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Abstract

We examine three definitions of continuity of a functor and search for conditions that may

fix one of them as general in the sense of including the previous ones. The first definition

conceives continuity in terms of inverse systems and their inverse limit. The second definition

was developed in the context of abstract Shape theory and considers continuity relative to a

fixed functor K and in a general framework that doesn’t need the concept of limit. The third

definition also considers continuity relative to a fixed functor K, but employs concurrently the

concept of limit of a functor. We show how a modification of the third definition allow us to set

it as the most general one.

1 Introduction

In category theory there is a standard definition for the limit of a functor T : C → D that consists

of a pair (lim T, λT ) with lim T ∈ Obj D and λT : (limT )C
·→ T a natural transformation satisfying

a certain universal property (see §4.3). In contrast with the limit concept, continuity has been

conceived in different ways through definitions which are not apparently equivalent. In what follows

we will focus our attention on a brief discussion on some of those definitions in order to illustrate

which elements they have in common and how they differ from each other.

It seems the first attempt to define continuity goes back to the work of Eilenberg and Steenrod

[1] (from now on referred to as ES). Considering the category A of topological pairs (X,A) and

maps (between pairs) they characterized a continuous homology functor Hq as the one satisfying

Hq lim {(Xm, Am), pmn} ' lim Hq{(Xm, Am), pmn} for every inverse system {(Xm, Am), pmn} in A
(there is a similar definition for the cohomology functor Hq). Here, by ' it is understood the

existence of a natural equivalence. A carefull notice on this definition reveals that the limit is being

taken on the inverse systems {(Xm, Am), pmn} and {(HqXm, HqAm), Hq(pmn)} rather than on the

functor Hq itself, then we do not attribute to Hq a pair like (lim Hq, λ
Hq).
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Another definition of continuity similar to the ES definition was employed by W. Holsztynski in

his construction of a purely categorical version of Borsuk’s Shape theory [2]. Like the ES approach,

Holztynski’s construction still relies on inverse systems, but it is not restricted to the categories of

topological pairs and maps as used by ES. It assumes quite arbitrary categories (except for some

technical aspects that restrict the type of categories being used, which plays an essential role in

Holzstynsky’s Shape theory).

It was also in the context of Shape theory, more precisely in the categorical construction given

by Bacon [3] and by Cordier and Porter [4], that the concept of continuity became free from the

framework of inverse systems. Their treatment of continuity doesn’t use the definition of limit and