.2. Case 2 A1 > 1 == C1 > L|ouunn e 11
1.3, Preliminaries] ... ..o 12
[1.3.1. Expressions of the roots| ... ... 14

1.4, Preamble of ‘rhg Prol f of the Main Theoreml. ..............cco it 16
1.4.1. Case cos2§ = g 17
00 1 T PP 17

L4 12, b = 2 o 17

LA L3, b = Ol e 18

20 a

1.4.2. Case a > 1, cos" = = 7 SRR R L R L L TR L PR RE PR RLRRELPRLRY 18
|L.5. Hypothesis : {3]1a and b 4pfl....ccooriiiiiii 18
1.5.1. Case b=2and 3 | @ | ....cvuiii i 19
1.5.2. Case b=4and 3| @ | ..coouvuininii 19
[1.5.3. Case b=pand 3 [ af.......c.ooioiiiiii 19
11.5.3.1. We suppose that ks £ 1| ... 20
11.5.3.2. We assume Now k3 = 1| ...oooiuiiniii e 21
[1.5.4. Case b|p= p=0bp',p'>1,b#2, bF4and3|al....................... 23
[1.5.5. Case b=2pand 3 |a| ... 28
1.5.6. Case b=4dpand 3| a | .......coooiiiiiiii 28
1.5.7. Case 3 |aand b=2p’, b£2 withp' [ p| ... 33
1.5.8. Case 3| aand b=4p’, b# 4 withp' [ pl....coooiiiiii i 36
1.5.9. Case 3| aand b [4p| ... ... 40
|1.6. Hypothese: {3 |p and b[4p}|...coooiii 44
1.6.1. Case b =2 and 3 [ Pl ... cuouniri 44
1.6.2. Case b=4 and 3 [P | «.oovuiiniimi 44
1.6.3. Case: b£2,b#4,b#3,b|pand 3| pl..ccocoveiiiiiiiiiii 45




CONTENTS 7

1.6.4. Case b =3 and 3 [ Pl ... cuovniriinii 49
1.6.5. Case 3 [ pand b = Pl ..ot 50
1.6.6. Case 3 [ pand b =4p| .......ooiuiiiii 50
[1.6.7. Case 3| pand b=2p| ..o 50
[1.6.8. Case 3 |pand b# 3 a divisor of pl. ... 50
[1.6.9. Case 3 [ pand b [ 4p| . ..o 61
|I1.7. Examples and Conclusion] . ........ ..ot 76
[L.7.1. Numerical Examples| ... ... 76
L7101 Example T ..o 7
[I.71.2. Example 2] ... oo 7
11.7.1.3. Example 3:| ..o 78
72 CONCIUSIONL -+« + v ve ettt e ettt et et et e e e et et e 78
Bibliography | . ... 79
12. Is The Riemann Hypothesis True? Yes It Is|.......... ... .. 80
2.1, Introductionl .. ... o 80
[2.1.1. The function C.| .....o.ovu i e 81
12.1.2. A Equivalent statement to the Riemann Hypothesis,....................... 82
2.2. Preliminaries of the proof |...... .. 83
1
2.3. Case 0 = N DRI R R R R L L L L P PR L PR e P PR P REPRERPRERPRRPPY 85
2.4. Case 0 < R(s) < % ............................................................... 86
1
2.4.1. Case where there are zeros of n(s) with s = o + it and 0 < 0 < bY RRRRRERE 86
1
2.5. Case 5 < R(S) < L | 86
20,01, Case £ = 0l ..o 87
12.5.0.2. CaSE T £ O] .o e ettt 88
R O TTe T 1oy Y 89
Bibliography | ... e 90
[3. Is The Conjecture c < rad ®>(abc) True?|..............cooiiiiiiiiiiiiia... 91
3.1, Introduction and notationsl . .......coi it 91
[3.2. The Proof of the conjecture ¢ < rad"®*(abc), case c=a + b ...ccccvvviii... 92
ADPDEIAIX | oot e 103
Bibliography | ... ..o e 109
4. Is The abc Conjecture True?|. ..... ... ... i 110
4.1, Introduction and notationsl .. ...cvv it 110
14.2. The Proot of the abc conjecture|...... ...t 111
2T, Case : € > T | o 111
[4.2.2. Case: € < Il ..o 111




CONTENTS



CHAPTER 1

A COMPLETE PROOF OF BEAL’S
CONJECTURE

Abstract. — In 1997, Andrew Beal announced the following conjecture: Let
A,B,C,m,n, and | be positive integers with m,n,l > 2. If A™ + B™ = C' then
A, B, and C have a common factor. We begin to construct the polynomial P(z) =
(z — A™)(z — B™)(z + C') = z® — pz + ¢ with p, q integers depending of A™, B™ and C'.
We resolve 2° — pz + ¢ = 0 and we obtain the three roots z1,x2, 3 as functions of p, ¢ and
a parameter 6. Since A™, B", —C' are the only roots of z® — px 4+ ¢ = 0, we discuss the
conditions that x1,x2,x3 are integers and have or not a common factor. Three numerical

examples are given.

Résumé. — En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient
A, B,C,m,n, etl des entiers positifs avec m,n,l > 2. Si A™ + B" = C" alors A, B, et C
ont un facteur commun.

Nous commencons par construire le polynéme P(z) = (z—A™)(z—B")(z+C") = 2® —pz+¢
avec p, ¢ des entiers qui dépendent de A™, B et C'. Nous résolvons z® — px + ¢ = 0 et nous
obtenons les trois racines x1,x2,rs comme fonctions de p,q et d’'un parametre . Comme
A™ B"™ —C" sont les seules racines de 2> — pz + ¢ = 0, nous discutons les conditions pourque

1, T2, s soient des entiers. Trois exemples numériques sont présentés.

1.1. Introduction

In 1997, Andrew Beal [4] announced the following conjecture :
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Conjecture 1.1. — Let A, B,C,m,n, and [ be positive integers with
m,n,l > 2. If:

(1.1) A™ 4 B" = C!

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture.
Our proof of the conjecture contains many cases to study using elementary
number theory. Our idea is to construct a polynomial P(z) of order three
having as roots A™, B® and —C'! with the condition . The paper is
organized as follows. In section 1, It is an introduction of the paper. The
trivial case, where A™ = B" is studied in section 2. The preliminaries
needed for the proof are given in section 3 where we consider the polynomial
P(z) = (x — A™)(x — B")(x + C) = 23 — pr + q. We express the three
roots of P(x) = 23 — pz + ¢ = 0 in function of two parameters p,6 that
depend on A™, B, C'. The section 4 is the preamble of the proof of the main

4 0
theorem. We find the expression of A?™ equal to Epcofg. As A?™ is an

integer, it follows that cos2€ must be written as — where a,b are two positive
coprime integers. We discuss the conditions of divisibility of p, a, b so that the
expression of A%™ is an integer. Depending of each individual case, we obtain
that A, B, C have or do have not a common factor. Section 5 treats the cases
of the first hypothesis 3 | a and b | 4p. We study the cases of the second
hypothesis 3 | p and b | 4p in section 6. Finally, we present three numerical
examples and the conclusion in section 7.

In 1997, Andrew Beal [4] announced the following conjecture :

Conjecture 1.2. — Let A, B,C,m,n, and [ be positive integers with
m,n,l > 2. If:

(1.2) A™ 4+ B" = (!

then A, B, and C have a common factor.
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1.2. Trivial Case
We consider the trivial case when A™ = B™. The equation (|1.2)) becomes:
(1.3) 2A™ = (!

then 2 | ' = 2| C = C = 29.C; with ¢ > 1, 21 C; and 24™ = 290} —
Am = 24710t As | > 2 g>1,then 2 | A" = 2 | A = A = 2"A; with
r >1and 21 A;. The equation (1.3)),becomes:

(1.4) 2 x 2mAM = 24l
As 24 A; and 21 (4, we obtain the first condition :
(1.5) there exists two positive integersr,qwithr.q > 1 so that|ql = mr + 1

Then from (|1.4)):
(1.6) 7 =Cl

1.2.1. Case 1 A; =1 = (7 = 1. — Using the condition ((1.5) above, we
obtain 2.(2")™ = (29)! and the Beal conjecture is verified.

1.2.2. Case 2 A1 > 1 —=— C; > 1. — From the fundamental theorem of the
arithmetic, we can write:
(1.7) Air=a"...af", a1 <ar<---<ar= A" =a"" ... a]""

(1.8) Clchl...cgJ, Cl<CQ<"‘<CJ:>C{:Cl161...Cf]ﬂJ

where a; (respectively ¢;) are distinct positive prime numbers and «; (respec-
tively ;) are integers >0.

From (1.6) and using the uniqueness of the factorization of A7* and CY, we
obtain necessary:

I=J
(1.9) a; = Cj, iZl,Q,...,I
ma; = 15

As one a; | A™ = a; | B™ = a; | B and in this case, the Beal conjecture is
verified.

We suppose in the following that A™ > B™.
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1.3. Preliminaries
Let m,n,l € N* > 2 and A, B,C € N* such:
(1.10) A™ 4 B" = C!
We call:
P(z) = (z — A™)(z — B")(z + C') = 2® — 22(A™ 4 B" — CY)
(1.11) +z[A™B™ — C'(A™ 4 B")] 4+ C'A™B"

Using the equation (1.10)), P(z) can be written as:

(1.12) P(z) = 2% + 2[A"B" — (A™ + B™)?| + A B"(A™ + B")

We introduce the notations:
p=(A"+B")? - A"B"
qg=A"B"(A™ + B")
As A™ # B" we have p > (A™ — B™)? > 0. Equation (1.12)) becomes:
P(z) =23 —pr+q
Using t}lle equation , P(z) = 0 has three different real roots : A™, B"
and —C".

Now, let us resolve the equation:
(1.13) P(x)=a2%—pr+q=0
To resolve (|1.13)) let:
r=u+v
Then P(x) = 0 gives:
(1.14)
P(z) = P(u+v) = (u+v)>—p(u+v)+q = 0 = w3 +v3+(u+v)(Buv—p)+¢ = 0
To determine u and v, we obtain the conditions:

ud 0% = —q
uv =p/3>0
Then u? and v? are solutions of the second order equation:

(1.15) X2 4 gX +p*/27=0
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Its discriminant A is written as :

2 3 A
A= —aptor =20 W _ A

27 27
Let:

A =27¢% — 4p® = 27(A™B"(A™ + B"™))? — 4[(A™ + B")? — A™B")?
(1.16) = 27TA*B¥(A™ 4 B")? — 4](A™ + B™)?> — A™B")3
Noting :

a=A"B">0
B = (A" + B")?
we can write as:
(1.17) A =270%8 — 4(8 — a)®

As a # 0, we can also rewrite (1.17)) as :

A=a? <27§ —4@—1)3)

We call ¢ the parameter :

1=
«

A becomes :
A =a’27t — 4t — 1)%)
Let us calling :
y=y(t) =27t —4(t —1)3

Since a > 0, the sign of A is also the sign of y(t). Let us study the sign of y.
We obtain y/(t):

Y (t) =1y =3(1+2t)(5—2t)
Y =0=t; = —1/2 and t3 = 5/2, then the table of variations of y is given
below:
The table of the variations of the function y shows that y < 0 for ¢ > 4. In
our case, we are interested for ¢ > 0. For t = 4 we obtain y(4) = 0 and for
t €]0,4[= y > 0. As we have t = g > 4 because as A™ # B":

(A™ —B™?2 > 0= = (A™ + B")? > 4o = 4A™B"

Then y < 0 = A < 0= A < 0. Then, the equation 1) does not have
real solutions u? and v3. Let us find the solutions u and v with z = u+ v is a
positive or a negative real and u.v = p/3.
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t - -1/2 52 4

1+2t - m + ‘ +

5-2t + T + 0

y®

- |T| + 0 -

FIGURE 1. The table of variations

1.3.1. Expressions of the roots. —

Proof. — The solutions of (1.15)) are:

_ i/ —A
X, = SR
—  —g—iV=A
We may resolve:
U3 . —q + 2V —A
B 2
N W—=A
2
Writing X in the form:
)(1 — pei9
with:
_V@-A  pyp
2 3v/3
vV-=A
and sinf = 5 >0
p

cost) = _9 <0
2p

Then 6 [27] €] + g [, let:

™

0 1 6
(1.18) Tc<tr= e la s coose < X2

2 6 3 3 2 3

V3
2

14
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and:
1 0 3
(119) Z < COS2§ < Z
hence the expression of Xs:
(1.20) Xy = pe™¥
Let:
(1.21) u = re™
—1+1 ‘o
(1.22) and j = z“/g _ ¥
dr 14+1iv3 -
(1.23) R

j is a complex cubic root of the unity <= j3 = 1. Then, the solutions u and
v are:

(1.24) up = et = \?yf)ei%
(1.25) Uy = re?? = %jei% _ \3/567?922“
(120 uy= e = yptt = et = et
and similarly:

(1.27) v =re W = Q/ﬁe*ig
(1.28) vy =re " = %ﬁe_i% = \?’/ﬁei%ﬂe_i% = %eih{é
(1.29) Vg = re~ s = {f/ﬁje*ig _ e/ﬁeizw;e

We may now choose u; and vy so that ug + v, will be real. In this case, we
have necessary :

(130) V1 = Ul
(1.31) V9 = Ug
(1.32) U3 = U3

We obtain as real solutions of the equation (1.14)):
6
(1.33) L =up +v = 2\3/,730053 >0
(1.34)  zo=wug+ve = 2{6/5005”% =—¥p (cosg + \/gsing) <0

(1.35) T3 = u3z+ vy = 2%003“% = Jp (—cosg + ﬁsing) >0
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We compare the expressions of x1 and x3, we obtain:

?
2{*/]3005% > Ip (—COS% + \/gsmg)
?

(1.36) 3003%?\/332%%

0 6 0
As - €]+ E, +I[, then sz’ng and cosg are > 0. Taking the square of the two

members of the last equation, we get:

(1.37) % < 00522

which is true since 0 €]+ z, —i—z[ then x; > x3. As A™, B® and —C" are the
only real solutions of , we consider, as A™ is supposed great than B",
the expressions:

(1.38)

0
A" =21 =u; +v; = 2\3pr03§

0+4 0 0
B" = x3 = uz + v3 = 2/pcos g T _ Ip (—0083 + \/§sin3>

0+ 2 0 0
—Cl' =29 =us +1v9 = 2/ pcos —; T_ —/p (0033 + \/gsin3>

1.4. Preamble of the Proof of the Main Theorem

Theorem 1.3. — Let A, B,C,m,n, and | be positive integers with
m,n,l > 2. If:

(1.39) A™ + B" = C!

then A, B, and C have a common factor.

\.

0 0
Proof. — A™ = 2\3/50035 is an integer = A?™ = 4/ p20052§ is also an inte-
ger. But :

3 D
(1.40) \/;2_ ,



1.4. PREAMBLE OF THE PROOF OF THE MAIN THEOREM 17

Then:

0 6 4 0
(1.41) AP = 43 p20032§ = 4%.60825 = p.g.6082§

0
As A?™ is an integer and p is an integer, then 60825 must be written under

the form:

(1.42) cos’= = — or cos’l =

with b € N*; for the last condition a € N* and a, b coprime.

Notations: In the following of the paper, the scalars a,b,...,2, a,f,...

)

A, B,C,... and A, ®, ... represent positive integers except the parameters 6, p,
or others cited in the text, are reals.

0 1
1.4.1. Case 0032§ = A We obtain:

(1.43) AP = pé.cos - =—

00 4p
3 3 b

1 0 3 1 1 3
As = o<l s << 2b<4<3b=0b=1,2,3.
s4<c033<4:>4<b<4:> <4<3b= ;2,3
1.4.1.1. b=1. — b=1= 4 < 3 which is impossible.

41 2.
1.4.1.2.b:2.—b:2$A2m:p.§.§:?p$3|p:>p:3plwith

p’ # 1 because 3 < p, we obtain:

2
A% = (A™)? = §p =2p =2 |p = p = 2%}
with 2{p;, a+1=2p3
(1.44) A — 9y,
0
1.45 B"Cl =3¢ 2(3_4 2): I 9,2
(1.45) VP cos”g | =9 = 2%py

From the equation (1.44)), it follows that 2 | A™ = A = 2¢A;, i > 1 and
2 + A;. Then, we have § = i.m = im. The equation (1.45) implies that
2| (B"CY) =2 |B"or2|C.
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1.4.1.2.1. Case 2| B": —-1f2 | B" = 2| B = B = 2/B; with 2} By.
The expression of B"C! becomes:

B{LCZ _ 22im717jnp%

-If 2im —1—jn>1,2|C' = 2| C according to C' = 2" AT + 2" B and
the conjecture is verified.

- If 2im — 1 —jn < 0 = 2 { C!, then the contradiction with C! =
20m AT 4 2in BT

1.4.1.2.2. Case 2 | C': —1If 2 | C': with the same method used above, we
obtain the identical results.

41 4
1.4.1.3. bz3.—bz3:>A2m:p.§.§:3p:>9\p:>p:9plwith

p #1,as 9 < p then A?™ = 4p'. If p is prime, it is impossible. We suppose
that p’ is not a prime, as m > 3, it follows that 2 | p/, then 2 | A™. But
B"C! = 5p’ and 2 | (B"C!). Using the same method for the case b = 2, we
obtain the identical results.

0
1.4.2. Case a > 1, 0052§ = %. — We have:

0 4 0 4.p.
(1.46) COSQg = %S A =p.§.0052§ = %

where a, b verify one of the two conditions:

(1.47) ’{3]@ and b|4p}‘or’{3]p and b]4p}‘

and using the equation (|1.19)), we obtain a third condition:
(1.48) b<4a <3b
0
For these conditions, A?™ = 4/ p20032§ = 4%.00323 is an integer.
Let us study the conditions given by the equation (|1.47)) in the following two

sections.

1.5. Hypothesis : {3|a and b|4p}
We obtain :

(1.49) 3|la=3d eN* /a=3d
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1.5.1. Case b=2 and 3| a. — A%*™ is written as:

4p 0 4pa 4pa 2.p.a
1.50 A2 = o2l = 22— 22—
(1.50) 33730 327 3
Using the equation (|1.49), A%?™ becomes :

_ 2.p.3d

—opd
3 p-a

(1.51) AZm

9 /
but 0032§ = % = 3% > 1 which is impossible, then b # 2.

1.5.2. Case b=4 and 3 | a. — A?™ is written :

4.p 0 4pa 4pa pa p3d
1.52) AP = —Rep?- = R 2 =22 - = D8 = = p.a
(1.52) 33" 3% 34 3 3 P
2
0 .a
(1.53) and 00325:%:3; <<\é§> :Z:>a’<1

which is impossible. Then the case b = 4 is impossible.

1.5.3. Case b=p and 3 | a. — We have :

/
(1.54) cos2? =@ _ 3

3 b P
and:
4 0 4 !
(1.55) AP = Ep.cos2§ = ‘f?j =4a’ = (A™)?
(1.56) Ja” / ' = a”?
(1.57) and B"C'=p— A¥ =b—4d =b— 4a"?
The calculation of A™B™ gives :
2
A"B" = p.ﬁsin—e —2d
3 3
20
(1.58) or A™B"+2d = p.\ggsing

V3

20
The left member of (|1.58) is an integer and p also, then Q?Sing is written

under the form :

V3 20 Kk

where k1, ko are two coprime integers and ks | p = p = b = ka.ks, ks € N*.
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1.5.3.1. We suppose that ks # 1. — We obtain :

(1.60) Am(Am + 2Bn) = kq.k3

Let p be a prime integer with p | k3, then p | b and p | A™(A™ + 2B") =
p| A™or | (A™ 4 2B™).

HEAL-1-If | A™ = pu | A and p | A?™, but A?™ = 4d/ = p | 4d' =
(u=2,but 2 |da)or (u|a). Then u| a it follows the contradiction with a,b
coprime.

A-1-2-Tf | (A™ +2B") = put A™ and p { 2B™ then p # 2 and p t B™.
We write p | (A™ + 2B") as:
(1.61) A™ +2B" = p.t!
It follows :

A™ 4+ B" =yt — B" = A®™ 4+ B®" + 2A™B" = ;*t"”* — 2t/ uB™ 4+ B*"
Using the expression of p:
(1.62) p=1t?u*—2t'B"u+ B"(B" — A™)
Asp=0b=ko.ks and p | k3 then pu | b = Jp’ and b = py’, so we can write:
(1.63) p'u = p(ut’? — 2/ B™) + B"(B" — A™)
From the last equation, we obtain p | B"(B" — A™) = pu | B" or
ul (B — Am),

** A-1-2-1- If p | B™ which is in contradiction with p t B".

K A-1-2-2-Tf | (B™ — A™) and using that pu | (A™ + 2B™), we arrive to :

w|B"
(1.64) w|3B" S or
p=3

**A-1-2-2-1-If u | B® = | B, it is the contradiction with x { B cited above.

** A-1-2-2-2- If 4 = 3, then 3 | b, but 3 | a then the contradiction with a,b
coprime.



1.5. HYPOTHESIS : {3|a and b|4p} 21

1.5.3.2. We assume now k3 = 1. — Then :

(1.65) AP 4 2AMBY = |y
(1.66) b= ko
2v3 20 Kk
1. —sin— = —
(1.67) 3 SN ;

Taking the square of the last equation, we obtain:
4 520 k3P
S T

16 o0 0 K}

Finally:

(1.68) 420/ (p — a) = k3

but o’ = a”?, then p — a is a square. Let:

(1.69) M=p-a=b-a=b-3a"" = N +3a2=b

The equation becomes:

(1.70) 42072\ = k} = ky = 4a”\

taking the positive root, but ky = A™(A™ 4 2B") = 2a”(A™ + 2B"), then :
(1.71) A" 42B" =2 = A=a"+ B"

HA21-As A =207 = 2 | A" = 2| A = A = 2'A;, with i > 1 and
21 Ay, then A™ = 2a” = 2MAT = q” = 2™~ LAT but im >3 = 4 | a”.
Asp=0b= A"+ AMB" + B?" = \ = 2m~1 AT 4 B" Taking its square, then

)\2 — 22im72A%m + 2zmA£an + BQn
As im > 3, we can write \2 = 4\ + B?" = )2 = B?"(mod4) = \? =
B?" = 0(mod 4) or \2 = B?" = 1(mod 4).

#* A-2-1-1- We suppose that \2 = B?" = 0(mod4) = 4 | \2 = 2| (b —a).
But 2 | a because a = 3a’ = 3a”? = 3 x 22(m=1) A3™ and im > 3. Then 2 | b,
it follows the contradiction with a, b coprime.

#* A-2-1-2- We suppose now that A2 = B?" = 1(mod 4). As A™ = 2im-1Am
and im — 1 > 2, then A™ = O(mod4). As B?" = 1(mod4), then B"
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verifies B" = 1(mod4) or B"™ = 3(mod4) which gives for the two cases
B"C' = 1(mod 4).

We have also p = b = A?™+ A™B" + B?" = 44’ + B".C' = 40"+ B"C! =
B"C' = X2 — "% = B".C", then \,a” € N* are solutions of the Diophantine
equation :

(1.72) 2 —y* =N

with N = B"C' > 0. Let Q(N) be the number of the solutions of
and 7(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the equation (see theorem
27.3 in [7]):

-If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod4), then Q(N) = [7(N/4)/2].

[z] is the integral part of z for which [z] <z < [x] + 1.

As A\ a” is a couple of solutions of the Diophantine equation ([1.72)), then
3 d,d positive integers with d > d’ and N = d.d’ so that :

(1.73) d+d =2\

(1.74) d—d =2a”

#% A-2-1-2-1- We suppose as C' > B" that d = C' and d' = B". Tt follows:
(1.75) 2\ =C!+ B" = A™ +2B"

(1.76) 20" =C' -~ B" = A™

From the paragraph A-2-1 above, we have A\ = p = A?™ + A™B" 4+ B?* >
(A™ 4-2B"), then the case d = C! and d’ = B"™ gives a contradiction.

** A-2-1-2-2- Now, we consider the case d = cllT_lC{ where ¢ is a prime
integer with ¢; 1 C; and C' = ¢{Cy, r > 1. It follows that d' = ¢;.B™. We
rewrite the equations ((1.73H1.74):

(1.77) 1ot 4 ¢ B = 2

(1.78) dr=1ct — ¢).B" = 207

As | > 3, from the last two equations above, it follows that ¢; | (2)\) and
c1](2a”). Then ¢y =2,0rc; | Aand ¢ | a”.
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¥ A-2-1-2-2-1- We suppose ¢; = 2. As 2 | A™ and 2 | C! because | > 3, it
follows 2 | B™, then 2 | (p = b). Then the contradiction with a, b coprime.

** A-2-1-2-2-2- We suppose ¢1 # 2 and ¢; |a” and ¢1 |\ 1 |a” = c1 | a
and ¢ | (A™ = 2a”). B" = C' — A™ = ¢, | B". It follows that ¢ | (p = b).
Then the contradiction with a,b coprime.

The others cases of the expressions of d and d’ with d,d’ not coprime so
that N = B"C! = d.d’ give also contradictions.

Hence, the case k3 = 1 is impossible.

Let us verify the condition (1.48)) given by b < 4a < 3b. In our case, the
condition becomes :

(1.79) p < 3A™ < 3p with p= A*™ 4 B™ 4 AmB"

and 34%™ < 3p = A?™ < p that is verified. If :

?
p<3A2m:>2A2m_AmBn_B2nf/>\O

Studying the sign of the polynomial Q(Y) = 2Y?2 — B"Y — B?" and taking
Y = A™ > B", the condition 24%™ — A™B™ — B> > () is verified, then the
condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify that A™ > B™ which is true.

1.5.4. Case b|p= p=bp,p>1,b#A2,b#A4and 3 |a. —

4p a 4.bp.3.d
1.80 AZmo— 28 2 2
( ) 3 b 3.b

=4.p'd
We calculate B"C":

. 0 0 . 0
(1.81) B"C! = f/; <33z’n23 - 00323) = f/; (3 - 400323>

. 0 .a
but {/p? = g, using 0082§ = 3; , we obtain:
(1.82)

.a 4.a/
B"C! = f’/pﬁ2 <3 - 400522) = g <3 _43ba ) =p. (1 - ba ) =p'(b— 4d’)
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Asp=>b.p/, and p’ > 1, so we have :
(1.83) B"C' = p/(b— 4d))
(1.84) and A =49 .d

** B-1- We suppose that p’ is prime, then A?™ = 4a/p’ = (A™)? = p' | d'.
But B"C! =p/(b—4d') = p' | B" or p | C.

¥* B-1-1-If p' | B* = p' | B = B = p'B; with By € N*. Hence :
p"IBPCt =b—4d. Butn>2= (n—1)>1landp | d, then p' | b= a
and b are not coprime, then the contradiction.

** B-1-2- If p’ | O = p' | C. The same method used above, we obtain the
same results.

** B-2- We consider that p’ is not a prime integer.
*% B-2-1- p/,a are supposed coprime: A?" = 4a'p’ = A™ = 2a”.p; with

"2 and p’ = p?, then a”,p; are also coprime. As A™ = 2a”.p; then
2| a”or 2| p;.

ad =a

*#* B.2.1-1- 2 | a”, then 2 { py. But p/ = p}.

** B-2-1-1-1- If p; is prime, it is impossible with A™ = 2a”.p;.

** B-2-1-1-2- We suppose that p; is not prime, we can write it as

p1 = wm = p' = w? then: B"C! = w?™(b— 4d’).

#¥ B-2-1-1-2-1- If w is prime, it is different of 2, then w | (B"C!) = w | B"
or w | C.

#* B-2-1-1-2-1-1- f w | B = w | B = B = w/B; with w { By, then
B.C = w?m=ni(b — 4a).

¥ B-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' = b — 4d’. As
Cl=A"+B" = w|C = w|C,and w | (b—4d). But w # 2 and w
is coprime with a’ then coprime with a, then w { b. The conjecture (3.1)) is
verified.
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** B-2-1-1-2-1-1-2- If 2m — nj > 1, in this case with the same method, we
obtain w | C' = w | C and w | (b —4a’) and w { a and w 1 b. The conjecture

(3.1)) is verified.

% B-2-1-1-2-1-1-3- If 2m —nj < 0 = W™ 2mBRCl = b —4d. Asw | C
using C!' = A™ + B" then C = wh.0; = wnI=2mthipn Ot = b — 4d/. If
n.j —2m+ h.l < 0= w | BPC!, it follows the contradiction that w { By or
w1 1. Then if n.j —2m + h.l >0 and w | (b — 4a’) with w,a,b coprime and
the conjecture is verified.

#% B-2-1-1-2-1-2- We obtain the same results if w | C'.

*k B2-1-1-2-2- Now, p/ = w?™ and w not prime, we write w = w{.Q
with w; prime { Q and f > 1 an integer, and w; | A. Then B"C! =
w2 mO2m(h — 40/) = w, | (B"C') = w; | B" or wy | C.

#k B2-1-1-2-2-1- If wy | B® = w; | B = B = w}B; with w; { By, then
Bp.CL = P mmIq2m(p — 4q'):

¥ B-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain Bf.C' = Q2" (b — 4ad'). As
Cl=A"4+B" = w |C' = w | C = w1 | (b—4d’). But wy # 2 and wy is
coprime with a’, then coprime with a, we deduce w; tb. Then the conjecture
(3.1)) is verified.

% B-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have w;y | C! = w; | C = wy |
(b —4da’) and wy f a and wy 1 b. The conjecture (3.1)) is verified.

B B2-1-1-2-2-1-3- If 2f.m — n.j < 0 = W2/ Bl = Q2m(h — 4a).
As wy | C using C' = A™ + B", then C = wh.C) = wnJI—2mfHhipn Ot =
Q?(b—4a'). I n.j —2m.f + hl < 0= wy | B}C!, it follows the contradic-
tion with wy 1 By and wy 1 Cy. Then if n.j — 2m.f + h.l > 0 and w; | (b — 4d)
with wi, a,b coprime and the conjecture is verified.

% B-2-1-1-2-2-2- We obtain the same results if wy | C*.

** B-2-1-2- If 2 | py, then 2 | py = 2{d’ = 2t a. But p/ = pi.
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** B-2-1-2-1- If p; = 2, we obtain A™ = 4a” = 2 | a” as m > 3, then the
contradiction with a,b coprime.

** B-2-1-2-2- We suppose that p; is not prime and 2 | p1, as A™ = 2a”py,
p1 is written as p; = 2™ W = p/ = 2222 Tt follows B"C! =
22m=2,y2m(p — 4q') = 2| B" or 2 | C".

# B2192921- If 2 | B = 2 | B, as 2 | A, then 2 | C. From
B"C! = 22m=2,2m(h — 44'), it follows if 2 | (b — 4a’) = 2 | b but as
2 1 d, there is no contradiction with a,b coprime and the conjecture (3.1)) is
verified.

¥ B-2-1-2-2-2- If 2 | C!, using the same method as above, we obtain the
identical results.

** B-2-2- p/,d’ are supposed not coprime. Let w be a prime integer so that
wla and w | p'.

** B-2-2-1- We suppose firstly w = 3. As A?™ = 4d'p’ = 3 | A, but
3|p = 3| p asp=A> + B 4 AmB" = 3 | B> = 3 | B, then
3|C'= 3|C. We write A = 3'A;, B = 3/B;, C = 3"C; and 3 coprime
with Ay, By and Oy and p = 3%MmA2m 4 32ni p2n 4 3im+jn gmpn — 3k g with
k = min(2im,2jn,im+jn) and 3 f g. We have also (w = 3) | a and (w = 3) | p/
that gives a = 3%, = 3a’ = d’ = 3°"lay, 31 a; and p’ = 3#py, 3 f p1 with
AP = 4g'p = 3EMAIN = 4 x 3 g p = a+p—1 = 2im. As
p = bp’ = b.3"p; = 3*.b.p1. The exponent of the term 3 of p is k, the exponent
of the term 3 of the left member of the last equation is u. If 3 | b it is a
contradiction with a, b coprime. Then, we suppose that 3 1 b, and the equality
of the exponents: min(2im,2jn,im + jn) = p, recall that a + p — 1 = 2im.
But B"C! = p/(b — 4a’) that gives 3T BrCt = 3tp (b — 4 x 302 Vay). We
have also A™ + B" = C! gives 3™ AT + 3" B} = 3MC!L. Let € = min(im, jn),
we have € = hl = min(im, jn). Then, we obtain the conditions:

(1.85) k = min(2im,2jn,im + jn) = u
(1.86) oa+p—1=2m
(1.87) € = hl = min(im, jn)
(1.88) 3ith) grot — 3ty (b — 4 x 3@ Nay)
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** B-2-2-1-1- a = 1 = a = 3a; = 3d’ and 3 { a1, the equation becomes:
w=2im
and the first equation is written as:
k = min(2im, 2jn,im + jn) = 2im

- If kK = 2¢m, then 2em < 2jn = tm < jn = hl = im, and gives
pw=2im=nj+hl =im+nj = im = jn =hl. Hence 3| A,3 | Band 3| C
and the conjecture is verified.

-If k =2jn = 2jn = 2im => im = jn = hl. Hence 3| A,3 | Band 3| C
and the conjecture is verified.

-If k=im+ jn = 2im = im = jn = ¢ = hl = im = jn case that is seen
above and we deduce that 3 | A,3 | B and 3 | C, and the conjecture is
verified.

*B-2-2-1-2- > 1= a>2and d =3 ta.
- If k = 2im = 2im = u, but p = 2im + 1 — « that is impossible.
-Ifk=2jn=p= 2jn = 2im+ 1 — a. We obtain 2jn < 2im —> jn <
im = 2jn < im + jn, k = 2jn is just the minimum of (2im, 2jn,im + jn).
We obtain jn = hl < im and the equation becomes:

BICL = pi(b—4 x 3@ Vqy)
The conjecture (3.1)) is verified.

-Ifk=im+jn < 2im = jn <imand k =im + jn < 2jn = im <
jn=1im = jn=—==%k=1im+jn = 2tm = p but p = 2¢ém + 1 — « that is
impossible.

-If k=im+ jn < 2im = jn < tm and 2jn < im + jn = k that is a
contradiction with k = min(2im, 2jn,im + jn).

** B-2-2-2- We suppose that w # 3. We write a = w%ay with w{ a; and p’ =
whpy with w { p1. As A?™ = da'p’ = 4w F.a1p = w | A = A = W'A;,
wi{ A But B"C! = p/(b— 4d') = whp(b—4d') = w | B"C' = w | B" or
wl|Ch

*¥B.2221 w|B" = w|B = B=whB and w}By. From A™ + B" =
Cl= w|C' = w|C. As p=bp’ = whbp; = WF(WmM=FAIM 1 y2in-kp2n 4
wimtin=k AT B with k = min(2im, 2jn,im + jn). Then :

- If 4 = k, then w 1 b and the conjecture is verified.
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-If Kk > p, then w | b, but w | a we deduce the contradiction with a,b
coprime.

- If k < p, it follows from :
w,ubpl — wk(w%m—kA%m + w2jn—kB%n + wim—l—jn—kAgnBiz)

that w | Ay or w | By that is a contradiction with the hypothesis.

#* B-2-2-2-2-Ifw | C' = w | C = C = w"(Cy withw{ ;. From A™ 4 B" =
C!' = w | (C' — A™) = w | B. Then, we obtain the same results as
B-2-2-2-1- above.

1.5.5. Case b=2p and 3 | a. — We have :

0 a 3d dp.a  4p 3d

2 2m / m\2 /
== — = A == == —=2ad =(A —2lad = 2|a
cos 3 b 2[) 3b 3 2p ( ) ‘ ’

Then 2 | a and 2 | b that is a contradiction with a,b coprime.

1.5.6. Case b=4p and 3 | a. — We have :

0 a 3a dp.a 4p 3a
2 2m m 772
COS b 3b 3 l a ( )

Let us calculate A™ B"™, we obtain:

W3 20 2 L0 pJ3 .20 d

AmB”——sng—gcos gz—s .Szn?—§:>
A2m 20
A"B" 4 —— pﬁ.sin—
2 3 3
Let:
2pv/ 3 20
(1.89) A2m 4 2AM BN = p?:fsms

2v/3 . 20
The left member of (1.89)) is an integer and p is an integer, then \:{sins
2V3 20 Ik
—sin— = —

3 3 ko
where k1, ko are two integers coprime and ks | p = p = ko.ks.

will be written as :

** C-1- Firstly, we suppose that k3 # 1. Then :
AP L 2AMBY = k3. ky
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Let p be a prime integer and p | k3, then p | A™(A™ +2B") = p | A™ or
p| (A™+42B").

HC1-Ifp | (A" =a”) = p| (@2 =d) = u| (3d = a). As
p| ks = p|p=p| (4p =10), then the contradiction with a,b coprime.

C-1-2-If pu | (A™ +2B") = p{ A™ and p 1 2B™, then:
(1.90) w#2 and ptB"
w| (A™+ 2B"™), we write:
A™ 4+ 2B" = p.t!
Then:

Am+Bn :/Lt,*Bn — A2m+B2n+2AmBn _ ,u2t/2 *2t/uBn+B2n
— p=1t"?u? - 2/B"u + B"(B" — A™)

As b=4p = 4ky.ks and p | ks then p | b = 31 so that b = p.u/, we obtain:
i = p(4ut™ — 8t'B™) + 4B"(B" — A™)

The last equation implies p | 4B™(B™ — A™), but pu # 2 then pu | B™ or
| (B — Am).

** (C-1-1-1- If p | B™ = then the contradiction with ((1.90]).

*C-1-1-2- If p | (B™ — A™) and using u | (A™ + 2B™), we have :

w|B"
p|3B" =< or
p=3

** (C-1-1-2-1- If p | B™ then the contradiction with ((1.90)).

** (C-1-1-2-2- If u = 3, then 3 | b, but 3 | a then the contradiction with a,b
coprime.
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** (C-2- We assume now that ks = 1, then:

(1.91) A?™M 4 2A™B" = |y
p = k2
—2\/§sm% _k
3 3 p
We take the square of the last equation, we obtain :
4 2
fsin2% = ﬁ
3 3 p?
16 . 5,0 50 kf

?sz’n gcos 3= 2

16 . 50 3d’ Kk?

—sin-.— = —

3 3 b p?
Finally:
(1.92) d (4p — 3d') = k2
but @’ = a”?, then 4p — 3a’ is a square. Let :

MN=4dp-3d =4p—a=b—-a
The equation ([1.92)) becomes :
(1.93) aN =k =k = a’\
taking the positive root. Using (1.91)), we have:
ki =A™(A™ 4+ 2B") =a”(A™ +2B")
Then :
A™42B" =)\

Now, we consider that b —a = \> = A2 4 3a”2 = b, then the couple (\,a”)
is a solution of the Diophantine equation:
(1.94) X2 4372 =0

with X = XA and Y = «”. But using one theorem on the solutions of the
equation given by (1.94), b is written under the form (see theorem 37.4 in [1]):

2s1 25y

h= 9225 « 3t-Pfil .. -pﬁ,gql g
where p; are prime integers so that p; = 1(mod6), the g; are also prime
integers so that ¢; = 5(mod 6). Then, as b = 4p :
-Ift >1= 3]0, but 3| a, then the contradiction with a,b coprime.
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** (C-2-2-1- Hence, we suppose that p is written under the form:

g 2s1 28,

with p; = 1(mod6) and ¢; = 5(mod6). Finally, we obtain that p =
1(mod 6). We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A>™ 4+ A™B" + B?" in
function of the values of A™, B"(mod 6). We obtain the table below:

TABLE 1. Table of p (mod 6)

A".B" 01 2 3 4 5
0 1 4 3 41
1 1 3 1131
2 41 01 4 3
3 311311
4 4 3 41 01
) 113113

#% (0-2-2-1-1- Case A" = 0(mod 6) = 2 | (A™ =a”) = 2| (d/ = a"?) =
2| a, but 2 | b, then the contradiction with a,b coprime. All the cases of the
first line of the table [I] are to reject.

*k(C-2-2-1-2- Case A™ = 1(mod6) and B" = 0(mod6), then 2 | B" —
B" = 2B’ and p is written as p = (A™ + B')? + 3B"? with (p,3) = 1, if not
3 | p, then 3 | b, but 3 | a, then the contradiction with a,b coprime. Hence,
the pair (A™ 4 B’, B’) is a solution of the Diophantine equation:
(1.95) 2432 =p
The solution z = A™ + B’,y = B’ is unique because x — y verifies v —y = A™.
If (u,v) is another pair solution of (1.95)), with u,v € N*  then we obtain:

u? + 30 =p

u—v=A"
Then u = v+ A™ and we obtain the equation of second degree 4v? + 20A™ —
2B'(A™+2B') = 0 that gives as positive root v; = B’ = y, thenu = A™+ B’ =
xz. It follows that p in (1.95) has an unique representation under the form
X? 4+ 3Y? with X,3Y coprime. As p is an odd integer number, we applique
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one of Euler’s theorems on convenient numbers "numerus idoneus" (see [2, [3]) :
Let m be an odd number relatively prime to n which is properly represented by
z2+ny?. If the equation m = x> +ny? has only one solution with x,y > 0, then
m is a prime number. Then p is prime and 4p has an unique representation
(we put U = 2u, V = 2v, with U? +3V? = 4p and U — V = 24™). But

=4p = N2 +3a"? = (2(A™ + B'))? + 3(2B’)?, the representation of 4p is
unique gives:

AN=2(A"+ B')=2a"+ B"
and a” =2B' = B" =A™

But A™ > B™, then the contradiction.

K (C-2-2-1-3- Case A™ = 1(mod 6) and B™ = 2(mod 6), then B" is even, see
C-2-2-1-2-.

** (C-2-2-1-4- Case A™ = 1(mod6) and B" = 3(mod6), then 3 | B" —
B" = 3B’. We can write b = 4p = (2A™ + 3B')? 4+ 3(3B’)?> = A2 + 3a”2. The
unique representation of b as 22 + 3y?> = A\ 4+ 3a"? = a” = A™ = 3B’ = B",
then the contradiction with A™ > B".

**(0-2-2-1-5- Case A™ = 1@mod6) and B" = 5mod6), then C! =
0(mod 6) = 2| C!, see C-2-2-1-2-.

** C-2-2-1-6- Case A™ = 2(mod6) = 2 | a” = 2 | a, but 2 | b, then the
contradiction with a,b coprime.

#*(0-2-2-1-7- Case A™ = 3(mod6) and B" = 1(mod6), then C' =
4(mod 6) = 2 | C! = C! = 2", we can write that p = (C' — B™)? 4 3C",
see C-2-2-1-2-.

** (C-2-2-1-8- Case A™ = 3(mod 6) and B™ = 2(mod 6), then B™ is even, see
C-2-2-1-2-.

** (C-2-2-1-9- Case A™ = 3(mod 6) and B™ = 4(mod 6), then B™ is even, see
C-2-2-1-2-.
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#*(C-2-2-1-10- Case A™ = 3(mod6) and B" = 5(mod6), then C!
2(mod 6) = 2 | G, see C-2-2-1-2-.

*k C-2-2-1-11- Case A™ = 4(mod 6) = 2 | a” = 2 | a, but 2 | b, then the
contradiction with a,b coprime.

*k(C-2-2-1-12- Case A™ = 5(mod6) and B"™ = 0(mod6), then B™ is even,
see C-2-2-1-2-.

¥ (0-2-2-1-13- Case A™ = 5(mod6) and B" = 1(mod6), then C!
0(mod 6) = 2| C!, see C-2-2-1-2-.

kO (C-2-2-1-14- Case A™ 5mod6) and B" = 3(mod6), then C!' =
2(mod 6) = 2 | C!' = C! = 2C", p is written as p = (C" — B™)? 4 3C"2, see
C-2-2-1-2-.

*k(C-2-2-1-15- Case A™ = 5(mod6) and B™ = 4(mod6), then B" is even,
see C-2-2-1-2-.

We have achieved the study all the cases of the table[l|giving contradictions.

Then the case k3 = 1 is impossible.

1.5.7. Case 3 | a and b =2p/, b # 2 with p | p. — 3 | a = a = 3d/,
b= 2p' with p = k.p/, then:
4.k.p' .3.d

4.p a
A2m =
b 6p’

=2.k.d

We calculate B"C":

0 0 0
B"C! = f/; (38@'7123 — 00323> = f/; (3 — 400323>

. 0 3.4
but {/p? = g, then using 0032§ = Ta:

B"C! = \3/; (3 - 40052§> = g <3 - 43;/) =p. (1 - 4;/) = k(p' - 2d)
Asp=10.p/, and p’ > 1, then we have:
(1.96) B"C' = k(p' — 2d))
(1.97) and  A* = 2k.d
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** D-1- We suppose that k is prime.

#¥ D-1-1- If k = 2, then we have p = 2p/ = b = 2 | b, but A?>™ = 4d’ =
(A™)2 = A™ = 24¢” with o’ = a”?, then 2 | a” = 2 | (a = 3a”?), it follows
the contradiction with a,b coprime.

** D-1-2- We suppose k # 2. From A?™ = 2k.a’ = (A™)? = k | a’ and
2| ad = d =2ka? = A™ =2ka”. Thenk | A" = k| A= A=
KA with i > 1 and k § A kAT = 2ka” = 24” = k"™ A", From
B"C!' = k(p) —2d') = k| (B"C') = k| B" or k | C.

** D-1-2-1- We suppose that k | B" = k | B= B = k/.B; with j > 1 and
k1 By. It follows k™ ~'BPC! = p/ —2a' = p' —4ka”™. Asn >3 = nj—1>2,
then k | p' but k #2 =k | (2p' =b), but k | ’ = k| (3d' = a). It follows
the contradiction with a, b coprime.

#% D-1-2-2- If k | C! we obtain the identical results.

** D-2- We suppose that k is not prime. Let w be an integer prime so that
k = w®.k1, with s > 1, w t k1. The equations (1.9641.97) become:

B"C' = w® ki (p) — 2d)

and  A?™ = 2w° ky.d’
** D-2-1- We suppose that w = 2, then we have the equations:
(1.98) A% = 25T |y !
(1.99) B"C' = 25k (p' — 2d))

** D-2-1-1- Case: 2| a’ = 2| a, but 2 | b, then the contradiction with a,b
coprime.

¥ D-2-1-2- Case: 21a’. As 21 ki, the equation ([1.98)) gives 2 | A" = A =
20 Ay, with i > 1 and 21 Ay. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 1 (p — 2a’) = 2 1 p/. From the equation
(1.99), we obtain that 2 | B"C! = 2| B” or 2 | C".

#* D-2-1-2-1-1- We suppose that 2 | B = 2 | B = B = 2/B; with 2 B;
and j > 1, then B}C! = 2577k (p' — 2d/):
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-If s—jn > 1, then 2 | C' = 2 | C, and no contradiction with C! =
2im AT 4 20" B7 and the conjecture is verified.

- If s — jn < 0, from B}C! = 257k (p/ — 2a') = 2 { C', then the
contradiction with C! = 2m AT 4+ 2B — 2 | CL.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the
identical results if 2 | C'.

** D-2-1-2-2- We suppose now that 2 | (p/ — 2d') = p' — 2d’ = 2#.Q, with
p>1and 24 Q. We recall that 21 a’. The equation (1.99) is written as:

B"Ct = 25t 1.0

This last equation implies that 2 | (B"C!) = 2| B” or 2 | C".
#* D-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/ B; with j > 1
and 2t By. Then B?Cl = 25FH=IN |y Q)

-If s+pu—jn > 1, then 2 | C' = 2 | C, no contradiction with C! =
2im AT 4 20" B7 and the conjecture is verified.

-If s+ p—jn <0, from BPC! = 254707k ) = 24 C', then contradiction
with C! = 2im AT 4 2inBn — 2 | CL.

#% D-2-1-2-2-2- We obtain the identical results if 2 | C*.

** D-2-2- We suppose that w # 2. We have then the equations:

(1.100) A% = 205 Ky .d
(1.101) B"C! = w® k1. (p) — 2d))

As w # 2, from the equation ([1.100)), we have 2 | (k1.a'). If 2 | «/ = 2| a,
but 2 | b, then the contradiction with a,b coprime.

* D-2-2-1- Case: 2ta’ and 2 | ky = k1 = 2#.Q with p > 1 and 21 Q. From
the equation (1.100)), we have 2 | A?™ = 2| A = A = 2A; with i > 1 and
2 ¢ Ay, then 2im = 1 4 p. The equation (1.101)) becomes:

(1.102) B"C!' = w24 Q.(p) — 2d)

From the equation (1.102)), we obtain 2 | (B"C') = 2| B or 2 | C'.



1.5. HYPOTHESIS : {3|a and b|4p} 36

#* D-2-2-1-1- We suppose that 2 | B* = 2 | B = B = 2/ By, with j € N*
and 2t Bj.

#* D-2-2-1-1-1- We suppose that 2 { (p/ — 2d/), then we have BPC! =
WS2HInQO) (p! — 2d’):

-Ifpu—jn>1= 2| C" = 2| C, no contradiction with C! = 2™ AT +
2/m B and the conjecture is verified.

-If 41— jn < 0 = 21 C! then the contradiction with C! = 2™ AT 427" BY.

** D-2-2-1-1-2- We suppose that 2 | (p' —2ad') = p' —2d’ = 2*.P, with o € N*
and 21 P. Tt follows that B}C! = ws2#+te—inQ P:

-Ifp+a—jn>1= 2| C = 2| C, no contradiction with C! =
2im A™ 4 20" B7 and the conjecture is verified.

-If p+a—jn <0 = 2 { C! then the contradiction with C! =
2im AT 4 2inpn.

** D-2-2-1-2- We suppose now that 2 | C" = 2| C'. Using the same method
described above, we obtain the identical results.

1.5.8. Case 3 | a and b =4p', b # 4 with p | p. — 3 | a = a = 3d/,
b = 4p' with p = k.p/, k # 1 if not b = 4p this case has been studied (see
paragraph [1.5.6)), then we have :

We calculate B"C":

B"C! = {’/} <3sin2§ - 0052§> = f/; <3 - 40052§>

P ) 0 3.d
but {/p? = =, th - = :
ut /p 5 then using cos™ 2

B"C! = f/; (3 - 40082§> = g (3 - 43';/) =p. (1 — 45/) =k(p —d)
As p=0b.p/, and p’ > 1, we have :
(1.103) B"C!' = k(p' — d))
(1.104) and A = k.d/

** BE-1- We suppose that k is prime. From A?" = k.o’ = (A™)? = k| a’ and
a = ka? = A™ = ka”. Then k | A™ = k | A = A = k'.A
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with i > 1 and k t A;. K™AP = ka” = a” = K™ 'A7. From

B"C'=k(p) —ad') =k | (B"C") =k |B"or k| C".
** F-1-1- We suppose that k | B® = k | B = B = k/.B; with j > 1 and
kt By. Then k™7~ 'BRC' =9 —d'. Asnj—1>2= k| (p —d). But

k|lad = k|a,thenk |p = k| (4p' = b) and we arrive to the contradiction
that a,b are coprime.

** B-1-2- We suppose that k | C!, using the same method with the above
hypothesis k | B", we obtain the identical results.

** E-2- We suppose that k is not prime.
** E-2-1- We take k =4 = p = 4p’ = b, it is the case studied above.

** E-2-2- We suppose that & > 6 not prime. Let w be a prime so that

k = w®.ky, with s > 1, wt k1. The equations (1.10341.104)) become:

(1.105) B"C' = W ki (p) — d)
(1.106) and A = W ky.d

** B-2-2-1- We suppose that w = 2.

¥ E-2-2-1-1-1f 2 | o/ = 2| (3d' = a), but 2 | (4p’ = b), then the contradic-
tion with a, b coprime.

¥k E-2-2-1-2- We consider that 2 1 ¢’. From the equation (1.106)), it follows
that 2 | A?™ = 2| A = A = 2A; with 21 A; and:

Bncl — 28k1(pl o a/)

** E-2-2-1-2-1- We suppose that 2 t (p’ — @), from the above expression, we
have 2 | (B"C') = 2| B" or 2| C".

# F-2-2-1-2-1-1- If 2 | B = 2 | B = B = 2/B; with 2 { B;. Then
B?CZ — 22im—jnk,1 (p/ o a/):

-If 2im — jn > 1 = 2 | C' = 2 | O, no contradiction with C! =
2im AT 4+ 27" B7 and the conjecture (3.1)) is verified.
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- If 2im — jn < 0 = 2 { C' then the contradiction with C! =
2m AT 4 2N B — 2 | O

¥ [-2-2-1-2-1-2- If 2 | C' = 2| C, using the same method described above,
we obtain the identical results.

*k E-2-2-1-2-2- We suppose that 2 | (p'—a’). As2td = 21p',2| (p/-d) =
p —ad =2%P with « > 1 and 21 P. The equation (1.105) is written as :

(1.107) B"C! = 25t . p = 2%mteg, p
then 2 | (B"C') = 2| B" or 2 | C.

#¥ [E-2-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2By, with
2 1 B;. The equation becomes BPIC! = 22im+ta—ing, p:

-If 2im+a—jn>1= 2| C' = 2| C, no contradiction with C! =
2im AT 4+ 2" BT and the conjecture is verified.

- If 2im +a —jn < 0 = 2 { C!, then the contradiction with
Cl=2mAM 4 2inBr — 2| CL.

¥ [-2-2-1-2-2-2- We suppose that 2 | C! = 2 | C. Using the same method
described above, we obtain the identical results.

** E-2-2-2- We suppose that w # 2. We recall the equations:

(1.108) AP = % k.
(1.109) B"C' = W ki (p) — d)

K E-2-2-2-1- We suppose that w,a’ are coprime, then w { a/. From the
equation ([1.108)), we have w | A?"™ = w | A = A = w'A; with w { A; and

s = 2im.

** E-2-2-2-1-1- We suppose that w 1 (p’ — ). From the equation (|1.109))
above, we have w | (B"C!) = w | B" or w | C*.

4 B-2-2-2-1-1-1- If w | B" = w | B = B = w/By with w { B;. Then
B?Cl — 22im—jnk,1 (p/ o a/):

-If 2im —jn > 1 = w | C' = w | C, no contradiction with C! =
WMAT + wI" B} and the conjecture (3.1)) is verified.
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- If 2im — jn < 0 = w { C! then the contradiction with C! =
WA 4 WInBY = w | C'.

¥ F-2-2-2-1-1-2- If w | O! = w | O, using the same method described above,
we obtain the identical results.

4 E-2-2-2-1-2- We suppose that w | (p'—a’) = w 1 p’ as w and o’ are coprime.
w|@p —d)=7p —d =w*P with @ > 1 and wt P. The equation (1.109))
becomes :

(1.110) B"C! = ¥ty P = WEmOR, P
then w | (B"C!') = w | B" or w | C".

#¥ [-2-2-2-1-2-1- We suppose that w | B" = w | B = B = w/Bj, with
wt By. The equation is written as BpC! = 22m+a=jnk, p.
-If2im+a—jn > 1 = w | C = w | C, no contradiction with
Cl = WM AT + wI" B and the conjecture is verified.
- If 2im 4+ a —jn < 0 = w { C! then the contradiction with
Cl = wmAT + WI"BY = w | C.

¥ F-2-2-2-1-2-2- We suppose that w | C! = w | C, using the same method
described above, we obtain the identical results.

*k E-2-2-2-2- We suppose that w,a’ are not coprime, then o' = w?.a” with

w1t a”. The equation (1.108]) becomes:
A = Pkd = W PEy.a”
We have w | A?™ = w | A = A = wiA; with wt Ay and s+ 3 = 2im.

*k E-2-2-2-2-1- We suppose that w t (pf —d) = witp = wt (b = 4).
From the equation (1.109)), we obtain w | (B"C!) = w | B" or w | C".

#* B-2-2-2-2-1-1- If w | B" = w | B = B = w/By with w { B;. Then
BPCl = 2570k (p' — d'):

-Ifs—jn>1= w|C' = w | C, no contradiction with C! = w™ AT +
wi™ B} and the conjecture is verified.
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-If s —jn < 0 = w { C' then the contradiction with C! =
WA 4+ WInBY = w | C'.

¥ F-2-2-2-2-1-2- If w | O! = w | O, using the same method described above,
we obtain the identical results.

¥ [-2-2-2-2-2- We suppose that w | (pf —a' =p' —wPa”) = w|p = w
(4p" =b), but w | ’ = w | a. Then the contradiction with a,b coprime.

The study of the cases of [[.5.8] is achieved.

4 0
1.5.9. Case3|aandb|4p. — a = 3a’ and 4p = k1b. As A?™ = gpcos2§ =
4p 3a’
Ep% = k1a’ and B"C":

0 0 6 ! k
B"C! = {5/; (3sin23 — 00323> = g (3 — 460323> = g (3 - 43:) = Zl(b_‘l@/)

As B"C' is an integer, we must obtain 4 | ky, or 4 | (b — 4a’) or (2 | k1 and
2] (b—4d)).
*HF-1-1f ky =1 = b=4p: it is the case[1.5.6

*E-2-1f ky =4 = p=1>:itis the case|1.5.3

¥ F-3-If ky = 2 and 2 | (b — 4a’): in this case, we have A?™ = 2ad/ = 2 |
a = 2]a. 2] (b—4a") = 2| b then the contradiction with a,b coprime.

¥EF4- 162 | kpand 2 | (b—4d): 2| (b—4d) = b—4d = 2%\, a and
A€ N* > 1 with 24 X\; 2 | ky = ky = 2'k] with ¢ > 1 € N* with 24 k] and we
have:

(1.111) AP = 2tk d

(1.112) B"C! = 2172k )\

From the equation (1.111), we have 2 | A?™ = 2 | A = A = 204y, i > 1
and 2*141

** F-4-1- We suppose that t = a = 1, then the equations (1.1111.112)) become

(1.113) A?™ = 2k1d
(1.114) B"C!' = ki)
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From the equation (1.113)) it follows that 2 | ' = 2 | (a = 3d/). But
b=4d' + 2\ = 2| b, then the contradiction with a, b coprime.

** F-4-2- We suppose that t + a — 2 > 1 and we have the expressions:
(1.115) AP = 2k a
(1.116) B"C! = 2tTa72E] )\

** F-4-2-1- We suppose that 2 | a’ = 2| a, but b = 2%\ + 40’ = 2 | b, then
the contradiction with a, b coprime.

** F-4-2-2- We suppose that 2 { @’. From (1.115), we have 2 | A?™ = 2 |
A= A=2A; and B"C' = 21T 2\ = 2 | B"C' = 2| B" or 2| C..

#* F-4-2-2-1- We suppose that 2 | B". We have 2 | B = B = 2/By, j > 1
and 21 By. The equation ([1.116)) becomes ByC! = 2t+a=2=inj! \.
-Ift+a—-2—jn>0= 2| Cl = 2| C, no contradiction with
Ol = 2im AT 4 20" BT and the conjecture is verified.
-Ift+a—2—jn< 0= 2| K\ but 21k} and 2 X\. Then this case is
impossible.
-Ift+a—2—jn=0= BPC' = k)X = 21 C! then it is a contradiction
with C! = 2im AT 4 2inpn,

** F-4-2-2-2- We suppose that 2 | C'. We use the same method described
above, we obtain the identical results.

¥k F-5- We suppose that 4 | ky with k; > 4 = k; = 4k, we have :

(1.117) A?™ = 4kha

(1.118) B"C' = k(b — 4d)

** F-5-1- We suppose that k) is prime, from (1.117)), we have k% | a’. From
(L.118), & | (B"C) = kb | B™ or K | CL.

## F-5-1-1- We suppose that k) | B" = kb, | B= B = kil .B; with 8 > 1
and kj { By. Tt follows that we have ky"" " 'BrC! = b — 4a’ = K}, | b then the
contradiction with a,b coprime.

** F-5-1-2- We obtain identical results if we suppose that kb | C'.
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¥k F-5-2- We suppose that kb is not prime.

** F-5-2-1- We suppose that and a’ are coprime. From , kb can
be written under the form k) = q1 q3 and ¢ 1 g2 and ¢ prime. We have
AQm:élq1 q3a =>q1|AandB"Cl:q1 q3(b—4a’) = q | B" or q | C".

** F-5-2-1-1- We suppose that ¢1 | B" = ¢1 | B=— B = q1 By with ¢ 1 By.
We obtain BPC! = ¢ "2 (b — 4d'):
SIf2—fn>1=q | C' = ¢ | C but C' = A™ + B" gives also q; | C
and the conjecture is verified.

-If 2§ — f.n = 0, we have BPC! = ¢3(b—4d’), but C' = A™ 4 B gives ¢, | C,
then q1 | (b —4a’). As ¢1 and @ are coprime, then ¢; t b, and the conjecture
is verified.

-If2j— fm< 0= q1 | (b—4d") = q1 1 b because a’ is coprime with ¢,
and C' = A™ + B" gives q; | C, and the conjecture is verified.

#* F_5-2-1-2- We obtain identical results if we suppose that q; | C*.

** F-5-2-2- We suppose that k), a’ are not coprime. Let ¢; be a prime so that
q1 | K, and q1 | . We write k, under the form ¢].go2 with j > 1, q1 1 g2. From
A = 4kha' = q1 | A’™ = ¢ | A. Then from B"C! = q]q2(b — 4d’), it
follows that ¢, | (B"C') = ¢, | B" or ¢ | C".

** F-5-2-2-1- We suppose that ¢ | B" = ¢ | B = B = q’f.Bl with
B > 1and ¢ 1 B;. Then, we have ¢} B”C’l = qlqg(b —4d’) = BPC! =
A" (b - 4d').

-Ifj—nB > 1, thenq1 | Ot = q1 | C, but C' = A™ + B gives ¢; | C, then
the conjecture (3.1) is verified.

-lfj—nB =0, we obtain BIC! = go(b—4d’), but C' = A™ + B gives q1 | C,
then ¢1 | (b —4a’) = ¢1 | b because ¢1 | a/ = ¢1 | a, then the contradiction
with a,b coprime.

-Ifj—nB<0=q | (b—4d") = q1 | b, because ¢ | ¢’ = ¢1 | a, then the
contradiction with a,b coprime.

#* F_5-2-2-2- We obtain identical results if we suppose that q; | C*.
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¥ F-6- If 4 4 (b— 4d’) and 4 1 kq it is impossible. We suppose that 4 |
(b—4a') =4 |b,and b—4a’ = 4'.g , t > 1 with 41 g, then we have :

A2m — k:la'
B"C!' = k.47l g

*% F_6-1- We suppose that k; is prime. From A?" = kia’ we deduce easily
that k; | a’. From B"C' = k;.4'"!.g we obtain that k; | (B"C') = k; | B"
or ki | CL.

**% F_6-1-1- We suppose that k| | B* = k) | B = B = kI.B; with j > 0
and ky { By, then k]"/BICl = k.4t~ g — k7' BrCt = 4t1g. But n > 3
and j > 1, then n.j —1 > 2. We deduce as k1 # 2 that k1 | g = k1 | (b—4d),
but k1 | @’ = k1 | b, then the contradiction with a,b coprime.

#* F_6-1-2- We obtain identical results if we suppose that k; | CL.

** F-6-2- We suppose that k; is not prime # 4, (k; = 4 see case F-2, above)
with 4 )[ k‘l.

¥ F-6-2-1- If ky = 2k" with & odd > 1. Then A?*™ =2k'd’ = 2| d = 2| q,
as 4 | b it follows the contradiction with a,b coprime.

** F-6-2-2- We suppose that kj is odd with k; and o' coprime. We
write k1 under the form k; = ¢].¢2 with ¢1 { ¢2, ¢1 prime and j > 1.
B"C! = ¢].qud"lg = q1 | B or q; | C".

** F-6-2-2-1- We suppose that ¢; | B" = ¢q1 | B=— B = q{.Bl with ¢ 1 B;.
We obtain BPCL = ¢/ /" gyat=1g,
~Ifj—fn>1=q | C' = ¢ | C, but C' = A™ + B" gives also q1 | C
and the conjecture (3.1)) is verified.

-If j — fn = 0, we have BPC! = gu4'"1g, but C! = A™ + B" gives q1 | C,
then ¢ | (b —4a’). As ¢; and o’ are coprime then ¢; 1 b and the conjecture
is verified.

-Ifj—fn <0 = ¢ | (b—4d) = ¢ 1 b because ¢q1,ad’ are primes.
C! = A™ 4 B™ gives q; | C and the conjecture is verified.

** F-6-2-2-2- We obtain identical results if we suppose that ¢; | C*.
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** F-6-2-3- We suppose that k1 and a’ are not coprime. Let g; be a prime so
that g1 | k1 and ¢ | /. We write k; under the form q{.qg with ¢ 1 g2. From
AP = ka = q1 | A’ = q1 | A. From B"C! = q{qg(b — 4a'), it follows
that ¢ | (B"C') = q1 | B" or ¢ | C.

** F-6-2-3-1- We suppose that ¢ | B* = ¢ | B = B = qf.Bl with
B > 1and ¢1 f B;. Then we have qlnﬁB?Cl = ¢g(b — 4d/) = Br(C! =
gl " qa(b — 4a'):

-If j—nB>1,thenq | C' = ¢q1 | C, but C' = A™ + B gives q; | C, and
the conjecture is verified.

-If 5 —nB = 0, we obtain BPC! = go(b — 4a’), but ¢, | A and ¢ | B then
q1 | C and we obtain ¢; | (b — 4a’) = ¢1 | b because ¢1 | d = ¢1 | a, then
the contradiction with a,b coprime.

-Ifj—nB<0= q | (b—4d") = ¢ | b, then the contradiction with a,b
coprime.

#* F-6-2-3-2- We obtain identical results as above if we suppose that ¢; | C'.

1.6. Hypothése: {3 |p and b|4p}

1.6.1. Case b=2and 3 |p. — 3| p=p=3p with p’ # 1 because 3 < p,
and b = 2, we obtain:

dp.a  4.3p'.a  4.p.a
AP = = = =2p.
3b 3b 2 pa
As:
1 6 3 0 1
Z<6082§:%:g<1:>1<2a<3:>a:1:>0082§:§
but this case was studied (see case[1.4.1.2)).

1.6.2. Case b=4 and 3 | p. — we have 3 | p = p = 3p’ with p’ € N*, it
follows :

dp.a  4.3p'.a
A2m = - = = /‘
3 3x4 D°

and:
1 20 a a 3
Z<COS§_5_Z<1:>1<G<3:>G_2

as a, b are coprime, then the case b =4 and 3 | p is impossible.
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1.6.3. Case: b#2,b#4,b#3,b|pand 3|p. — As 3| p, then p = 3p/
and :
_4p .0 4pa  4x3pa  4pa
373 3b 3 b b
We consider the case: b | p' = p/ =bp” and p” # 1 (If p” = 1, then p = 3b,
see paragraph Case k' = 1). Finally, we obtain:

_ 4bpTa

AQm
b

=dap”; B"C'= p”.(3b — 4a)

** G-1- We suppose that p” is prime, then A?™ = 4ap” = (A™)? = p” | a.
But B"C' = p”(3b — 4a) = p” | B" or p” | C.

# G1-1- If p” | B® = p” | B = B = p"B; with B; € N*. Then
p""IBIC! = 3b —4a. Asn > 2, then (n —1) > 1 and p” | a, then
p”|3b=p”=3orp”|b

** G-1-1-1- If p” = 3 = 3 | a, with a that we write as a = 3a’?, but A™ =
6/ = 3| A™m = 3| A= A =34y, then 3" A" =2d = 3 | d =
a' =3a”. As p"" IBPC! = 3" 1BIC! = 3b — da = 3" 2BPC! = b — 36a72.
Asn >2=n—22>1, then 3| b and the contradiction with a,b coprime.

** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with a, b
coprime.

** (3-1-2- If we suppose p” | C!, we obtain identical results (contradictions).
** G-2- We consider now that p” is not prime.

2

*k (3-2-1- p”,a coprime: A?" = dap” = A™ = 2d’.p; with a = a/*> and

p” = p?, then @/, p; are also coprime. As A™ = 2a’.py, then 2 | @’ or 2 | p;.
** (G-2-1-1- We suppose that 2 | @/, then 2 | o’ = 2 p1, but p” = p?.
** G-2-1-1-1- If py is prime, it is impossible with A™ = 2a’.p;.

** (3-2-1-1-2- We suppose that p; is not prime so we can write p; = W™ —
p” = w?™. Then B"C! = w?™(3b — 4a).
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¥ (3-2-1-1-2-1- If w is prime, w # 2, then w | (B"C!) = w | B" or w | C.

#* G-2-1-1-2-1-1- f w | B" = w | B = B = w/B; with w { By, then
BpP.C! = W™= (3b — 4a).

¥ (G-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' = 3b — 4a. As
Cl=A"4+B" = w|C' = w|C,and w | (3b — 4a). But w # 2 and w, d’
are coprime, then w,a are coprime, it follows w 1 (3b), then w # 3 and w t b,
the conjecture is verified.

0 G-2-1-1-2-1-1-2- If 2m — nj > 1, using the method as above, we obtain
w|CO' = w|Cand w| (3b—4a) and wta and w # 3 and w 1 b, then the
conjecture (3.1)) is verified.

¥ G-2-1-1-2-1-1-3- If 2m —nj < 0 = W™I~2mBr.C! = 3b — 4a. From
Am 4+ B" = O = w | C' = w | O, then C = w".Cy, with w { Oy, we
obtain wmJ=2m+hipn Ot = 3b — 4a. I n.j —2m + h.l < 0 = w | BPC! then
the contradiction with w 1 By or w 1 Cy. It follows n.j — 2m + h.l > 0 and
w | (3b — 4a) with w, a, b coprime and the conjecture is verified.

** (3-2-1-1-2-1-2- Using the same method above, we obtain identical results if
w | CL.

*k(3-2-1-1-2-2- We suppose that p” = w?™ and w is not prime. We
write w = w{.Q with wy prime f Q, f > 1, and w; | A. Then B"C! =
w2 ™M (3p — 4a) = w, | (B"C!) = w; | B" or wy | C.

% G-2-1-1-22-1- If wy | B" = wi | B = B = w{B) with w; { By, then
BP.Cl = WP Q02 (3b — 4a):

#E (-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B.C' = Q?™(3b — 4a). As
Cl=A" 4+ B" = w | C' = wy | C, and wy | (3b — 4a). But w; # 2 and
w1, a’ are coprime, then w, a are coprime, it follows wy 1 (3b), then wy # 3 and
w1 1 b, and the conjecture (3.1)) is verified.

¥ G-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have wy | C' = w; | C and
wi | (3b —4a) and wy 1 @ and w; # 3 and w; 1 b, it follows that the conjecture
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(3.1)) is verified.

B (3-2-1-1-2-2-1-3- If 2f.m — n.j < 0 = W2/ Br.Cl = 02m(3b — 4a).
As wy | C using C' = A™ 4 B", then C = wh.C} = wni—2mfHhipn Ol =
Q>™(3b — 4a). If n.j — 2m.f + h.l < 0 = w; | B}C!, then the contradiction
with wy t By and wy 1 C1. Then if n.j —2m.f+ h.l > 0 and w; | (3b —4a) with
w1, a, b coprime and the conjecture is verified.

** (3-2-1-1-2-2-2- Using the same method above, we obtain identical results if
w1 ‘ Cl.

** (3-2-1-2- We suppose that 2 | p1: then 2 | py = 21 d = 2 { a, but
9 2
p =D1

** (G-2-1-2-1- We suppose that p; = 2, we obtain A™ = 4a’ = 2 | d/, then
the contradiction with a,b coprime.

** (G-2-1-2-2- We suppose that p; is not prime and 2 | p1. As A™ = 2d/py,
p1 can written as p; = 2™ W™ = p” = 22" 2™ Then B"C! =
22m=2,y2m(3h — 4a) = 2 | B" or 2 | C".

** (3-2-1-2-2-1- We suppose that 2 | B" =2 | B. As 2| A, then 2 | C. From
B"C! = 22m=2(,)2m(3ph — 4a) it follows that if 2 | (3b—4a) = 2 |bbut as 24 a
there is no contradiction with a, b coprime and the conjecture (3.1)) is verified.

#% (3-2-1-2-2-2- We suppose that 2 | C!, using the same method above, we
obtain identical results.

** (3-2-2- We suppose that p”,a are not coprime: let w be a prime integer so
that w | @ and w | p”.

#* (3-2-2-1- We suppose that w = 3. As A?™ = dap” = 3 | A, but 3 | p. As
p= A" 4+ B 4 AmMB" — 3 | B = 3 | B, then 3 | C!' = 3 | C. We
write A =3'A;, B =3By, C = 3"C; with 3 coprime with A;, B; and C; and
p = 32mAIm 4 320 p2n g gimtin Ampr — 3k g with k = min(2im, 2jn, im+jn)
and 3 1 g. We have also (w = 3) | a and (w = 3) | p” that gives a = 3%ay,
3ta and p” = 3Hpy, 31 py with A2™ = dap” = 3HMAI™ = 4 x 39TH q1.p; =
a+p=2im. As p=3p = 3b.p” = 3b.3*p; = 3*T1.b.p1, the exponent of the
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factor 3 of p is k, the exponent of the factor 3 of the left member of the last
equation is u + 1 added of the exponent 5 of 3 of the term b, with 5 > 0, let
min(2im,2jn,im + jn) = p+ 1 + S and we recall that o + p = 2im. But
B"C! = p”(3b — 4a), we obtain 3T BRC = 3u+1p (b — 4 x 3(eVgy) =
381 p1 (38b; — 4 x 3(Vay), 34 b;. We have also A™ + B" = C! = 3" AV +
3By = 3MCL. We call € = min(im, jn), we have € = hl = min(im, jn). We
obtain the conditions:

(1.119) k = min(2im,2jn,im + jn) = u+ 1+
(1.120) o+ = 2im
e = hl = min(im, jn)
3t BrCt = 30 py (3% — 4 x 3 Vay)
** G-2-2-1-1- « = 1 = a = 3a; and 31 a1, the equation ((1.120) becomes:
1+ p=2im
and the first equation (|1.119)) is written as:
k = min(2im, 2jn,im + jn) = 2im +
-If k = 2im = 8 = 0 then 3 1 b. We obtain 2im < 2jn = im < jn, and
2im < im + jn => im < jn. The third equation gives hl = im and the last
equation gives nj + hl = p + 1 = 2im = m = nyj, then ¢m = nj = hl and
B?Ci = p1(b—4a1). As a,b are coprime, the conjecture (3.1)) is verified.

-If kK = 2jn or k = im + jn, we obtain f = 0,im = jn = hl and
B}C! = py(b—4ay). As a,b are coprime, the conjecture (3.1)) is verified.

**G-2-2-1-2-a > 1= a > 2.

-Ifk=2im = 2im =pu+ 1+ 5, but p = 2im — « that givesa =14+ >
2= [ #0=3|b, but 3| a then the contradiction with a,b coprime.

Itk =2jn = p+148 < 2im = p+1+ < pta= 1+ <a= > 1.
If 5>1=3]0bbut 3|a, then the contradiction with a,b coprime.

-Ifk=im+ jn = im + jn < 2im = jn < im, and im + jn < 2jn =
im < jn, then im = jn. As k =im—+jn=2im =1+ pu+p and a+ p = 2im,
we obtain « =1+ > 2 = 8 > 1= 3| b, then the contradiction with a,b
coprime.

** (G-2-2-2- We suppose that w # 3. We write a = w®a; with w{a; and p” =
whpy with w t pr. As A2 = dap” = 4w F.a1p) = w | A = A = WiA;,
w{ Ay But B"C! = p”(3b — 4a) = whp1(3b — 4a) = w | B"C! = w | B" or
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w | Ch

#¥ (3-2-2-2-1- We suppose that w | B = w | B = B = w/B; and w { B.
From A"+ B" =C' = w | C' = w | C. Asp = bp' = 3bp” = 3whbp; =
wh(wm=k A2m 4 y2in=k p2n 4 yimtin—k Am B with k = min(2im, 2jn, im +
jn). Then:

- If k = u, then w { b and the conjecture is verified.

- If kK > p, then w | b, but w | a then the contradiction with a,b coprime.

- If k < p, it follows from:

3w,ubp1 — wk(w%mka%m + w2jnka%n + wim+jnka71nB{L)

that w | A; or w | By then the contradiction with w{ A; or w { Bj.

** (G-2-2-2-2-Ifw | O' = w | C = C = w'"C) with w { Cy. From A™+B" =
C!' = w | (C' - A™) = w | B. Then, using the same method as for the case
G-2-2-2-1-, we obtain identical results.

1.6.4. Case b=3 and 3 |p. — As 3 |p= p = 3p’, We write :

4p 0 4dpa 4x3pa 4pa
AQm:i 27:77: g
39737 3% 3 3 3

0
As A?™ is an integer and a, b are coprime and coszg < 1 (see equation (|1.18))),

then we have necessary 3 | p’ = p’ = 3p” with p” # 1, if not p = 3p’ =
3x3p” =9, but 9 < (p = A?" + B?" 4 A™B"), the hypothesis p” = 1 is
impossible, then p” > 1, and we obtain:

_4pla 4 x3pTa

A2m 3 — 3 = 4dp’a; Bncl :p”.(g _ 4a)

1 6 3
Asz<c052§:%:§<Z:>3<4a<9:>asa>1,a:2andwe
obtain:

3p”(9 — 4
(1.121) A = 4pq = 8p”; B'Cl = p(g“) —p

The two last equations above imply that p” is not a prime. We can write p”
as : p” = [Lier pi" where p; are distinct primes, «; elements of N* and i € I a
finite set of indexes. We can write also p” = p{'.q1 with p; t ¢;. From ,
we have p; | A and py | B"C' = p; | B" or p; | C.

** H-1- We suppose that p; | B" = B = p?l.Bl with p; 4 By and (1 > 1.
Then, we obtain BPC! = p?r"ﬂ '.q1 with the following cases:
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-Ifa;—nB1 > 1= p; | C' = p1 | C, in accord with p; | (C' = A™+ B"),
it follows that the conjecture is verified.

-lfag —nf =0 = B{LC’Z = q1 = p1 1 C', it is a contradiction with
p1 | (A™ — B") = py | C!. Then this case is impossible.

“If a; — nPy < 0, we obtain p' M BIC! = ¢ = py | q, it is a
contradiction with p; 1 ¢g;. Then this case is impossible.

** H-2- We suppose that p; | C!, using the same method as for the case
p1 | B™, we obtain identical results.

0
1.6.5. Case 3 |p and b =p. — We have cos2§ = % _ ¢ and:
p
qom AP 20 Apa_ da

3 3 3p 3
As A?™ is an integer, it implies that 3 | a, but 3 | p => 3| b. As a and b are
coprime, then the contradiction and the case 3 | p and b = p is impossible.

1.6.6. Case 3 |pand b=4p. — 3 | p = p = 3p/, p' # 1 because 3 < p,
then b = 4p = 12p’.

qom AP 20 Apa_a
3 3 3b 3
as A?™ is an integer. But 3 | p = 3 | [(4p) = b], then the contradiction with
a,b coprime and the case b = 4p is impossible.

—3]a

1.6.7. Case 3 |pand b=2p. — 3 |p=p=3p, p' # 1 because 3 < p,

then b = 2p = 6p'.
4 4 2
AP = —pCOSQQ =P2_=

3 3 3b 3

as A%™ is an integer. But 3 | p = 3| (2p) == 3| b, then the contradiction
with a, b coprime and the case b = 2p is impossible.

= 3|a

1.6.8. Case 3 | p and b # 3 a divisor of p. — We have b = p' # 3, and p
is written as p = kp’ with 3|k = k =3k and :

AP = 4£COS2Q _

¢
3 3 3°b
0
B"C! = g <3 — 460523) =K' (3p — 4a) = k'(3b — 4a)

= 4ak’
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EL1- K £ 1

#* 1-1-1- We suppose that &’ is prime, then A%?™ = 4ak’ = (A™)? = k' | a.
But B"C! = k' (3b — 4a) = k' | B" or k' | C".

# [1.11-If k' | B® = k' | B = B = K'B; with B; € N*. Then
Em1BrCt = 3b — 4a. As n > 2, then (n —1) > 1 and k' | a, then
K13 =k =3ork'|b.

¥ 1-1-1-1-1- If ¥ = 3 = 3 | a, with a that we can write it under the
foorm ¢ = 3a”?. But A™ = 6d’ = 3 | A" = 3 | A = A = 34
with A7 € N*. Then 3™ A" = 2¢/ = 3 | o/ = d = 3a”. But
Em1prot = 3n1Bpct = 3b — 4a = 3" 72BPC! = b — 36a"%.  As
n>3=n—22>1, then 3| b. Hence the contradiction with a,b coprime.

#* 1-1-1-1-2- We suppose that k' | b, but &’ | a, then the contradiction with
a,b coprime.

#* 1-1-1-2- We suppose that &' | C!, using the same method as for the case
k' | B™, we obtain identical results.

** 1-1-2- We consider that &’ is not a prime.

ok 1.1-2-1- We suppose that k’,a coprime: A*™ = dak’ = A™ = 2d’.p; with
a = a? and k' = p?, then a/,p; are also coprime. As A™ = 2a’.p; then 2 | a’
or 2| pi.

#¥ 1-1-2-1-1- We suppose that 2 | @/, then 2 | ¢’ = 21 py, but k' = p?.

** 1-1-2-1-1-1- If py is prime, it is impossible with A™ = 2a’.p;.

** 1-1-2-1-1-2- We suppose that p; is not prime and it can be written as
p1 = w"m = k' = w?. Then B"C' = w?™(3b — 4a).

% 1-1-2-1-1-2-1- If w is prime # 2, then w | (B"C!) = w | B" or w | C".

4 1-1-2-1-1-2-1-1- If w | B® = w | B = B = w/B; with w { By, then
B}.C! = w1 (3b — 4a).
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- If 2m — n.j = 0, we obtain B?".C' = 3b — 4a, as C' = A™ + B" = w |
C! = w | O, and w | (3b —4a). But w # 2 and w,a’ are coprime, then
w1 (3b) = w # 3 and w t b. Hence, the conjecture is verified.

- If 2m — nj > 1, using the same method, we have w | C! = w | C and
w| (3b—4a) and w1 a and w # 3 and w 1 b. Then the conjecture is
verified.

-If2m—nj < 0= W™ 2"Br.C' =3b—4a. AsC' = A"+ B" —=w | C
then C = W'.Cy = wmi=2mthipn Ol = 3b — 4a. If nj — 2m + hl <
0 = w | BPC!, then the contradiction with w { By or w { Cp. If
n.j —2m+h.l >0 = w | (3b — 4a) with w,a,b coprime, it implies that the
conjecture is verified.

% [-1-2-1-1-2-1-2- We suppose that w | C!, using the same method as for the
case w | B™, we obtain identical results.

¥ 1-1-2-1-1-2-2- Now k' = w?™ and w not a prime, we write w = w{.Q
with w; a prime { Q and f > 1 an integer, and w; | A, then B"C! =
w2 ™M (3p — 4a) = w, | (B"C') = w; | B" or wy | C.

4 [.1-2-1-1-2-2-1- If wy | B® = wy | B = B = w}B; with w; { By, then
Bp.CL = mmiQ2m (3p — 4q).

-If 2f.m—n.j = 0, we obtain BP.C! = Q?™(3b—4a). As C' = A"+ B" =
wi | C' = w1 | C, and wy | (3b—4a). But w; # 2 and wy, a’ are coprime, then
w,a are coprime, then w; 1 (3b) = wy # 3 and w; 1 b. Hence, the conjecture
is verified.

-If2fm—n.j > 1, we have wy | C!' = w; | C and w; | (3b—4a) and w; {a
and w; # 3 and wy 1 b, then the conjecture is verified.

SIE2fm —ng < 0 = WTTPIBRC = QPM(3b — 4a). As C! =
AM4B" = w; | C, then C = w}.Cy = wni=2m-J+hipn O — O?M(3b—4a).
If n.j — 2m.f + h.l < 0 = w; | BPC!, then the contradiction with wy t By
and wy t Cq1. Then if n.j — 2m.f + h.l > 0 and wy | (3b — 4a) with wy,a,b
coprime, then the conjecture is verified.

% 1-1-2-1-1-2-2-2- As in the case wy | B", we obtain identical results if w; | C".

% 1-1-2-1-2- If 2 | py: then 2 | py = 2td' = 24 a, but k' = pi.
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** 1-1-2-1-2-1- If p; = 2, we obtain A™ = 4a’ = 2 | d/, then the contradiction
with 21 a’. Case to reject.

*H 1-1-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2d/py,
p1 is written under the form p; = 2™ lw™ = p? = 22"72,?". Then
B"C!' = k/(3b — 4a) = 22 2w?*™(3b — 4a) = 2 | B" or 2 | C".

o 1-1-2-1-2-2-1- If 2 | B = 2 | B,as 2 | A = 2 | C. From
B"Cl = 22m=24,2m(3b — 4a) it follows that if 2 | (3b — 4a) = 2 | b but
as 2 1 a, there is no contradiction with a,b coprime and the conjecture
is verified.

% 1-1-2-1-2-2-2- We obtain identical results as above if 2 | C'.

** 1-1-2-2- We suppose that k', a are not coprime: let w be a prime integer so
that w | @ and w | p?.

#* 1-1-2-2-1- We suppose that w = 3. As A?™ = 4ak’ = 3 | A, but 3 | p. As
p= A" 4+ B 4 AmMB" — 3 | B = 3| B, then 3 | C! = 3 | C. We
write A = 3'A,, B =3By, C = 3"C; with 3 coprime with A;, B; and C; and
p = 3%mAIm 4 320 BIn gy 3ImEIn AM BN = 35 g with s = min(2im, 2jn, im+jn)
and 3t g. We have also (w = 3) | a and (w = 3) | £’ that give a = 3%ay, 3t a1
and k' = 3Hpy, 3 1 po with A?™ = dak’ = 3¥MAI™ = 4 x 39TH q1.py —
a4+ p=2im. As p=3p’ = 3b.k' = 3b.3"py = 3*T1.b.py. The exponent of the
factor 3 of p is s, the exponent of the factor 3 of the left member of the last
equation is u + 1 added of the exponent 5 of 3 of the factor b, with g > 0,
let min(2im,2jn,im + jn) = p+ 1 + B, we recall that o + p = 2im. But
B"C! = k'(4b — 3a) that gives 3(WHh) BrCl = 3utlp, (b — 4 x 3@ Ng)) =
3“+1p2(35b1 — 4 x 3(0‘*1)611), 31 b1. We have also A™ + B" = C! that gives
3mAT 4 3npr = 3MCL We call € = min(im,jn), we obtain € = hl =
min(im, jn). We have then the conditions:

(1.122) s = min(2im,2jn,im + jn) = u+ 1+
(1.123) a+p=2im
(1.124) € = hl = min(im, jn)
(1.125) 3tk grot — 3041y, (38h) — 4 x 3(07Vgy)
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##* [-1-2-2-1-1- « = 1 = a = 3a; and 3t aj, the equation becomes:
1+ pu=2tm
and the first equation is written as :
s = min(2im, 2jn,im + jn) = 2im +

-If s =2im = =0 = 31b. We obtain 2im < 2jn = im < jn, and
2im < tm + jn = vm < jn. The third equation gives hl = im.
The last equation gives nj + hl = p+ 1 = 2im = im = jn, then
im = jn = hl and BPC! = pa(b — 4a;). As a,b are coprime, the conjecture
is verified.

-If s = 2jn or s = 4m + jn, we obtain f§ = 0,im = jn = hl and
B?C{ = po(b—4aq). Then as a, b are coprime, the conjecture is verified.

A [1-2-2-1-2-a> 1= a > 2.

-Ifs=2im = 2im=p+1+8, but u=2im—aitgivesa=1+8>
2= [ # 0= 3| b, but 3| a then the contradiction with a,b coprime and
the conjecture is not verified.

“Ifs=2jn = pu+1+6 < 2im = p+1+8 < pta = 1+ <a= B =1.
If 5=1=3|bbut 3| a, then the contradiction with a,b coprime and the
conjecture is not verified.

-If s =im + jn = im + jn < 2im = jn < im, and im + jn < 2jn =
im < jn, then im = jn. Ass=im+jn=2im =1+ pu+ f and a + p = 2im
it givesa=1+4+p3>2= 3 >1= 3]|b, then the contradiction with a,b
coprime and the conjecture is not verified.

** 1-1-2-2-2- We suppose that w # 3. We write a = w®ay with w {a; and k' =
Whpe with w § pa. As A?™ = dak’ = 4w HF.a1py = w | A = A = W'A,
w{ Ay But B"C! = K'(3b — 4a) = whp(3b — 4a) = w | B*"C' = w | B" or
w | Ch

#*11-2-2-2-1-w | B" = w | B= B" =w/'Bj and w{ B;. From A™+ B" =
Cl = w | C = w | C. Asp = bp = 3bk/ = 3whbpy = w* (WM™ A 4
WA= BIn 4 yimHin=s A B with s = min(2im, 2jn, im + jn). Then:

- If s = p, then w { b and the conjecture is verified.

-If s > p, then w | b, but w | a then the contradiction with a, b coprime and
the conjecture is not verified.
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- If s < p, it follows from:
30.)‘“[)])1 — w5(w2imfsA%m 4 w2jnfsB%n + wim+jnfsArlnB{L)
that w | A or w | By that is the contradiction with the hypothesis and the
conjecture (3.1)) is not verified.

¥ [1-2-2-2-2- If w | C' = w | C = C = w"C; with w t C;. From
Am 4+ B" = C' = w | (C' — A™) = w | B. Then we obtain identical results
as the case above I-1-2-2-2-1-.

*k 1-2- We suppose k' = 1: then k' = 1 = p = 3b, then we have A>" = 4a =
(2a/)2 = A™ = 24/, then a = a'? is even and :

0
AM B — 2\/50037 Jp (\/i%n — COS3> }9\3[ ? — 2a
and we have also:
2
(1.126) A?™ 4 2AMB" = p?:f n— = 2b\[3m—

The left member of the equation ((1.126)) is a naturel number and also b, then
20
2\/§sin§ can be written under the form :

2
Q\fsm 30 :;

where ki, ko are two natural numbers coprime and kg | b = b = ko.k3.

## 1.2-1- k' = 1 and k3 # 1: then A?™ + 2A™B" = k3.k;. Let u be a
prime integer so that p | k3. If u = 2 = 2 | b, but 2 | a, it is a con-
tradiction with a,b coprime. We suppose that u # 2 and p | ks, then
| A™M(A™ +2B") = | A" or | (A™ +2B").

REL2-1-1- | A™: I p | A" = p | A2 = p | da = p | a. As
w| ks = | b, the contradiction with a,b coprime.

1-2-1-2- | (A™42B™): If p | (A™ +2B™) = u{ A™ and p t 2B™, then
pw#2and pt B™ pl| (A™ 4+ 2B™), we can write A™ 4+ 2B™ = u.t’. Tt follows:

Am+Bn _ ,U,t, _B" —_— A2m+B2n +2AmBn — M2t/2 _2t/'uBn+B2n
Using the expression of p, we obtain:

p_t/2 2 QtBn,u—l-Bn( n_Am)
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As p=3b=3ko.ks and p | k3 then pu | p = p = p.i/, then we obtain:
= p(pt? —2t'B") + B"(B" — A™)
and p | B"(B" — A™) = pu | B" or pu | (B" — A™).

4 1-2-1-2-1- p | B™: If p | B" = p | B, that is the contradiction with
I-2-1-2- above.

K -2-1-2-2- | (B™ — A™): If p | (B™ — A™) and using that p | (A™ + 2B"),
we obtain :
p|B" = pu|B
w|3B" =< or
w=3
ok 1-2-1-2-2-1- p | B™: If p | B = p | B, that is the contradiction with
[-2-1-2- above.

*KT-2-1-2-2-2- 4 = 3: If u = 3 = 3 | ks = k3 = 3k%, and we have b = koks =
3kokh, it follows p = 3b = 9kok}, then 9 | p, but p = (A™ — B™)? + 3A™B"
then:

koky — 3A™B" = (A™ — B")?
that we write as:
(1.127) 3(3kokh — A™B™) = (A™ — B")?
then:
3| (3kokl — AMB") = 3| A"B" => 3| A" or 3| B"

R 12-1-2-2-2-1- 3 | A™: If 3| A™ = 3| A and we have also 3 | A%?™, but
AP = 4q = 3| 4a = 3| a. As b= 3kgk} then 3 | b, but a,b are coprime,
then the contradiction and 3 1 A.

** 1-2-1-2-2-2-2- 3| B™: If 3| B™ = 3 | B, but the equation ((1.127)) implies
3| (A™—B")? = 3| (A™ — B") = 3| A™ = 3| A. The last case above
has given that 3 1 A. Then the case 3 | B™ is to reject.

Finally the hypothesis k3 # 1 is impossible.
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** 1-2-2- Now, we suppose that k3 = 1 = b = ky and p = 3b = 3ks, then we
have:

20 k
(1.128) 2\f3$in§ = ?1
with k1,b coprime. We write ((1.128)) as :
0 0 k
4\/§sin§cos§ = ?1

0 a
Taking the square of the two members and replacing coszg by " we obtain:

3x4%a(b—a) =k = ki =3 x4%d”*(b - a)
it implies that :
b—a:3a2:>b:a'2—|—3o¢2:>k1 =12d «

As:
ki =12d'a = A™(A™ + 2B") = 3a =d + B"

We consider now that 3 | (b — a) with b = a’?> + 3a2. The case a = 1 gives
a’+ B™ = 3 that is impossible. We suppose a > 1, the pair (@, @) is a solution
of the Diophantine equation:

(1.129) X2 4+3Y% =0

with X = @’ and Y = a. But using a theorem on the solutions of the equation

given by (1.129)), b is written as (see theorem in [7]):

ty 281 25,

b=2" 3l pr™ g
where p; are prime numbers verifying p; = 1(mod 6), the ¢; are also prime
numbers so that ¢; = 5(mod 6), then :
-If s> 1= 2]b, as 2| a, then the contradiction with a, b coprime.
-Ift>1=3]b, but 3| (b—a) = 3| a, then the contradiction with a,b
coprime.

** 1-2-2-1- We suppose that b is written as :

281 2sy

b:pilp‘tggql qT

with p; = 1(mod6) and ¢; = 5(mod6). Finally, we obtain that b =
1(mod 6). We will verify then this condition.
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#% 1.2-2-1-1- We present the table below giving the value of A™ 4+ B" = C!
modulo 6 in function of the value of A™, B"(mod6). We obtain the table
below after retiring the lines (respectively the colones) of A™ = 0(mod 6) and
A™ = 3(mod6) (respectively of B" = 0(mod6) and B" = 3(mod6)), they
present cases with contradictions:

TABLE 2. Table of C!(mod 6)

A" B" 1 2 4 5
1 2 350
2 3 4 0 1
4 50 2 3
5 01 3 4

#% 1.2-2-1-1-1- For the case C! = 0(mod6) and C' = 3(mod6), we deduce
that 3| C' = 3 | C = C = 3"Cy, with h > 1 and 3 { Cy. It follows that
p— B"C' =3b—3"CiB" = A2 — 3| (A’ = 4a) = 3| a = 3| b, then
the contradiction with a, b coprime.

#% 1.2-2-1-1-2- For the case C! = 0@mod6), C! = 2(@mod6) and C' =
4(mod 6), we deduce that 2 | C' = 2 | C = C = 2"Cy, with h > 1 and 2 ¢
Cy. Tt follows that p = 3b = A?™ + B"C! = 4a 4+ 2""Ci{B" = 2| 3b = 2 | b,
then the contradiction with a, b coprime.

** 1-2-2-1-1-3- We consider the cases A™ = 1(mod6) and B" = 4(mod6)
(respectively B" = 2(mod6)): then 2 | B® = 2 | B = B = 2/B; with
j > 1and 24 Bj. It follows from 3b = A?™ + B"C! = 4a + 2/"B}C" that 2 | b,
then the contradiction with a, b coprime.

** 1-2-2-1-1-4- We consider the case A™ = 5(mod6) and B" = 2(mod6):
then 2 | B* = 2 | B = B = 2/B; with j > 1 and 2 { By. It follows that
3b = A?™ + B"C! = 4a+ 2/"B}C', then 2 | b and we obtain the contradiction
with a, b coprime.

** 1-2-2-1-1-5- We consider the case A™ = 2(mod 6) and B™ = 5(mod 6): as
" = 2(mod6) = A™ = 2(mod3), then A™ is not a square and also for
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B™. Hence, we can write A”™ and B" as:

A = a().JZfQ
B" = by %>

where ag (respectively by) regroups the product of the prime numbers of A™
with exponent 1 (respectively of B™) with not necessary (ag, o) = 1
and (bg,Z) = 1. We have also p = 3b = A*™ + A™B" + B?" =
(A™ — B")? 4+ 3AmB" = 3 | (b — A™B") = A™B" = b(mod3) but
b =a+30> = b =a = a?*mod3), then A"B" = a*(mod3). But
A™ = 2(mod 6) = 2a’ = 2(mod 6) = 4a? = 4(mod 6) = a’?> = 1(mod 3).
It follows that A™B™ is a square, let A™B" = 4% = /% .%%.a¢.bg. We call
N2 = ag.bp. Let p; be a prime number so that p; | ag = ag = p1.a; with
prta. ;| M2 = p1 | M = M =piA witht>1and p; {4/, then
p%t_lJVl’Q =ap.bp. As2t>2=2t—1>1= p1 | a1.bp but (p1,a1) = 1,
then p; | bo = p1 | B" = p1 | B. But p; | (A™ = 2d/), and p; # 2 because
p1 | B™ and B™ is odd, then the contradiction. Hence, p; | ' = p; | a. If
p1 = 3, from 3 | (b — a) = 3 | b then the contradiction with a,b coprime.
Then p; > 3 a prime that divides A™ and B", then p; | (p = 3b) = p1 | b, it
follows the contradiction with a,b coprime, knowing that p = 3b = 3(mod 6)
and we choose the case b = 1(mod 6) of our interest.

** 1-2-2-1-1-6- We consider the last case of the table above A™ = 4(mod 6)
and B™ = 1(mod 6). We return to the equation ([1.129)) that b verifies :
(1.130) b= X?43Y?
with X =d; Y=«
and 3o =a + B"
Suppose that it exists another solution of (1.130)):

b=X24+3Y3=u?+30” = 2u# A™, 3v#d + B"
6o — A™
But B™ = OZT = 3a—a’ and b verifies also :3b = p = A?" + A" B" 4 B?"

it is impossible that wu, v verify:

6v = 2u + 2B™
3b = 4u? + 2uB™ + B*"
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If we consider that : 6v — 2u = 6a — 2d’ = u = 3v — 3a + @/, then b =
u? + 30?2 = (3v — 3a + a')? + 3v?, it gives:

202 = Bw+4a? —da=0
9

The resolution of the last equation gives with taking the positive root (because

A™ > B™), v1 = «, then u = a/. Tt follows that b in has an unique

representation under the form X2 + 3Y? with X, 3Y coprime. As b is odd,

we applique one of Euler’s theorems on the convenient numbers "numerus

idoneus" as cited above (Case C-2-2-1-2). It follows that b is prime.

202 — B™y — =0

We have also p = 3b = A2™ + A™B" + B> = 44?> + B".C! = 902 — a? =
B™.C!, then 3a,a’ € N* are solutions of the Diophantine equation:

(1.131) 2 —y* =N

with N = B"C! > 0. Let Q(N) be the number of the solutions of (|1.131])
and 7(N) the number of ways to write the factors of N, then we announce the
following result concerning the number of the solutions of (see theorem
27.3 in [7]):

-If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod 4), then Q(N) = [7(N/4)/2].

We recall that A™ = 0(mod4). Concerning B", for B"™ = 0(mod4) or
B" = 2(mod 4), we find that 2 | B" = 2 | a = 2| b, then the contradic-
tion with a, b coprime.

For the last case B" = 3(mod4) = C! = 3(mod4) = N = B"C! =
1(mod4) = Q(N) = [7(N)/2] > 1.

As (3a,d’) is a couple of solutions of the Diophantine equation (1.131]) and
3a > a/, then 3 d, d’ positive integers with d > d’ and N = d.d’ so that :

(1.132) d+d = 6a
(1.133) d—d =2d

#* 1-2-2-1-1-6-1 Now, we consider the case d = ¢/ ~1C} where ¢; is a prime
integer with ¢; { Cy and C = ¢{Cy, r > 1. It follows that d' = ¢;.B™. We
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rewrite the equations ((3.4243.43)):

(1.134) r=1ct + ¢1.B" = 6a

(1.135) =1t — ¢ B" = 24

As | > 3, from the last two equations above, it follows that ¢; | (6a) and
!/

c1|(2d’). Then¢; =2,0or¢; =3and 3 |d’ or ¢y #3 | aand ¢; | d'.

#% 1.2-2-1-1-6-1-1 We suppose ¢; = 2. As 2 | (A™ = 2d') = 2 | a and 2 | C"
because | > 3, it follows 2 | B", then 2 | (p = 3b). Then the contradiction
with a, b coprime.

#* 1-2-2-1-1-6-1-2 We suppose ¢1 = 3 = ¢1 | (a = 3d) and ¢ = 3 | .
It follows that (c; = 3) | (b = a’®> + 3a2), then the contradiction with a,b
coprime.

** 1-2-2-1-1-6-1-3 We suppose ¢; # 3 and ¢1 | 3o and ¢; | a/. Tt follows that
c1 | a and ¢; | b, then the contradiction with a,b coprime.

The others cases of the expressions of d and d not coprime so that
N = B"C! = d.d' give also contradictions.

% 1.2-2-1-1-6-2 The last case is to consider d = C! and d’ = B", so we obtain
the only solution (3a, a’) of the Diophantine equation ([1.131]). It follows that
Q(N) = 1, then the contradiction with Q(N) = [7(N)/2] > 1 the number of

the solution of (|1.131)).

It follows that the condition 3 | (b — a) is a contradiction.
The study of the case [I.6.8] is achieved.

1.6.9. Case 3 | p and b | 4p. — The following cases have been soon studied:
*3|p,b=2=10b]4p: casem,

*3|p,b=4=b|4p: case|l.6.2
*3|lp=p=3p,b|p = p =bp”, p” #1: case[1.6.3

*3|p, b=3=>b]4p: case[l.6.4]

*B|lp=p=3p,b=p = b | 4p: casem

*kJ-1- Particular case: b = 12. In fact 3 | p = p = 3p’ and
4p = 12p'. Taking b = 12, we have b | 4p. But b < 4a < 3b, that gives
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12<4a <36 =3<a<9. As 2| band 3| b, the possible values of a are 5
and 7.

4p 50p"

Zpa
3°b 3b

#% J1-1- a = 5 and b = 12 = 4p = 12p’ = bp/. But A?™ =

5 /
?p = 3| p) = p/ = 3p” with p” € N* then p = 9p”, we obtain the
expressions:
(1.136) A% = 5p”
0
(1.137) BC! = %’ (3 - 400523> = 4p”

As n,l > 3, we deduce from the equation (1.137) that 2 | p” = p” = 2%
with & > 1 and 2 { p;. Then (1.136) becomes: A?™ = 5p” = 5 x 2% = 2 |
A= A=2"A;,i>1and 2t A;. We have also B"C! = 2°+2p; — 2| B"
or 2| CL

#% J-1-1-1- We suppose that 2 | B® = B = 2/By, j > 1 and 21 B;. We
obtain BPC! = 20+2=iny,:

-Ifa+2—jn>0= 2| C! there is no contradiction with C! = 2™ AP +
2in B = 2 | C' and the conjecture is verified.

-Ifa+2—jn=0= BPC' = p;. From C=2MAP +2/"BP — 2 | C!
that implies that 2 | p;, then the contradiction with 2 { p;.

-Ifa+2—jn< 0= 2""2"2BPC! = p, it implies that 2 | p1, then the
contradiction as above.
#% J-1-1-2- We suppose that 2 | C!, using the same method above, we obtain
the identical results.

** J-1-2- We suppose that a = 7 and b = 12 = 4p = 12p' = bp/. But
Cdpa 1290 7T T

AP = 33- 3 13- 3 3|p = p=9p”, we obtain:
AQm — 7p77
0
B"C! = g (3 — 400523> =2p”

The last equation implies that 2 | B*C'. Using the same method as for the
case J-1-1- above, we obtain the identical results.
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We study now the general case. As 3 |p = p=3p and b | 4p = Fk; € N*
and 4p = 12p’ = k1b.

¥ J2-ky = 1: If kg = 1 then b = 129, (p # 1, if not p = 3 <K
4p 0 120'a 4p'.a a
AP 4 BI AmMBT). But AP = “.cos’; = —— = =< =3
+ + ). Bu 305" 3 3} 127 3 | a
because A?™ is a natural number, then the contradiction with a, b coprime.

4 0 k1.
#% J.3- ky =3 : If k; = 3, then b = 4p’ and A?" = gp.cosgg = 713a =aq=
(A™? = /> = A™ = d/. The term A™B" gives AMB" = p\?)/gsmif9 — %,
then:
2 2 2
(1.138) AP L 9AMB" = p:;/gsz'nse = 2p/\/§sz’n§0

20
The left member of ((1.138]) is an integer number and also p/, then 2\/§sin§

can be written under the form:
2\/§sin2—0 = ke
3 ks
where ko, k3 are two integer numbers and are coprime and k3 | pf = p/ =
ks.ky.

** J-3-1- k4 # 1 : We suppose that k4 # 1, then:
(1.139) A% 4 2AMB™ = ky.ky

Let u be a prime number so that p | kg, then p | A™(A™ 4+ 2B") = u | A™
or | (A™+2B").

KEJ31-1-p | A™ I p | A = u | A2 = pla. Aspu| ks = p|p =
w| (4p" =b). But a,b are coprime, then the contradiction.

R J-3-1-2- p | (Am+2B™) s If | (A™+2B") = pu{ A™ and p 1 2B", then
p#2and pt B™ u| (A™ 4+ 2B"), we can write A™ + 2B" = p.t’. Tt follows:
A™ 4 B" = ,Uft/ — B" — A2m+BZn+2AmBn — M2t/2 —2t//1,Bn+B2n
Using the expression of p, we obtain p = t"2y% — 2t/ By + B™"(B™ — A™). As
p=3p and pu|p = u| (3p) = p | p, we can write : Iu' and p = pp’, then

we arrive to:
pop = p(pt”? — 2t'B") + B"(B" — A™)
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and p | BY(B" — A™) = pu | B" or pu | (B" — A™).
** J-3-1-2-1- p | B™ : If p | B® = p | B, it is in contradiction with J-3-1-2-.

*K J-3-1-2-2- p | (B — A™) : If p | (B™ — A™) and using u | (A™ + 2B"™), we
obtain :

p|B"
wu|3B" =< or
p=3

** J-3-1-2-2-1- | B™: If u | B" = p | B, it is in contradiction with J-3-1-2-.

0 J-3-1-2-2-2- p =3 : If p =3 = 3| ky = kg = 3kj, and we have
p' = ksks = 3kskl, it follows that p = 3p’ = 9ksk), then 9 | p, but p =
(A™ — B™)? + 3A™B", then we obtain:

9ksk) — 3A™B" = (A™ — B")?
that we write : 3(3ksk)—A™B") = (A™—B")?, then : 3 | (3ksk},— A™B") =

3| A"B" = 3| A™ or 3| B™.

EJ3-1-2-2-2-1- 3 | A™ : If 3 | A™ = 3 | A?™ = 3 | a, but
3|9 = 3| (4) = 3| b, then the contradiction with a,b coprime and
31 A.

% J.3-1-2-2-2-2-3 | B : If 3| B" but A™ = put' —2B" = 3t/ —2B" = 3 | A™,
it is in contradiction with 3 t A.

Then the hypothesis k4 # 1 is impossible.

** J-3-2- ky = 1: We suppose now that ky = 1 = p/ = k3ks = k3. Then we
have:

2
(1.140) 2\/531'11—0 _ k2
3 p

with ko, p’ coprime, we write (1.140) as :

0 0 k
4\/§sin§cos§ -2

p/
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Taking the square of the two members and replacing 00522 by % and b = 4p/,
we obtain:
3.a(b—a) = k3
As A?™ = g = o’?, it implies that :
3/ (b—a), and b—a=b—ad?=3a>

As kg = A™(A™ + 2B") following the equation (|1.139) and that 3 | ko = 3 |
AM(A™ 4+ 2B") = 3| A™ or 3| (A™ +2B").

4 J3-2-1-3 | A™ If 3| A" = 3| A2 = 3 |a,but 3| (b—a) = 3|,
then the contradiction with a,b coprime.

¥ J-3-2-2- 3 | (A" +2B") = 31 A™ and 31 B". As k3 = 9aa® = 9d%a? =
ke = 3d'a = A™(A™ + 2B"), then :

(1.141) 3= A" + 2B"

As b can be written under the form b = a/? + 3a2, then the pair (a’,a) is a
solution of the Diophantine equation:

(1.142) 22+ 32 =
As b =4p/, then :

** J-3-2-2-1- If z,y are even, then 2 | ¢’ = 2 | q, it is a contradiction with
a, b coprime.

** J-3-2-2-2- If z, y are odd, then o/, & are odd, it implies A™ = o’ = 1( mod 4)
or A™ = 3(mod4). If u,v verify , then b = u? + 3v?, with u # d
and v # «, then w,v do not verify : 3v # u + 2B™, if not,
u = 3v—2B" = b = (3v — 2B")? + 3v?> = a2 + 3a, the resolution of
the obtained equation of second degree in v gives the positive root v; = «,
then u = 3o — 2B™ = d/, then the uniqueness of the representation of b by the

equation (|1.142]).

** J-3-2-2-2-1- We suppose that A™ = 1(mod4) and B" = 0(mod4), then
B" is even and B"™ = 2B’. The expression of p becomes:
p=a?+2dB +4B? = (d + B")?+3B? =3p = 3| (d + B') = d + B' = 3B”
p/ — B/2 + 3B”2 — b= 4p/ — (231)2 + 3(23”)2 — a/? + 3a2
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that gives 2B’ = B" = a’ = A™, then the contradiction with A™ > B".

** J-3-2-2-2-2- We suppose that A”™ = 1(mod4) and B" = 1(mod4), then
C! is even and C! = 2C". The expression of p becomes:

p= C2l o Can 4 BZn — 40/2 —920C'B"™ 4 B2n — (Cl o Bn)Z 4 30/2 — 3p/
— 3| (C'~B") = ('~ B" =3C”
P =C?+3C"% = b=4p = (2C")? +3(207)? = a’* + 3a?

We obtain 20" = C! = a’ = A™, then the contradiction.

*kJ-3-2-2-2-3- We suppose that A”™ = 1(mod4) and B™ = 2(mod4), then
B" is even, see J-3-2-2-2-1-.

** J-3-2-2-2-4- We suppose that A”™ = 1(mod4) and B" = 3(mod4), then
C! is even, see J-3-2-2-2-2-.

** J-3-2-2-2-5- We suppose that A" = 3(mod4) and B" = 0(mod4), then
B™ is even, see J-3-2-2-2-1-.

** J-3-2-2-2-6- We suppose that A™
C! is even, see J-3-2-2-2-2-.

3(mod4) and B™

1(mod4), then

*k J-3-2-2-2-7- We suppose that A”™ = 3(mod4) and B"™ = 2(mod4), then
B™ is even, see J-3-2-2-2-1-.

*k J-3-2-2-2-8- We suppose that A”™ = 3(mod4) and B"™ = 3(mod4), then
C! is even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k1 # 3 and 3 | ky = ki = 3k} with k] # 1,
then 4p = 12p' = kib = 3kib = 4p’ = kib. A?™ can be written as

4 9 / /
A = ?pcoszg = @% = kja and B"C! = g <3 - 40052§> = %(Bb —4a).

As B"C' is an integer number, we must have 4 | (3b — 4a) or 4 | k} or
[2 ] k4 and 2| (3b — 4a)].
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** J-4-1- We suppose that 4 | (3b — 4a).

** J-4-1-1- We suppose that 3b —4a =4 = 4| b = 2 | b. Then, we have:
A?™ = Kla
B"C' =k

#% J-4-1-1-1- If k| is prime, from B"C! =k}, it is impossible.

** J-4-1-1-2- We suppose that k] > 1 is not prime. Let w be a prime number
so that w | k].

** J-4-1-1-2-1- We suppose that k] = w®, with s > 6. Then we have :
(1.143) AP = ¥
(1.144) B"C! = w*

** J-4-1-1-2-1-1- We suppose that w = 2. If a, k} are not coprime , then 2 | a,
as 2 | b, it is the contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose w = 2 and a, k] are coprime, then 2 { a. From
, we deduce that B = C = 2 and n 4+ 1 = s, and A*™ = 2%.a, but
A — 2[ _on — A2m — <2l _2n)2 — 22l+22n _2(2l+n) —_ 22l+22n — 9% 95 —
2.0 = 2% + 22 = 2%(a+2). If I = n, we obtain a = 0 then the
contradiction. If [ # n, as A =2/ —2" >0 = n < | = 2n < s, then
22n(1_‘_22l72n_28+172n) — 2”21.0,. We call ]l = ntn, = 1+22l72n_2s+172n —
2™ a, but the left member is odd and the right member is even, then the
contradiction. Then the case w = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that k] = w® with w # 2:

#% J-4-1-1-2-1-3-1- Suppose that a, k] are not coprime, then w | a = a = wt.a;
and t 1 a;. Then, we have:

(1.145) A% = 5T gy

(1.146) B"C! = w*

From ((1.146]), we deduce that B” = w", C" = w!, s = n+land A™ = w!—w" >
0 = 1 > n. We have also A?™ = w**tt.a; = (W' —w")? = W + W — 2 x W*.
As w # 2 = w is odd, then A?™ = wtt.q; = (W' — w")? is even, then
2| ag = 2| a, it is in contradiction with a,b coprime, then this case is
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impossible.

#% J-4-1-1-2-1-3-2- Suppose that a, k] are coprime, with :

(1.147) AP = Wt
(1.148) B"C! = w*
From (1.148)), we deduce that B” = w", C' = w! and s = n+ 1. As

w # 2 = wisodd and A?™ = w®.a = (W' —w")? is even, then 2 | a. It follows
the contradiction with a, b coprime and this case is impossible.

*H J-4-1-1-2-2- We suppose that k] = w®.ky, with s > 6, w t k2. We have :
AP = % ko.a
B"C' = W ky

** J-4-1-1-2-2-1- If ko is prime, from the last equation above, w = ko, it is in
contradiction with w t k2. Then this case is impossible.

¥ J-4-1-1-2-2-2- We suppose that k] = w®.ko, with s > 6, w t k2 and ko not a
prime. Then, we have:

A% = % ko.a

(1.149) B"C! = w® ko

#kJ-4-1-1-2-2-2-1- We suppose that w,a are coprime, then w { a. As
AP = Shpa = w | A = A = w'A; with i > 1 and w { Aj, then
s = 2i.m. From ((1.149)), we have w | (B"C') = w | B" or w | C".

#¥ J-4-1-1-2-2-2-1-1- We suppose that w | B" = w | B = B = w’.B; with
j>1and wt By. then :
B{LCl _ w2im—jnk2

-1f 2im—jn > 0, w | C!' = w | C, no contradiction with C! = w/™ AP +wI" B
and the conjecture is verified.

-If 2im—jn = 0 = B}C! = ko, asw { ko = w { C', then the contradiction
with w | (C! = A™ + B™).

-If2im—jn< 0= wj”_QimeCl = ko = w | ko, then the contradiction
with w T kg.
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#% J-4-1-1-2-2-2-1-2- We suppose that w | C'. Using the same method used
above, we obtain identical results.

**k J-4-1-1-2-2-2-2- We suppose that a,w are not coprime, then w | a = a =
wh.ay and wtaj. So we have :

(1.150) AP = 5T ey ay

(1.151) B"C! = w® ky

As A" = Wt kyay = w | A = A = w'A; with i > 1 and w { Ay, then
s+t = 2im. From (1.151)), we have w | (B"C') = w | B" or w | C".

#¥ J-4-1-1-2-2-2-2-1- We suppose that w | B" = w | B = B = w’/B; with
j>1and wt By. then:
B?Cl — w2im—t—jnk2

-If 2im —t — jn > 0, w | ' = w | C, no contradiction with C! = wim AP +
w/" B and the conjecture is verified.

- If 2im —t — jn = 0 = BYC' = ko, As w { ks = w { O, then the
contradiction with w | (C! = A™ 4 B™).

-If2im—t—jn < 0 = wj”“'t_QimB’fCl = ko = w | kg, then the
contradiction with w 1 ka.

#% J-4-1-1-2-2-2-2-2- We suppose that w | C!. Using the same method used
above, we obtain identical results.

** J-4-1-2- 3b — 4a # 4 and 4 | (3b — 4a) = 3b — 4a = 4°Q with s > 1 and
41 Q. We obtain:

(1.152) AP = Kha

(1.153) B"C!' = 4571k Q

% J-4-1-2-1- We suppose that &k} = 2. From (1.152)), we deduce that 2 | a. As

4| (3b—4a) = 2 | b, then the contradiction with a,b coprime and this case
is impossible.

** J-4-1-2-2- We suppose that k] = 3. From we deduce that 33 | A2™.
From , it follows that 3% | B™ or 3% | C'. In the last two cases, we
obtain 3% | p. But 4p = 3kib = 9b = 3 | b, then the contradiction with a,b
coprime. Then this case is impossible.
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** J-4-1-2-3- We suppose that k] is prime > 5:

** J-4-1-2-3-1- Suppose that k7 and a are coprime. The equation (1.152)
gives (A™)? = k| .a, that is impossible with &} { a. Then this case is impossible.

#% J-4-1-2-3-2- Suppose that k] and a are not coprime. Let k] | a = a = k{*aq
with @ > 1 and k] t a;. The equation (1.152)) is written as :
AP = Fla =K

The last equation gives k] | A>™ = k| | A = A = k{". Ay, with k| { A;. If
2i.m # (a+1), it is impossible. We suppose that 2i.m = «+ 1, then k] | A™.
We return to the equation . If k| and Q are coprime, it is impossible.
We suppose that k] and Q are not coprime, then &} | © and the exponent of
K} in € is so the equation is satisfying. We deduce easily that k] | B".
Then k2 | (p = A*™ + B?™ + A™B"), but 4p = 3kib = k| | b, then the
contradiction with a,b coprime.

** J-4-1-2-4- We suppose that k] > 4 is not a prime.

#% J-4-1-2-4-1- We suppose that k] = 4, we obtain then A?™ = 4a and
B"C' = 3b — 4a = 3p’ — 4a. This case was studied in the paragraph
case ** [-2-.

** J-4-1-2-4-2- We suppose that k] > 4 is not a prime.
** J-4-1-2-4-2-1- We suppose that a, k] are coprime. From the expression
A*™ = k! .a, we deduce that a = a? and k| = k”3. Tt gives :
Am = al.k"’l
l —17.92
Bl = 451720

Let w be a prime so that w | k71 and k") = w.k”s with w { k”5. The last two
equations become :

(1.154) A™ = a1.0" k")
(1.155) B"Cl = 45712 k20

From (1.154), w | A™ = w | A = A = w". A; with wt A; and im = t. From
(1.155), we obtain w | B"C! = w | B" or w | CL.
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¥ J-4-1-2-4-2-1-1- f w | B* = w | B = B = w/.B; with w { B;. From
(1.154), we have B}C! = w?—in4s=1 k2 Q.

% J-4-1-2-4-2-1-1-1- If w = 2 and 21 Q, we have BPC! = 22t+2s—jn=2f»2 ().

- If 2t + 25 — jn — 2 < 0 then 2 { O, then the contradiction with C! =
WA + W BY.

SIf2t+2s—jn—2> 1= 2| C' = 2| C and the conjecture (3.1) is
verified.

K J-4-1-2-4-2-1-1-2- f w = 2 and if 2 | Q@ = Q = 2.0 because 4 1 Q, we have
BRC! = 9225 H1-jn=2p20), .

- If 2t + 25 — jn — 3 < 0 then 2 t C!, then the contradiction with C! =
w™AT + Wi BY.

-If 2t +2s —jn—3>1= 2| C' = 2| C and the conjecture is
verified.

¥ J-4-1-2-4-2-1-1-3- If w # 2, we have BPC! = w?'=In4571 72 ()
-If 2t — jn < 0 = w { C' it is in contradiction with C! = W™ A + "B},
If 2t — jn > 1 = w | C' = w | C and the conjecture (3.1)) is verified.

¥ J-4-1-2-4-2-1-2- If w | O' = w | C = C = wh.C, with w { C;. Using the
same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k| are not coprime. Let w be a prime so
that w | @ and w | k}. We write:
a=w"a
k| = wh k",

with a1, k”; coprime. The expression of A?™ becomes A?™ = w* . aq.k";.
The term B"C' becomes:

(1.156) B"C! = 4571wt k71.Q
** J-4-1-2-4-2-2-1- If w = 2 = 2 | a, but 2 | b, then the contradiction with

a,b coprime, this case is impossible.

** J-4-1-2-4-2-2-2- If w > 3, we have w | a. If w | b then the contradiction
with a,b coprime. We suppose that w { b. From the expression of A*™, we
obtain w | A?™ = w | A = A = w'.A; withwt Ay, > 1 and 2i.m = o+ p.
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From (1.156)), we deduce that w | B or w | C'.

#¥ J-4-1-2-4-2-2-2-1- We suppose that w | B® = w | B = B = w’/B; with
w{ By and j > 1. Then, BYC! = 45~ 1wh=In k71.Q)

*wt Qo

-If 4 —jn > 1, we have w | C! = w | C, there is no contradiction with
Cl = WM AP + wI" B} and the conjecture is verified.

- If w—jn < 0, then w { C' and it is a contradiction with C! =
w™MAT + wI" BT, Then this case is impossible.

*w | Q: we write Q = wP.Qy with 8> 1 and w{Qy. As 3b —4a = 4°.Q =
45,8 . = 3b = da + 4°.0w5.Q1 = 4w®.a1 +4°.wP .0 = 3b = dw(w* Ly +
4571 w81 0). If w = 3 and B = 1, we obtain b = 4(3%* a; + 4°7'Q) and
B! = 457 13pH1=in 71 Q).

-If 4 — jn+1>1, then 3 | C! and the conjecture is verified.

-If p—jn +1 < 0, then 3 { C! and it is the contradiction with
Cl = 3imAP 4 39" B,

Now, if 3 > 2 and o = im > 3, we obtain 3b = 4w?(w* a1 + 45 WP ~2Q). If
w = 3 or not, then w | b, but w | a, then the contradiction with a,b coprime.

¥ J-4-1-2-4-2-2-2-2- We suppose that w | C! = w | C = C = W"C; with
w41 Cy and h > 1. Then, B”C{ = 45— 1yn=hl 7, Q. Using the same method
as above, we obtain identical results.

** J-4-2- We suppose that 4 | k].

K J-4-2-1- K} = 4 = 4p = 3kjb = 12b = p = 3b = 3p/, this case has been
studied (see case I-2- paragraph [1.6.8)).

K J-4-2-2- k| > 4 with 4 | k] = K} = 4°k”1 and s > 1, 4 { k”1. Then, we
obtain:

AP = 4k 10 = 2%k 1a
B"C! = 4571k (3b — 4a) = 22727 (3b — 4a)
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** J-4-2-2-1- We suppose that s = 1 and k] = 4k”; with k71 > 1, so p = 3p/
and p’ = k”1b, this is the case already studied.

*¥ J-4-2-2-2- We suppose that s > 1, then k} = 4°k”; = 4p = 3 x 45k”1b and
we obtain:

(1.157) A% = 45k 1a
(1.158) B"C! = 4571k71(3b — 4a)

** J-4-2-2-2-1- We suppose that 2 1 (k"1.a) = 2 1 k71 and 2 | a. As
(A™)2 = (29)2.(k"1.q), we call d® = k”1.a, then A™ = 25.d = 2 | A =
2| A= A=2'A; with 21 A; and i > 1, then: 2"MmAP = 25.d = s = im.
From the equation , we have 2 | (B"C!') = 2| B" or 2 | C".

% J-4-2-2-2-1-1- We suppose that 2 | B® = 2 | B => B = 2/.By, with j > 1
and 2 1 B;. The equation (1.158]) becomes:

B?f,cl — 228—jn—2k771(3b o 4@) — 22im—jn—2k771(3b _ 461,)

* We suppose that 2 1 (3b — 4a):

- If 2im — jn — 2 > 1, then 2 | C!, there is no contradiction with C! =
2im AT + 2" BT and the conjecture (3.1)) is verified.

- If 2im — jn — 2 < 0, then 2 { O, then the contradiction with
Cl = 2Mm AT + 2i"BY.

* We suppose that 2# | (3b — 4a), pn > 1:

-If 2ém+ p — jn —2 > 1, then 2 | C!, no contradiction with C! = 2™ AT +
2/m B and the conjecture (3.1)) is verified.

- If 2ém + p — jn — 2 < 0, then 2 { C', then the contradiction with
Cl = 2Mm AT + 2i"BY.

% J-4-2-2-2-1-2- We suppose that 2 | C! = 2| C = C = 2".Cy, with h > 1
and 2t Cy. With the same method used above, we obtain identical results.

ok J-4-2-2-2-2- We suppose that 2 | (k”1.a):

** J-4-2-2-2-2-1- We suppose that k71 and a are coprime:
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#¥ J-4-2-2-2-2-1-1- We suppose that 2 a and 2 | k" = k71 = 2%.k"2 and
a = a?, then the equations (1.157}{1.158)) become:

(1.159) AP = 4o 22202 — A = 25T g0y
(1.160)  B"C' = 4°71221k72(3b — 4a) = 22724 2k72(3b — 4a)

The equation (1.159) gives 2 | A™ = 2| A = A =21 4; with 21 4;,i > 1
and 9m = s + pu. From the equation (1.160]), we have 2 | (B"C') = 2 | B" or
2| CL

#¥ J-4-2-2-2-2-1-1-1- We suppose that 2 | B* =2 | B = B = 2/.By, 2{ B,
and j > 1, then B}C! = 225+20=in=2§»2(3h — 4aq):

* We suppose that 2 1 (3b — 4a):

- If 2im + 2 — jn — 2 > 1 = 2 | C', then there is no contradiction with
Cl = 2im AT 4 2/" BT and the conjecture (3.1)) is verified.

- If 2im +2u — jn —2 < 0 = 2 { C', then the contradiction with
Cl = 2m A 4 2inBr.

* We suppose that 2% | (3b — 4a), a > 1 so that a, b remain coprime:

- If 2im + 2+ —jn—2 > 1 = 2| C!, then no contradiction with
C! = 2m AT 429" BY and the conjecture (3.1)) is verified.

- If 2im 4+ 2u 4+ a — jn —2 < 0 = 2 4 C!, then the contradiction with
Cl = 2Mm AT + 2i"BY.

% J.4-2-2-2-2-1-1-2- We suppose that 2 | C! = 2 | C = C = 2.0y, with
h > 1 and 2 ¥ C;. With the same method used above, we obtain identical
results.

#¥ J-4-2-2-2-2-1-2- We suppose that 2 { k71 and 2 | a = a = 2%*.a? and
k”1 = k"3, then the equations ((1.1571.158)) become:

(1.161) AP = 45 0210272 — A™ = 25TF q) k7,

(1.162) B"C! = 457 1k72(3b — 4a) = 2%72k72(3b — 4a)

The equation (1.161) gives 2 | A™ = 2| A = A =21 4; with 21 4;,i > 1

and 9m = s + pu. From the equation (1.162)), we have 2 | (B"C!) = 2 | B" or
2| CL.
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#¥ J-4-2-2-2-2-1-2-1- We suppose that 2 | B* =2 | B = B = 2/.By, 2{ B,
and j > 1. Then we obtain B}C! = 225=1"=2k"2(3h — 4a):

* We suppose that 21 (3b —4a) = 21 b:

- If 2im — jn — 2 > 1 = 2| C!, then no contradiction with C! = 2 A +
2/m B and the conjecture (3.1)) is verified.

- If 2im — jn —2 < 0 = 2 { C!, then the contradiction with C! =
2im Am 4 2in BN,

* We suppose that 2% | (3b — 4a), a > 1, in this case a,b are not coprime,
then the contradiction.

¥ J-4-2-2-2-2-1-2-2- We suppose that 2 | C! = 2 | C = C = 2.0y, with
h > 1 and 2 ¥ ;. With the same method used above, we obtain identical
results.

** J-4-2-2-2-2-2- We suppose that k71 and a are not coprime 2 | @ and 2 | k7.
Let a = 2'.a; and k" = 21k”y and 21 a; and 2 { k”3. From (1.157), we have
p+t=2X\and a;.k”s = w?. The equations (1.157H1.158)) become:

(L1637 = 4°k" 0 = 2%°.2Pk79.2" ay = 22122 0% = A" = 270
(1.164) B"C! = 4571217, (3b — 4a) = 22T 2k75(3b — 4a)

From (1.163) we have 2 | A" = 2 | A = A = 24145 > 1 and 2 | A;.
From(|1.164)), 25 + u — 2 > 1, we deduce that 2 | (B"C') = 2| B" or 2 | C".

¥ J-4-2-2-2-2-2-1- We suppose that 2 | B = 2 | B = B = 2/.By, 2 By
and j > 1. Then we obtain B}C! = 225H1#=in=272(3h — 4q):

* We suppose that 2 1 (3b — 4a):

-If2s+p—jn—2>1 = 2| C! then no contradiction with C' =
2im AT + 2" BT and the conjecture (3.1)) is verified.

-If 25+ pu—jn—2 < 0 = 2 1 C! then the contradiction with
Cl = 2Mm AT + 2i"BY.

* We suppose that 2¢ | (3b — 4a), for one value « > 1. As 2 | a, then
24| (3b—4a) = 2| (3b —4a) = 2| (3b) = 2 | b, then the contradiction
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with a, b coprime.

¥ J-4-2-2-2-2-2-2- We suppose that 2 | C! = 2 | C = C = 2".C, with
h > 1 and 2 1 C;. With the same method used above, we obtain identical
results.

#* J-4-3- 2 | k] and 2 | (3b — 4a): then we obtain 2 | k] = k| = 2L.k"; with
t>1and 21k”;,2|(3b—4a) = 3b—4a = 2".d with p > 1 and 2 {d. We
have also 2 | b. If 2 | a, it is a contradition with a,b coprime.

We suppose, in the following, that 2 { a. The equations (1.157H1.158]) be-

come:

(1.165) AP = 28 |7 0 = (A™)?
(1.166) BnCl =9t o0 g = 22

From ([1.165)), we deduce that the exponent ¢ is even, let £ = 2. Then we call
w? =k".a,it gives AM =2 0w =2 | AM = 2 | A = A =2".A; withi > 1
and 21 A;. From (1.166]), we have 2\ + 1 — 2 > 1, then 2 | (B"C!) = 2 | B"
or 2| C

** J-4-3-1- We suppose that 2 | B®* = 2 | B = B = 2/ By, with j > 1 and
21 B;. Then we obtain B}C! = 22A+#=in=2 7, 4.
S22+ p—jn—2>1= 2| C' = 2| C, there is no contradiction with
Cl = 2m AT 4- 27" B and the conjecture is verified.
-If2s4+t+pu—jn—2 < 0 = 2t C, then the contradiction with
Cl = 2im A 4 2inph,
#% J-4-3-2- We suppose that 2 | C! = 2 | C. With the same method used
above, we obtain identical results.

O

The Main Theorem is proved.

1.7. Examples and Conclusion

1.7.1. Numerical Examples. —
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1.7.1.1. Ezample 1: — We consider the example : 63 + 3% = 3° with A™ =
62, B” = 33 and C' = 3°. With the notations used in the paper, we obtain:

p=3x73, ¢=8x3", A=4x383"x42-73) <0

8 4 3
L.167) g BTy Ax VB
V3 73V73

0 6 342 3 x2*
As A?™ = p.605252>6082§: 1 = >7<3 Z%:>CL:3><247 b=173;
then we obtain:

0 43 6
1.168 c0s— = —, =3".b

( ) 3 V73 P

We verify easily the equation (|1.167]) to calculate cosf using (|1.168]). For this
example, we can use the two conditions from (1.47) as 3 | a,b | 4p and 3 | p.

The cases [[.5.4] and [1.6.3] are respectively used. For the case [[.5.4] it is the
case B-2-2-1- that was used and the conjecture (3.1) is verified. Concerning
the case m it is the case G-2-2-1- that was used and the conjecture (3.1])
is verified.

1.7.1.2. Ezample 2: — The second example is: 7% + 73 = 143. We take
A" =74 B" =73 and C' = 14%. We obtain p =57 x 70 =3x19x 7, ¢=
870, A =27¢2—4p® = 2T x4 x 7816 x49—-193) = —27 x4 x T8 x 6075 <

4x7 4p 0 0
0, =19x 7" x19, cosf = — . As A% = = 00 S = cos®= =
P 1919 3 3 3
3A%m 72 0 7
e :4X19:%:>a:72,b:4><19,thencos§:27mandwehave

the two principal conditions 3 | p and b | (4p). The calculation of cosf from

the expression of cosg is confirmed by the value below:

9 0 7 \° 7 4x7
0 = cos3(6/3) = 4cos®~ — 3 :4() -3 _—
cost = cos3(0/3) = 4cos 3 ~ 3cosg Wit Wit TVt

Then, we obtain 3 | p = p = 3p/, b | (4p) with b # 2,4 then 12p' = kb =
3 x 7%. It concerns the paragraph of the second hypothesis. As k1 =
3 x 78 = 3k} with k] = 70 # 1. Tt is the case J-4-1-2-4-2-2- with the condition
41 (3b — 4a). So we verify :

3b—4a=3x4x19—-4x7>=32= 4] (3b— 4a)

with A?™ = 78 = 76 x 72 = k{.a and k| not a prime, with a and k] not
coprime with w = 7 1 Q(= 2). We find that the conjecture (3.1)) is verified
with a common factor equal to 7 (prime and divisor of k] = 7°).
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1.7.1.3. Ezample 3: — The third example is: 19* + 383 = 573 with
A™ = 19* B" = 38% and C! = 573. We obtain p = 195 x 577, ¢ =
8x27Tx 1910, A =27¢> —4p> =4 x 198273 x 16 x 192 - 5773) <0, p=

199 x 577/577 4 % 3* x 19v/3 4 0
10 X STIVETT g — _AXBIXIVB o W 00
3v/3 , , 577577 3 3
0 3A“m 3 x 19 a
2 2
cos 3 e 1X 577 5 == a 3 x 194, X 577, then
0 19+/3
cos— = 7\[ and we have the first hypothesis 3 | @ and b | (4p). Here again,
3 2577

0
the calculation of cosf from the expression of cosg is confirmed by the value

below:

0 (19\/§>3_3 19v3 4% 3'x19V3

0
cosl = c0s3(0/3) = 4cos®~—3cos— = 4 =
(0/3) 3 3 24/577 24/577 577/ 577

Then, we obtain 3 | a = a = 3a’ = 3 x 192, b | (4p) with b # 2,4 and b = 4p’
with p = kp’ soit p’ = 577 and k = 195. This concerns the paragraph of
the first hypothesis. It is the case E-2-2-2-2-1- with w = 19, @/, w not coprime
and w =191 (p/ —a’) = (577 — 19%) with s — jn =6 — 1 x 3 =3 > 1, and the
conjecture is verified.

1.7.2. Conclusion. — The method used to give the proof of the conjecture
of Beal has discussed many possibles cases, using elementary number theory
and the results of some theorems about Diophantine equations. We have
confirmed the method by three numerical examples. In conclusion, we can
announce the theorem:

7

Theorem 1.4. — Let A, B,C,m,n, and [l be positive natural numbers
with m,n,l > 2. If :
(1.169) A"+ B" ="

then A, B, and C have a common factor.

Acknowledgements. My acknowledgements to Professor Thong Nguyen
Quang Do for indicating me the book of D.A. Cox cited below in References.
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CHAPTER 2

IS THE RIEMANN HYPOTHESIS TRUE? YES
IT IS

Abstract. — In 1859, Georg Friedrich Bernhard Riemann had announced the following
conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) s = o + it of the zeta

function, defined by:
+oo

¢(s) = Z%, for R(s) >1

n=1
1
have real part o = 3

1
We give a proof that ¢ = — using an equivalent statement of the Riemann Hypothesis

concerning the Dirichlet 1 function.

Résumé. — En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture
suivante, dite Hypothese de Riemann: Les zéros non triviauz s = o + it de la fonction zeta
définie par:

+o00 1
¢(s) = Z s pour R(s) > 1
n=1
. p 1
ont comme parties réelles o = 3
On donne une démonstration que o = 5 en utilisant une proposition équivalente de

I’Hypothése de Riemann.

2.1. Introduction.

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 2.1. — Let ((s) be the complex function of the complex
variable s = o + it defined by the analytic continuation of the function:

+o0

Gls) =) %, forR(s) =0 >1

n=1
over the whole complex plane, with the exception of s = 1. Then the
nontrivial zeros of ((s) = 0 are written as :

1+'t
§=z+1
2

In this paper, our idea is to start from an equivalent statement of the
Riemann Hypothesis, namely the one concerning the Dirichlet n function. The
latter is related to Riemann’s ¢ function where we do not need to manipulate
any expression of ((s) in the critical band 0 < (s) < 1. In our calculations,
we will use the definition of the limit of real sequences. We arrive to give the

1
proof that o = 3

2.1.1. The function (. — We denote s = o + it the complex variable of C.
For R(s) = o > 1, let ¢; be the function defined by :

+001

Gls) =Y 5 for Rs)=0>1

n=1

We know that with the previous definition, the function (; is an analytical
function of s. Denote by ((s) the function obtained by the analytic contin-
uation of (;(s) to the whole complex plane, minus the point s = 1, then we
recall the following theorem [2]:

Theorem 2.2. — The function ((s) satisfies the following :

1. ¢(s) has no zero for R(s) > 1;

2. the only pole of ((s) is at s = 1; it has residue 1 and is simple;

3. ((s) has trivial zeros at s = —2,—4,...;

4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the

critical strip) and are symmetric about both the vertical line R(s) = 3

and the real axis (s) = 0.

The vertical line R(s) = % is called the critical line.

The Riemann Hypothesis is formulated as:
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Conjecture 2.8. — (The Riemann Hypothesis,|2]) All nontrivial ze-

1
ros of ((s) lie on the critical line R(s) = o

In addition to the properties cited by the theorem above, the function
((s) satisfies the functional relation [2] called also the reflection functional
equation for s € C\{0, 1} :

(2.1) C(1—s) = 21_S7r_scos%rf(s)§(s)

where T'(s) is the gamma function defined only for R(s) > 0, given by the
formula :

I(s) = /OO e 't dt, R(s) >0
0

So, instead of using the functional given by ([2.1]), we will use the one presented
by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

+oo 1 \n—1
ns) =3 TV oty
n=1

nS
The function eta is convergent for all s € C with R(s) > 0 [2].

We have also the theorem (see page 16, [3]):

[ Theorem 2.4. — For allt € R, (14 it) # 0. ]

So, we take the critical strip as the region defined as 0 < R(s) < 1.

2.1.2. A Equivalent statement to the Riemann Hypothesis. —
Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:

s )

Equivalence 2.5. — The Riemann Hypothesis is equivalent to the
statement that all zeros of the Dirichlet eta function :

= (_1)n71 1—s
(22) =) A —=(1-2)(s), o> 1
n=1

that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) =
1

5"
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The series (2.2)) is convergent, and represents (1—217%)((s) for R(s) = o > 0
([3], pages 20-21). We can rewrite:

+00 )n 1

(2.3) z_j

n(s) is a complex number, it can be written as :

(1-2%¢(s), R(s)=0>0

(2.4) n(s) = p.e'® = p? = 1(s).1(s)
and n(s) =0<«<= p=0.

2.2. Preliminaries of the proof

Proof. — . We denote s = o + it with 0 < ¢ < 1. We consider one zero of
n(s) that falls in critical strip and we write it as s = o + it, then we obtain
0 <o <1landn(s)=0<= (1-27%)((s) =0. We verifies easily the two
propositions:

(2.5)

‘5, is one zero of n(s) that falls in the critical strip, is also one zero of C(s)‘

Conversely, if s is a zero of ((s) in the critical strip, let {(s) = 0 = n(s) =
(1—217%)¢(s) = 0, then s is also one zero of 7(s) in the critical strip. We can
write:

(2.6)
‘s, is one zero of ((s) that falls in the critical strip, is also one zero of 77(3)‘

Let us write the function n:

_ = (_1)n ' n 1 —sLogn __ = _1)yn1 —(o+it)Logn __
77(S>—27—Z et =D (-1 e =
n=1 n=1

— Z (_1)n—le—aLogn‘e—itLogn

= Z(—1)”716701109”(008(75[/0‘977,) —isin(tLogn))

The function 7 is convergent for all s € C with $(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

+OO )n 1

> !

n=1
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or:
N
Ve' >0 3ng, VN > no, }Z T‘ <¢
n=1

S

We definite the sequence of functions ((7,)nen+(s)) as:

- (1)l B n _,cos(tLogk) .
m(s) =3 = > (-1)F 1T —1

k=1 k=1 k

- (—1)k1 sin(tLogk)
-1 ke
with s = o + it and t # 0.

Let s be one zero of n that lies in the critical strip, then 7(s) = 0, with
0 < o < 1. It follows that we can write lim,— conn(s) = 0 = n(s). We
obtain:

" L
limp—s oo Z(l)k_lcoS(;UOQk) =0
k=1
L in(tLogk
i ins Z(—D“M _o

o
k=1 k

Using the definition of the limit of a sequence, we can write:

(2.7) Ver > 03n,, VN > n,, [R(n(s)n)| < e1 = R(n(s)n)? < e1°
(2.8) Veg > OEan-,VN > Ny, ’g(n(S)N)’ < €9 — %(17(8)]\[)2 < 622
Then:

ivj cos®(tLogk) i iv: (=1)5*¥ cos(tLogk).cos(t Logk’) L2

€
20 o L.lo 1
k=1 k k.k'=1;k<k’ k7k

0<

N . 9 N k+k' . !
Z sin®(tLogk) Z (=1)"** sin(tLogk).sin(tLogk'’) 9
k=1 ke k' =Lk <k

Taking € = €; = €3 and N > maz(n,,n;), we get by making the sum member
to member of the last two inequalities:

N N
1  cos(tLog(k /'
(29)  0<Y o2 > (DM cos( kiifa/ ) (e
k=1 k! =1k <K/

We can write the above equation as :
(2.10) 0< pi <26

or p(s) =0.
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1
2.3. Case 0 = 3

1
We suppose that o = 5 Let’s start by recalling Hardy’s theorem (1914)
(121, page 24):

Theorem 2.6. — There are infinitely many zeros of ((s) on the crit-
ical line.

From the propositions (2.5{2.6|), it follows the proposition :

Proposition 2.7. — There are infinitely many zeros of 7(s) on the
critical line.

Let s; = % + it; one of the zeros of the function 7(s) on the critical line, so
n(sj) = 0. The equation (2.9) is written for s;:

N N

1 rcos(t;jLog(k/k')) 9

0<>d —+2 Y (=1Fth J < 2¢
k=1 k kK =1;k<k’ VEVE

or:

g: 1 <22 _9 i\f: (_1)k+k’ cos(t;Log(k/k'))

ok ko =1;k<k VEVE
|
If N — +o0, the series Z z is divergent and becomes infinite. then:
k=1
+oo +oo . /
Z % S 262 ) Z (_1)k+k2l COS(tJLOg(k;/k ))
k=1 k.k'=1;k<k’ \/E\/k.»

Hence, we obtain the following result:

N

, rcos(tjLog(k/k'))
(2.11) limN —s 400 (—1)kt* J = —o0

if not, we will have a contradiction with the fact that :

N

1 1
limN— 400 E (—1)]“1@ = 0 <= 1n(s) is convergent for s; = 3 + it
k=1
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2.4. Case 0 < R(s) <

5.
2.4.1. Case where there are zeros of 7n(s) with s=0 + it and 0 < 0 <
1
7" Suppose that there exists s = o + it one zero of 7(s) or 7(s) = 0 =

p*(s) =0 Wlth 0 < 0 < 5 = s lies inside the critical band. We write the

equation (|2

N /
ki cos(tLog(k/K")) 9
0<ZW+2M§1€ Y ROk e
) /= 5 <k
or:
N N /
1 ik cos(tLog(k/E'))
Z 20 <2 -2 /Z /(_1) ko k'o
kk=1:k<k
N
But 20 < 1, it follows that limy_— 100 Z 120 — 400 and then, we obtain :
k=1
+o00 /
(2.12) Z (1) cos(tLog(k/k")) _
kak/a
ko k' =1k <k!

1
2.5. Case 3 < R(s) <1

Let s = o + it be the zero of n(s ) i 0 < R(s) < %, object of the previous
paragraph. From the proposition , C(s) = 0. Accordmg to pomt 4 of
theorem u the complex number s’ = 1 — o+ it =o' + it with o/ =1 — 0,
t' =tand 5 < o’ < 1 verifies ((s') = 0, so s’ is also a zero of the function
¢(s) in the band 3 < R(s) < 1, it follows from the proposition that

n(s') =0 = p(s’) = 0. By applying (2.9)), we get:

N N ! /
1  cos(t' Log(k /&
(2.13) 0<Y w2 X (D cos( k;g,g,/ D (g
k=1 k! =ik <k!

1
As0 <o < 3= 2>20 =2(1-0) > 1, then the series Z{CVZIW is

convergent to a positive constant not null C(¢’). As 1/k? < 1/k**" for all
k > 0, then :

2
0< *—zkz zk%: = 1(20") = ¢(20")
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From the equation (2.13)), it follows that :

+o0 / / / /
vkewcos(t'Log(k/K)) — C(o') — ((20") _
(2.14) E (—1) 1o 107 = 5 = 5 > T
k.k' =1;k<k’

2.5.0.1. Case t = 0. — We suppose that t = 0 = t/ = 0. The equation

(2.14)) becomes:

+00 / /
ro 1 C(o') ¢(20")
2.15 > —1)ktk S - _ _
( ) k k’:1~k<k’( ) ko R 2 2 o

Then s’ = ¢’ > 1/2 is a zero of 7(s), we obtain :

/ = (_1)n71
2.16 = —=0
(2.16) w0 =2
Let us define the sequence 5, as:
R e Vi
(2.17) Sm(s') = nz::l T = n; = Sm(a’)

From the definition of S,,, we obtain :
(2.18) [t — o0 Sin(s') = 0(s') = (o)

‘We have also:

(2.19) S1(6")=1>0

(2.20) Sy(o) =1 — 2% >0 because 27 > 1
1

(2.21) S3(0’) = Sa(a’) + o7 > 0

We proceed by recurrence, we suppose that S,,(c’) > 0.

m+1 (_1)1171 (_1)m+171
1. m=2¢ = Sp41(0’) = Z —— =8m(d’) + A1 it gives:
1 n m e
/ ! (_1)2q ! /
Sm+1(0'):Sm(G')+ (m—|—1)‘7/ :Sm(0)+m>0:>sm+1(0')>0

2. m =2q+ 1, we can write Sy, +1(0”) as:

(_1)m—1 (_1)m+1—1
mo’ + (m+ 1)

Sm+1 (U,) = Smfl(gl) +
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) A G

mo T (m+1)°

We have Sp,—1(¢’) >0, let T = -, we obtain:

B G Vi o D AR SR
(2.22) =G+ N E T T

and Sp,4+1(c") > 0.

Then all the terms Sy, (c”) of the sequence S,, are great then 0, it follows that
limpm—100Sm(8") = n(s’) = n(o’) > 0 and n(c’) < 400 because R(s') = o’ >
0 and 7(s’) is convergent. We deduce the contradiction with the hypothesis s’
is a zero of n(s) and:

(2.23) ‘The equation (2.15)) is false for the case t’' =t = 0. ‘

2.5.0.2. Case t # 0. — We suppose that t # 0. For each s’ = ¢’ + it' =
1 — o +it, we have:

+oo / / / /
B i cos(t' Log(k/k')) __C’(U) __C(QJ) B
(2.24) E (—1) 107 k107 = 5 = 5 > —00
k,k'=1;k<k’

the left member of the equation (2.24) above is finite and depends of ¢’ and
', but the right member is a function only of ¢’ equal to —((20")/2. But for
all 0” so that 20” > 1, we have ((20”) :

—+00

((207) = G207) = Y g < +o0
k=1

It depends only of ¢”, then in particular for all o” with 2 > 20” > 1, ((20”)
depends only of ¢”, then the result giving by the equation ([2.24)) is false:

(2.25) ‘It follows that the equation (2.24]) is false for the cases ¢’ # 0. ‘

From ([2.2312.25)), we conclude that the function 7n(s) has no zeros for all
s’ = o' +it" with o’ €]1/2,1], it follows that the case of the paragraph ({2.4)

above concerning the case 0 < R(s) < 5 is false. Then, the function 7(s) has

1
all its zeros on the critical line o = 5 From the equivalent statement {i it
follows that the Riemann hypothesis is verified. O

From the calculations above, we can verify easily the following known propo-
sition:
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Proposition 2.8. — For all s = 0 real with 0 < o0 < 1, n(s) > 0 and

¢(s) <0.

2.6. Conclusion.

In summary: for our proofs, we made use of Dirichlet’s n(s) function:

+00  1\yn—1
ne) =3 T — a2, =0t
n=1

on the critical band 0 < R(s) < 1, in obtaining:
1
- n(s) vanishes for 0 < o = R(s) = 3
1 1
- n(s) does not vanish for 0 < o = R(s) < 3 and ;o= R(s) < 1.
Consequently, all the zeros of n(s) inside the critical band 0 < R(s) < 1
are on the critical line R(s) = —. Applying the equivalent proposition to

the Riemann Hypothesis (3.1)), we conclude that the Riemann hypoth-
esis is verified and all the nontrivial zeros of the function ((s) lie on the

1
critical line R(s) = 5 The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 2.9. — The Riemann Hypothesis is true:
All nontrivial zeros of the function {(s) with s = o+it lie on the vertical

line R(s) = %
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CHAPTER 3

IS THE CONJECTURE c < rad"%(abc) TRUE?

Abstract. — 1In this paper, we consider the abc conjecture, we will give the proof that
the conjecture ¢ < rad*®3(abc) is true. It constitutes the key to resolve the abc conjecture.

Résumé. — Dans cet article, nous considérons la conjecture abc. Nous donnons la

preuve de la conjecture ¢ < rad'®*(abc) qui constitue la clé pour résoudre la conjecture abc.

3.1. Introduction and notations

Let a be a positive integer, a = []; aj", a; prime integers and «; > 1 positive
integers. We call radical of a the integer []; a; noted by rad(a). Then a is
written as:

(3.1) a= H at = rad(a). H afi~t

We denote:

(3.2) fa = 1—[(1?”71 = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University
(Paris 6) [1]. It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Conjecture 3.1. — (abc Conjecture): For each € > 0, there exists
K (€) such that if a,b, ¢ positive integers relatively prime with ¢ = a+ 0,
then :

(3.3) c < K(e).rad ™ (abc)

where K is a constant depending only of €.

Logc
Log(rad(abc))
best example given by E. Reyssat [2]:

We know that numerically, < 1.629912 [2]. It concerned the
(3.4) 2 + 319109 = 23° = ¢ < rad"%?*'2(abc)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2012, A. Nitaj [4]
proposed the following conjecture:

Conjecture 3.2. — Let a, b, ¢ be positive integers relatively prime with
c=a+b, then:

(3.5) ¢ < rad*%3(abc)

(3.6) abe < rad***(abc)

In this paper, we will give the proof of the conjecture given by (3.5 that
constitutes the key to obtain the proof of the abc conjecture using classical
methods with the help of some theorems from the field of the number theory.

3.2. The Proof of the conjecture c < rad'%(abc), case c=a+b

Let a,b, c be positive integers, relatively prime, with ¢ = a + b, b < a and
jl:Jl 6
R = rad(abc), ¢ = H cj,j/,ﬁj/ > 1, ¢y > 2 prime integers.
i'=1

In the following, we will give the proof of the conjecture ¢ < rad%3(abc).

Proof. — :
I- We suppose that ¢ < rad(abc), then we obtain:

¢ < rad(abc) < rad"%(abc) =

and the condition (3.5)) is satisfied.

IT- We suppose that ¢ = rad(abc), then a,b, c are not coprime, case to reject.
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ITI- In the following, we suppose that ¢ > rad(abc) and a,b and ¢ are not all
prime numbers.

)
(3.7) ¢ = perad(c) = a+ b = pgrad(a) + wyrad(b) < rad"(abc)

ITI-1- We suppose pi, < rad*%(a). We obtain :

¢ = a+b < 2a < 2rad"%(a) < rad"%(abc) = ¢ < rad" % (abc) =

Then (3.7) is satisfied.

III-2- We suppose g < rad®%3(c). We obtain :

¢ = perad(c) < rad"%(c) < rad"%(abc) =

and the condition (3.7)) is satisfied.
I11-3- We suppose g > rad’%(c) and p, > rad®®3(a).
I11-3-1- Case : rad*%(c) < pe < rad-%(c) and rad®%(a) < p, < rad'%(a).

We can write:

e < radt%3(c) = ¢ < rad*%3(c)
— ac < rad*%(ac) = a* < ac < rad*%(ac)
o < radt%3(a) = a < rad*%3(a)

= a < rad"?(ac) = ¢ < 2a < 2rad*>"® (ac) < rad" % (abc)

[c—arb< R

I11-3-2- Case : p. > rad%(c) or p, > rad%(a)
I11-3-2-1- We suppose that p. > rad'*%3(c) and p, < rad?(a):

ITI-3-2-1-1- Case rad(a) < rad(c):
In this case a = jiq.7ad(a) < rad®(a) < rad*%3(a)rad'3"(a) < rad"%3(a).rad'>"(c)
= ¢ < 2a < 2rad*%(a).rad*3"(c) < rad>%3(abc) = .

ITI-3-2-1-2- Case rad(c) < rad(a) < rad%(c): Asa < radv%3(a).rad 3" (a) <
rad%(a).rad*%(c) = ¢ < 2a < 2rad"%(a).rad'%(c) < R —

e< 1]

ITI-3-2-1-3- Case rad%g(c) < rad(a):
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IT1-3-2-1-3-1- We suppose ¢ < rad>?%(c), we obtain:
c < rad>*%(c) = ¢ < rad"%(c).rad%(c) =

c < rad*%3(c).rad3"(a) < rad*%(c).rad*%(a).rad%3(b) = R =

I11-3-2-1-3-2- We suppose ¢ > rad>?%(c) = p. > rad*?%(c).
ITI-3-2-1-3-2-1- We consider the case ji, = rad?(a) = a = rad*(a). Then,
we obtain that X = rad(a) is a solution in positive integers of the equation:
(3.8) X34l=c—b+1=¢

But it is the case ¢ = 1 + a.

ITI-3-2-1-3-2-1-1- We suppose that ¢ = rad"(¢’) with n > 4, we obtain the
equation:

(3.9) rad"(c') — rad®(a) = 1

But the solutions of the equation (3.9) are [5] :(rad(c’) = 3,n = 2,rad(a) =
+2), it follows the contradiction with n > 4 and the case ¢ = rad"(¢'),n > 4
is to reject.

IT1-3-2-1-3-2-1-2- In the following, we will study the cases ps = A.rad™(c)
with rad(¢’) t A,n > 0. The above equation (3.8)) can be written as :

(3.10) (X+1D)(X2-X+1)=/¢

Let § any divisor of ¢/, then:

(3.11) X4+1=46
/

(3.12) X2—X+1:%:c”:52—3X

We recall that rad(a) > radrse (c).

ITI-3-2-1-3-2-1-2-1- We suppose ¢ = l.rad(c’). We have § = l.rad(d) < ¢ =
perad(d) = 1 < pe. As ¢ is a divisor of ¢, then [ is a divisor of uy, we
write pe = l.m. From py = 1(62 — 3X), we obtain:

m = 1?rad*(') — 3rad(a) = 3rad(a) = Prad*(d) —m
A- Case 3j/m = m = 3m/, m' > 1: As pux = ml = 3m'l = 3|rad(d’) and
(rad(c’),m’) not coprime. We obtain:

rad(c) ,

rad(a) = Prad(c). 3 —m
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It follows that a,c are not coprime, then the contradiction.

B - Case m =3 = piy = 3l = ¢ = 3lrad(c) = 35 = §(6% — 3X) = &% =
31+X)=30=d=lrad(d) =3 = =3=9=a+1=a=8=
c < 15, then it is a trivial case.

I11-3-2-1-3-2-1-2-2- We suppose 0 = l.rad?*(¢'),1 > 2. If n = 0 then puo = A
and from the equation above ([3.12):

y ¢ perad(d)  Arad(c) A

= = = d(d)|A
) Irad? () lrad?(¢)  lrad(c) = rad(c)]

It follows the contradiction with the hypothesis above rad(c’) { A.

I11-3-2-1-3-2-1-2-3- In the following, we suppose that n > 0.
If lrad(c') f per then the case is to reject. We suppose lrad(d)|pe = pe =
/

m.lrad(c), then % =m = 6% — 3rad(a).

C-Casem=1=c/d = 02 —3rad(a) =1 = (0 —1)(§ + 1) = 3rad(a) =
rad(a)(0 +1) = § = 2 = l.rad?(¢), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = 6% = 36 = 0 = 3 = Irad?(c).
Then the contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = [>rad*(c') — m = rad(a) and
rad(c’) are not coprime. Then the contradiction.

ITI-3-2-1-3-2-1-2-4- We suppose 6 = l.rad™(c’),l > 2 with n > 3. From ¢ =
per-rad(c) = lrad™(c') (62 — 3rad(a)), we denote m = 6% — 3rad(a) = 6% — 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m # 1,3. Let ¢ be a prime that divides m, it follows ¢q|u., = ¢ =

i = |62 = c [3rad(a). Then rad(a) and rad(c’) are not coprime. It
0 0 0

follows the contradiction.

ITI-3-2-1-3-2-1-2-5- We suppose 6§ = [[;c, c;ﬂj, Bj > 1 with at least one
Jo € Jv with 35, > 2, rad(c) { 6. We can write:

(3.13) § = ps.rad(d), rad(d)=m.urad(d), m>1, (m,us)=1
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Then, we obtain:

d = pe.rad(c) = po.m.rad(d) = 6(6% —3X) = ps.rad(6)(6% — 3X) =
(3.14) m.pie = ps(0% — 3X)
- We suppose py = js = m = 62 —3X = (po.rad(6))? — 3X. As

§ <02 -3X = m > = rad(c) > m > pg.rad(§) > rad®(c’) because
pe > rad®25(c), it follows rad(c’) > rad®(c’). Then the contradiction.

- We suppose po < ps. As rad(a) = pusrad(d) — 1, we obtain:

rad(a) > pe.rad(d) —1 > 0= rad(ac’) > .rad(d) — rad(d) > 0 =
rad(c)

d > rad(ac) > .rad(§) — rad(d) > 0= 1> rad(d) — >

(3.15) = The contradiction

- We suppose pr > pgs. In this case, from the equation (3.14]) and as (m, us) =
1, it follows we can write:

(3.16) et = p1-p2,  pa, p2 > 1
(3.17) d = porad(d) = p1.pg.rad(8).m = 6.(6% — 3X)
(3.18) sothat m.up =02 —3X, o = pus = 6 = po.rad(d)

**1- We suppose (u1,u2) # 1, then 3¢} so that ¢} [u1 and ¢} |us. But ps =
po = cg%|5. From 3X = 62 — mu; = 13X = ¢ | X or ¢ = 3.

- If ¢} | X, it follows the contradiction with (¢/,a) = 1.

-If ¢f = 3. We have mpu; = §2—-3X = §2-3(6—1) = §°~36+3—m.u; = 0.
As 3|pp = 1 = 34}, 3 1 1), k > 1, we obtain:

(3.19) 62 =35 +3(1 — 3" Imu) =0

**1-1- We consider the case k > 1 = 3 { (1 — 3¥~1myu}). Let us recall the
Eisenstein criterion [6]:

Theorem 3.3. — (Eisenstein Criterion) Let f =ag+ -+ + ap X"
be a polynomial € Z[X]|. We suppose that Ip a prime number so that
ptan, plai, (0<i<n—1), and p?{ao, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
(3.20) R(Z) = 7% - 37 +3(1 — 3" Lmu))

then:
=341, -3/(=3)- 313(1 — 3" myu)), and - 321 3(1 — 3F " Tmu)).

>0, rad(d)>2
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It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction
with R(9) = 0.
**1-2- We consider the case k = 1, then py = 3} and (p},3) = 1, we obtain:
(3.21) 6% =36 4+3(1 —mph) =0
*%1-2-1- We consider that 3 1 (1—m.u}), we apply the same Eisenstein criterion
to the polynomial R'(Z) given by:

R(Z)=7%—-3Z +3(1 —mu))
and we find a contradiction with R'(§) = 0.

#%1-2-2- We consider that 3|(1—m.u)) = mu)—1=3"h,i>1,3th,h € N*.

J is an integer root of the polynomial R'(Z):

(3.22)

R(Z) = Z*~3Z+3(1—my}) = 0 = the discriminant of R'(Z)is :A = 324371 x4.h

As the root § is an integer, it follows that A = [? > 0 with [ a positive integer.
We obtain:

(3.23) A = 32(1 + 3i—1 % 4h) _ l2
(3.24) —=1+3" ' x4h=¢*>1,gcN*
We can write the equation (3.21)) as :
; d(o A
(3.25) 8(6 —3) = 3"+L.h = 3] m3( ) (dyrad(s) — 1) = 370 —
d(o
(3.26) = ©), (uhrad(6) —1) = h

3
We obtain i = 2 and ¢®> = 1 + 12h = 1 + 4p)rad()(pyrad() — 1). Then, ¢
satisfies :

(3.27) ¢*—-1=12h = %.% = 3h = (pyrad(d) — 1).pirad(0) =

(3.28) q—1=2u\rad(d) — 2

(3.29) q+1=2u\rad(9)

It follows that (¢ = x,1 = y) is a solution of the Diophantine equation:
(3.30) 22—y =N

with N = 12h > 0. Let Q(N) be the number of the solutions of
and 7(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation
(see theorem 27.3 in [7]):

-If N =2(mod4), then Q(N) = 0.
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-If N=1or N =3(mod4), then Q(N) = [r(N)/2].
- If N =0(mod 4), then Q(N) = [1(N/4)/2].
[z] is the integral part of = for which [z] <z < [z] + 1.

Let (o/,m’), o/,m’ € N* be another pair, solution of the equation (3.30),
then o2 — m”? = 22 —y?> = N = 12h, but ¢ = = and 1 = y satisfy
the equation given by = + y = 2uirad(d), it follows o', m’ verify
also o/ +m' = 2uirad(d), that gives o/ — m' = 2(pjrad(d) — 1), then
o =2 =q = 2ujrad(d) and m" = y = 1. So, we have given the proof
of the uniqueness of the solutions of the equation with the condi-
tion * +y = 2uirad(d). As N = 12h = 4dpjrad(). (pjrad(d) — 1) =
N = 0Omod4) = Q(N) = [7(N/4)/2] = [7(3h)/2], the expression of
3h = pi.rad(d). (uyrad(s) — 1), then Q(N) = [7(3h)/2] > 1. But Q(N) =1,
then the contradiction and the case 3|(1 — m.u}) is to reject.

**2- We suppose that (u1, u2) = 1.

From the equation mpu; = 62 — 3X = 62 — 3(§ — 1), we obtain that J is a root
of the following polynomial :

(3.31) R(Z)=2%>-3Z+3—m.u =0
The discriminant of R(Z) is:
(3.32) A=9—-43 —m.u) =4m.u; —3=¢°> with € N* as § € N*

- We suppose that 2|mu; = ¢ is even. Then ¢*> = 5(mod8), it gives a
contradiction because a square is = 0,1 or 4(mod 8).

- We suppose ¢ an odd integer, then a is even. It follows a = rad®(a) =
0(mod8) = ¢ = 1(mod8). As ¢ = 62 — 3X.5, we obtain 62 — 3X.§ =
1(mod 8). If §? = 1(mod 8) = —3X.J = 0(mod 8) = 8|X.0 = 4|§ = ¢
is even. Then, the contradiction. If 62 = 4(mod8) = & = 2(mod8) or
0 = 6(mod 8). In the two cases, we obtain 2|J. Then, the contradiction with
c an odd integer.

It follows that the case ¢ > rad®2%(c) and a = rad?(a) is impossible.

I11-3-2-1-3-2-2- We suppose ¢ > rad>?°(c) and large and p, < rad?(a).
Then ¢ = rad3(c) + h,h > rad3(c), h a positive integer and we can write
a+1=rad*(a), 1 > 0. Then we obtain :

(3.33) rad*(c) + h =rad®*(a) — 1 + b= rad®*(a) —rad*(c) =h+1—-b>0
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as rad(a) > md%(c). We obtain the equation:
(3.34) rad®(a) —rad®*(c) =h+1—b=m >0

Let X = rad(a) — rad(c), then X is an integer root of the polynomial H(X)
defined as:

(3.35) H(X)= X3+ 3rad(ac)X —m =0

To resolve the above equation, we denote X = u + v, It follows that u3,v> are
the roots of the polynomial G(t) given by:

(3.36) G(t) =t* —mt — rad®(ac) =0
The discriminant of G(t) is A = m? + 4rad3(ac) = a?, «a > 0. The two real
roots of (3.36) are:

3 M+« 3 M-«

(3.37) tl =Uu = B s tg =v =

As m = rad®(a) — rad®(c) > 0, we obtain that a = rad®(a) + rad3(c) > 0,
then from the expression of the discriminant A, it follows that (a = z,m = y)
is a solution of the Diophantine equation:

(3.38) 22—y =N

with N = 4rad3(ac) > 0. From the expression of A above, we remark that a
and m verify the following equations:

(3.39) z+y = 2u® = 2rad’(a)
(3.40) r—y=—20°=2rad*(c)
(3.41) then 22 —y% = N = 4rad®(a).rad(c)

As (a,m) is a couple of solutions of the Diophantine equation (3.38) and
a > m, then 3 d,d’ positive integers with d > d’ and N = d.d' so that :

(3.42) d+d =2«
(3.43) d—d =2m

I11-3-2-1-3-2-2-1- Now, we consider for example, the case d = 4rad®(a) and
d' = rad3(c) = d > d’.We rewrite the equations (3.42]{3.43)):

(3.44)ad®(a) + rad®(c) = 2(rad®(a) + rad®(c)) = 2rad®(a) = rad>(c))
(34t5)d>(a) — rad®(c) = 2(rad®(a) — rad®(c)) = 2rad®(a) = —rad3(c))

Then the contradiction.
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IT1-3-2-1-3-2-2-2- we consider the case d = 4rad®(c)rad®(a) and d’' = 1 =
d > d'.'We rewrite the equations (3.42/{3.43)):

(3.46) 4rad®(c)rad®(a) + 1 = 2(rad®(c) + rad®(a)) = 2rad>(c) = 1
(3.474rad®(c)rad®(a) — 1 = 2(rad®(c) — rad®(a)) = 2rad>(c) = —1
Then the contradiction.

ITI-3-2-1-3-2-2-3- Let ¢; be the first factor of rad(c). we consider the case
d = 4cirad®(a) and d' = rod(©) — > d'. We rewrite the equation (3.42)):

C1

rad>(c)

(3.48) 4errad®(a) + .
1

= 2(rad®(a) + rad*(c)) =

rad’(c) (2¢; — 1) = 2rad>(a) = rad2(c).rad(c)
Cc1 C1

(3283 (a)(2¢1 — 1) =
c1 = 2 or not, there is a contradiction.

The others cases of the expressions of d and d’ not coprime so that N = d.d’
give also contradictions.

Let Q(N) be the number of the solutions of (3.38), as N = 0(mod4), then
Q(N) = [1(N/4)/2]. From the study of some cases above, we obtain that
Q(N) < [(1(N)/4)/2]. It follows the contradiction.

Then the cases i, < rad?(a) and ¢ > rad®?%(c) are impossible.
I11-3-2-2 We suppose that rad*%(c) < p. < rad?(c) and pg > rad>%3(a):

I11-3-2-2-1- Case rad(c) < rad(a) : As ¢ < rad®(c) = rad%3(c).rad-3"(c) =
c < rad"%(c).rad " (a) < rad*%(ac) < rad%3(abc) = .

ITI-3-2-2-2- Case rad(a) < rad(c) < radtse (a):
As ¢ < rad®(c) < rad“%(c).rad'?(c) =

rad'%(abc) = .

ITI-3-2-2-3- Case rad%(a) < rad(c):

c < rad"%3(c).rad %(a) <

I11-3-2-2-3-1- We suppose rad'%(a) < p, < rad*¥%(a) = a <
rad*%3(a).rad"%3(a) = a < rad"%3(a).rad'3"(c) = ¢ = a+b < 2a <

2rad%3(a).rad%3(c) < rad*%(abc) = ¢ < R'% — .
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IT1-3-2-2-3-2- We suppose ji, > rad*?%(a) and . < rad?(c). Using the same
method as it was explicated in the paragraphs ITI-3-2-1-3-2- (permuting
a,c), we arrive at a contradiction (see the appendix ). It follows that the case
pe = rad?(c) and p, > rad*2?%(a) is impossible.

I11-3-2-2-3-2-2- We suppose a > rad>?%(a) and large and u. < rad?(c).
Then a = rad®(a) + h,h > rad®(a), h a positive integer and we can write
c+1=rad*(c), | > 0. Then we obtain :

(3.50) rad®(c) — rad®*(a) =h+1+b>0

as rad(c) > rad%ﬁ(a). Let X = rad(c) —rad(a), then X is an integer root of
the polynomial H(X) defined as:

(3.51) H(X) = X3+ 3rad(ac)X —m =0

3

To resolve the above equation, we denote X = u + v, It follows that u3,v? are

the roots of the polynomial G(t) given by:
(3.52) G(t) = t* —mt — rad®(ac) =0

The discriminant of G(t) is A = m? + 4rad?(ac) = o, « > 0. The two real
roots of (3.52)) are:
3 M4« 3 M-«

(353) t1 =u" = 9 s to =0v° =
As m = rad®(c) — rad®(a) > 0, we obtain that a = rad®(a) + rad3(c) > 0,
then from the expression of the discriminant A, it follows that (a = z,m = y)
is a solution of the Diophantine equation:

(3.54) 22—y =N

with N = 4rad3(ac) > 0. It is the same case (permuting a and c) as the case
above ITI-3-2-1-3-2-2- and we obtain contradictions.
Then the cases u. < rad?(c) and a > rad>?%(a) are impossible.

I11-3-3- Case p, > rad*%3(a) and p. > rad'%3(c): Taking into account the
cases studied above, it remains to see the following two cases:

- pte > rad?(c) and pg > rad"%(a),

- ptq > rad?(a) and p. > rad"%3(c).

I11-3-3-1- We suppose pi. > rad?(c) and p, > rad % (a) = ¢ > rad3(c) and
a > rad*%3(a). We can write ¢ = rad®(c) + h and a = rad®(a) + [ with h a
positive integer and [ € Z.
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ITI-3-3-1-1- We suppose rad(c) < rad(a). We obtain the equation:

(3.55) rad®(a) —rad®*(c) =h —1l—b=m >0

Let X = rad(a) — rad(c), from the above equation, X is a real root of the
polynomial:

(3.56) H(X)=X?+3rad(ac)X —m =0

As above, to resolve (3.56)), we denote X = u+v, It follows that u?, v are the
roots of the polynomial G(t) given by :

(3.57) G(t) =t*> —mt —rad®(ac) =0
The discriminant of G(t) is:

(3.58) A =m?+4rad®(ac) = o, a>0
The two real roots of (3.57)) are:

(3.59) t1:u3:m;_a, t2:v3:m2_a

As m = rad®(a) — rad®(c) > 0, we obtain that o = rad®(a) + rad(c) > 0,
then from the equation (3.58)), it follows that (« = x,m = y) is a solution of
the Diophantine equation:

(3.60) 22—y =N

with N = 4rad®(ac) > 0. From the equations (3.59)), we remark that o and
m verify the following equations:

(3.61) z+y = 2u® = 2rad®(a)
(3.62) r—y=—20° = 2rad’(c)
(3.63) then 22 — % = N = 4rad®(a).rad’(c)

Let Q(N) be the number of the solutions of (3.60) and 7(/N) is the number of
suitable factorization of IV, and using the same method as in the paragraph
ITI-3-2-2-3-2-2- above, we obtain a contradiction.

ITI-3-3-1-2- We suppose rad(a) < rad(c). We obtain the equation:

(3.64) rad®(c) —rad®(a) =b+1—h=m >0

Let X be the variable X = rad(c) —rad(a), we use the similar calculations as
in the paragraph above III-3-3-1-1-, we find a contradiction.

It follows that the case p. > rad?(c) and p, > rad*%3(a) is impossible.

I11-3-3-2- We suppose j, > rad*(a) and p. > rad“%3(c), we obtain
a > rad*(a) and ¢ > rad*%3(c). We can write a = rad®(a) + h and



APPENDIX 103

¢ =rad3(c) + | with h a positive integer and [ € Z.

The calculations are similar to those in the case III-3-3-1-. We obtain a
contradiction.

It follows that the case . > rad"%(c) and p, > rad?(a) is impossible. O

We can state the following important theorem:

Theorem 38.4. — Let a,b, c positive integers relatively prime with ¢ =
a+b, then c < rad*%(abc).

From the theorem above, we can announce also:

Corollary 3.5. — Let a,b, c positive integers relatively prime with
¢ = a+ b, then the conjecture ¢ < rad?(abc) is true.

Acknowledgments. The author is very grateful to Professors Mihailescu
Preda and Gérald Tenenbaum for their comments about errors found in
previous manuscripts concerning proposed proofs of the abc conjecture.

Appendix
IT1-3-2-2-3-2- We suppose j, > rad®?®(a) and p. < rad?(c)

ITI-3-2-2-3-2-1- We consider the case y. = rad?(c) = ¢ = rad>(c). Then,
we obtain that Y = rad(c) is a solution in positive integers of the equation:

(3.65) Vi+l=a+b+1="¢

But it is the case ¢ =1+ ¢.

ITI-3-2-2-3-2-1-1- We suppose that ¢ = rad"(¢’) with n > 4, we obtain the
equation:

(3.66) rad™(c) —rad®(c) = 1

But the solutions of the equation (3.66|) are [5] :(rad(c’) = 3,n = 2,rad(c) =
+2), it follows the contradiction with n > 4 and the case ¢ = rad™(¢'),n > 4
is to reject.
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ITI-3-2-2-3-2-1-2-In the following, we will study the cases py = A.rad™(c)
with rad(¢’) t A,n > 0. The above equation (3.65)) can be written as :

(3.67) Y+1)(Y?-Y+1)=¢
Let § any divisor of ¢/, then:

(3.68) Y+1=46
(3.69) YQ—Y+1:§:c”:52—3Y

1.63

We recall that rad(c) > radts7 (a).

IT1-3-2-2-3-2-1-2-1- We suppose ¢ = l.rad(c’). We have § = l.rad(d) < ¢ =
pl.rad(d) =1 < pl.. As ¢ is a divisor of ¢, then [ is a divisor of p., we write
pl, = l.m. From pl, =1(6% — 3Y), we obtain:

m = I?rad*(c') — 3rad(c) = 3rad(c) = *rad®(c) —m
A- Case 3lm = m = 3m/, m’ > 1: As p, = ml = 3m/l = 3|rad(c’) and
(rad(c’),m’) not coprime. We obtain:

/
rad(c) = lzrad(c').racg(c) —m/

It follows that c,c’ are not coprime, then the contradiction.

B-Case m =3 = . =3l = ¢ =3lrad(d) =35 = §(62 - 3Y) = §% =
314Y)=30=d=lrad(d)=3=¢=30=9=c+1=c=8, then it is
a trivial case.

I11-3-2-2-3-2-1-2-2- We suppose § = l.rad*(c'),l > 2. If n =0 then ps = A
and from the equation above (3.69):

/ / /
y ¢ perad(d)  Arad(d) A ,
) Irad? () lrad?(¢)  lrad(c) rad(c’)]

It follows the contradiction with the hypothesis above rad(c’) 1 A.

I11-3-2-2-3-2-1-2-3- In the following, we suppose that n > 0.
If lrad(c) f per then the case is to reject. We suppose lrad(d)|pes = pe =
/

m.lrad(c), then % =m = 6% — 3rad(c).

C'-Casem=1=c/d = 62— 3rad(c) =1 = (§ — 1)(§ + 1) = 3rad(c) =
rad(c)(§ + 1) = § = 2 = l.rad?(c’), then the contradiction.
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D’ - Case m = 3, we obtain 3(1 + rad(c)) = 6% = 30 = § = 3 = Irad?(c).
Then the contradiction.

E’ - Case m # 1,3, we obtain: 3rad(c) = [*rad*(¢) — m = rad(c) and
rad(c’) are not coprime. Then the contradiction.

ITI-3-2-2-3-2-1-2-4- We suppose ¢ = l.rad™(c'),l > 2 with n > 3. From ¢/ =
e rad(c’) = lrad™(c) (6% — 3rad(c)), we denote m = 6% — 3rad(c) = 6> — 3Y.

F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m # 1,3. Let ¢ be a prime that divides m, it follows

alpe = q = ¢ = c;-,|52 = ¢}, [3rad(c). Then rad(c) and rad(c’)
0 0

are not coprime. It follows the contradiction.

ITI-3-2-2-3-2-1-2-5- We suppose § = [];c, C;Bj, Bj > 1 with at least one
Jo € Jv with Bj, > 2, rad(d) 1 6. We can write:

(3.70) § = ps.rad(d), rad(c)=m.rad(§), m>1, (m,us)=1
Then, we obtain:

d = pe.rad(d) = pe.m.rad(d) = 6(62 — 3Y) = ps.rad(6)(6% — 3Y) =
(3.71) m.pie = ps(6% — 3Y)
- We suppose iz = pg = m = 62 —3Y = (ug.rad(d))® — 3Y. As

§ < 02-3Y = m > 6§ = rad(c) > m > pg.rad(8) > rad®(c’) because
pe > rad*?5(c), it follows rad(c’) > rad®(c’). Then the contradiction.

- We suppose po < ps. As rad(c) = psrad(d) — 1, we obtain:

rad(c) > pe.rad(d) —1 > 0= rad(cc') > ' .rad(d) — rad(c’) > 0 =
rad(c)
C/

d > rad(ed) > d.rad(d) —rad(d) >0 = 1> rad(d) —
(3.72) = The contradiction

- We suppose i > ps. In this case, from the equation (3.71)) and as (m, us) =
1, it follows we can write:

(3.73) fer = pa-pa,  pa,p2 > 1
(3.74) ¢ = perad(d) = py.po.rad(8).m = 6.(6% — 3Y)
(3.75)  so that m.up =% —3Y, s = pus = 6 = po.rad(d)

>0, rad(d)>2
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**1- We suppose (u1,u2) # 1, then 3¢} so that ¢ |u1 and ¢} |us. But ps =
po = c;%|5. From 3Y = 62 — mu; = i 13Y = ¢ |Y or ¢ = 3.

- If ¢ |V, it follows the contradiction with (¢, c) = 1.

-1f ¢}, = 3. We have mpuy = 6°—3Y = §*—3(6—1) = 6°~30+3—m.u1 = 0.
As 3|y = 1 = 3%, 34 1, k > 1, we obtain:
(3.76) 6% =35 +3(1 — 3" Imuf) =0
*#%1-1- We consider the case k > 1 == 31 (1—3¥"1my}). We apply Eisenstein
criterion 6] to the polynomial R(Z) given by:
(3.77) R(Z) =272 -3Z +3(1 — 3¥1mu))

then:

=311, -3|(=3),- 3|13(1 — 3*1myu)), and - 32 3(1 — 3¥"Imu)).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction
with R(d) = 0.

**1-2- We consider the case k = 1, then py = 3} and (p},3) = 1, we obtain:
(3.78) 6% =36 4+3(1 —mph) =0

*If 34 (1 — m.pu)), we apply the same Eisenstein criterion to the polynomial
R/(Z) given by:

R(Z)=7%?—-3Z +3(1 —mu))
and we find a contradiction with R'(§) = 0.

#¥1-2-2- We consider that 3|(1—m.pu}) = mu)—1=3"h,i>1,31h,h € N*.
J is an integer root of the polynomial R'(Z):

R(Z)=27?-3Z+3(1 —my}) = 0 = the discriminant of R'(Z)is :
(3.79) A =32 43 % 40

As the root § is an integer, it follows that A = [? > 0 with [ a positive integer.
We obtain:

(3.80) A=321+3"1 x4n)=1?
(3.81) — 14+3" I xdh=¢>>1,g e N*
We can write the equation (3.78)) as :

(3.82) (8 —3) =3+ p = 33,1, rad(d)

(3.83) p 7240

A(phrad(8) — 1) =3 h =

(Whrad(6) —1) =h
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We obtain i = 2 and ¢®> = 1 + 12h = 1 + 4p)rad()(pyrad(5) — 1). Then, ¢
satisfies :

(3.84) ¢*—1=12hn = N W) _ 35 — (4hrad(6) — 1).ujrad(8) =

(3.85) q—1=2u\rad(s) —2

(3.86) q+1=2u\rad(d)

It follows that (¢ = x,1 = y) is a solution of the Diophantine equation:
(3.87) 2 -y =N

with N = 12h > 0. Let Q(N) be the number of the solutions of
and 7(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation
(see theorem 27.3 in [7]):

- If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [1(N)/2].

- If N =0(mod4), then Q(N) = [7(N/4)/2].

Let (o/,m'), o/, m’ € N* be another pair, solution of the equation (3.87), then
a?—m'? = 22 —y? = N = 12h, but ¢ = z and 1 = y satisfy the equation
given by z +y = 2p)rad(9), it follows o/, m’ verify also o/ +m' = 2p)rad(é),
that gives o — m/ = 2(ujrad(d) — 1), then o = z = ¢ = 2p)rad(d) and
m' = y = 1. So, we have given the proof of the uniqueness of the so-
lutions of the equation with the condition = +y = 2pjrad(d). As
N = 12h = 0(mod4) = Q(N) = [1(N/4)/2] = [7(3h)/2], the expression of
3h = pi.rad(d). (uyrad(s) — 1), then Q(N) = [7(3h)/2] > 1. But Q(N) =1,
then the contradiction and the case 3|(1 —m.u}) is to reject.

** We suppose that (u1,u2) = 1.

From the equation mpu; = 6% — 3X = 62 — 3(§ — 1), we obtain that J is a root
of the following polynomial :

(3.88) R(Z)=2%*-3Z+3—m.u =0

The discriminant of R(Z) is:

(3.89) A=9—-43—m.u) =4m.pu —3=¢°> with g€ N* as § € N*

- We suppose that 2/mu; = ¢ is even. Then ¢®> = 5(mod8), it gives a

contradiction because a square is = 0,1 or 4(mod 8).

- We suppose ¢ an odd integer, then c is even. It follows ¢ = rad>(c)
0(mod8) = ¢ = 1(mod8). As ¢ = % — 3Y.J, we obtain 6% — 3Y.6
1(mod8). If 42 = 1(mod8) ==—3Y.6 = 0(mod8) = 8|Y.0 = 4|6 =

Q\
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is even. Then, the contradiction. If §° = 4(mod8) = J = 2(mod8) or
0 = 6(mod 8). In the two cases, we obtain 2|J. Then, the contradiction with
¢ an odd integer.

It follows that the case j, > rad®2%(a) and p. = rad?(c) is impossible.
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CHAPTER 4

IS THE abc CONJECTURE TRUE?

Abstract. — In this paper, we consider the abc conjecture. As the conjecture ¢ <
rad?(abc) is true, then we give the proof of the abc conjecture for € > 1 and for the case € €
10, 1], we consider that the abc conjecture is false, from the proof, we arrive in a contradiction.

Résumé. — Dans cet article, nous considérons la conjecture abc. Comme la conjecture
¢ < rad? (abc) est vraie, nous donnons la preuve que la conjecture abc est vraie pour € > 1 et

pour les cas € €]0, 1[, supposant que la conjecture est fausse nous arrivons & une contradiction.

4.1. Introduction and notations

Let a positive integer a = [[; ai"", a; prime integers and «; > 1 positive
integers. We call radical of a the integer []; a; noted by rad(a). Then a is
written as :

(4.1) a=[]a" = rad(a). Ha?i_l

We note:

(4.2) fa = Haf‘i_l = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University
(Paris 6) [4]. It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Conjecture 4.1. — (abc Conjecture): For each € > 0, there exists
K(e) > 0 such that if a,b, c positive integers relatively prime with ¢ =
a+b, then :

(4.3) c < K(e).rad "(abc)

where K is a constant depending only of €.

The idea to try to write a paper about this conjecture was born after the
publication in September 2018, of an article in Quanta magazine about the
remarks of professors Peter Scholze of the University of Bonn and Jakob Stix
of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2].
The difficulty to find a proof of the abc conjecture is due to the incomprehen-
sibility how the prime factors are organized in ¢ giving a,b with ¢ = a +b. So,
I will give a simple proof that can be understood by undergraduate students.

Logc
Log(rad(abc))
proposed that ¢ < rad?(abe) [3]. It is the key to resolve the abc conjecture.
In my paper, as the conjecture ¢ < rad?(abc) holds (chapter 3), I propose an
elementary proof of the abc conjecture.

We know that numerically, < 1.629912 [4]. A conjecture was

4.2. The Proof of the abc conjecture

Proof. — We note R = rad(abc) in the case ¢ = a + b or R = rad(ac) in the
case c =a + 1.

4.2.1. Case : ¢ > 1. — As ¢ < R? is true, we have Ve > 1:
(4.4) c< R? < RY™ < K(e).R"™, with K(e)=¢, e>1

Then the abc conjecture is true.

4.2.2. Case: ¢ < 1. — From the statement of the abc conjecture 4.1} we
want to give a proof that ¢ < K(€)R'™ = LogK (¢)+(1+¢)LogR— Logc > 0.

For our proof, we proceed by contradiction of the abc conjecture. We sup-
pose that the abc conjecture is false:

Jep €]0,1[,VK(e) >0, Jco=ap+by; aop,bo,co coprime so that
(4.5) co > K(eo)RyT and Ve €]0,1[, co > K(e)Ry™™
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We choose the constant K (€) = e€?. Let :

1
(4.6) Yeo(€) = =t (14 €)LogRy — Logcy, € €]0,1]

From the above explications, if we will obtain Ve €]0,1[,Y,(¢) > 0= ¢y <
K(€)RyT® = ¢y < K(e)Ry ™, then the contradiction with (4.5)

About the function Y, we have:

lime—1Ye(€) =1+ Log(Rg/co) =A>0

lime—0Ye,(€) = +00

The function Y, (e) has a derivative for Ve €]0, 1], we obtain:

2 e3LogRy — 2
(4.7) YC’0 (e) = 3 + LogRy = %
Y/(e)=0=ec=¢ =} 2 €10,1[ for Ry > 8.
co LogRy -
€ 0 g’ 1

Y'(g) - +
Y(e) T /

A>0

FIGURE 1. Table of variations

Discussion from the table (Fig.: :

- If Y, (€') > 0, it follows that Ve €]0,1[, Y., (€) > 0, then the contradiction
with Y, (eg) < 0 = ¢p > K(eo)RyT™ and the supposition that the abe
conjecture is false can not hold. Hence the abc conjecture is true for e €]0,1[.

-IHY,(€)<0=30< e <€ <e<1,s0that Yo (e1) = Yo, (e2) = 0. Then
we obtain ¢y = K(e1)RyT = K (ea) Ry, We recall the following definition:
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Definition 4.2. — The number ¢ is called algebraic number if there
is at least one polynomial:
(4.8) lz)=lo+hax+ - +amz™, am#0

with integral coefficients such that I(£) = 0, and it is called transcen-
dental if no such polynomial exists.

\. .

We consider the equality :

1
Co e 2

4.9 =K Rt — 20 _ P _ € pa

(4.9) 0 (e1) Fo Ry rad(apbp) ¢ 0

i) - We suppose that e; = f; is an algebraic number then By = 1/€} and

a1 = Ry are also algebraic numbers. We obtain:

1

€0 — ~co — 62 € _ B B1
41 = =e-1 = e 0.

From the theorem (see theorem 3, page 196 in [1]):

Theorem 4.3. — eﬂoa’fl ...aPn is transcendental for any nonzero al-
gebraic numbers aq, ..., Qn, 8oy - -, Bn-

we deduce that the right member eﬁo.af ! of 1D is transcendental, but the
_ Mo
rad(apbo)
Ye, (€') < 0is impossible. It follows Y., (€') > 0 then the abc conjecture is true.

term is an algebraic number, then the contradiction and the case

ii) - We suppose that e; is transcendental, then 1/(6%),61/(6%) and Ry =
ec1logho are also transcendental, we obtain that cg /Ry is transcendental, then
the contradiction with ¢y/Rp an algebraic number. It follows that Y, (¢') > 0
and the abc conjecture is true.

Then the proof of the abe conjecture is finished. As ¢ < R? is true, we obtain
that Ve > 0, 3K (e) > 0, if ¢ = a + b with a, b, ¢ positive integers relatively
coprime, then :

(4.11) ¢ < K(e).rad ™ (abc)

and the constant K (¢) depends only of e.
Q.ED
Ouf, end of the mystery!
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4.3. Conclusion

As ¢ < R? is true, we have given an elementary proof of the abc conjecture.
We can announce the important theorem:

~

N

Theorem 4.4. — The abc conjecture is true:
For each € > 0, there exists K(€) > 0 such that if a,b, ¢ positive integers

relatively prime with ¢ = a + b, then:
(4.12) ¢ < K(e).rad *¢(abc)

where K is a constant depending of €.
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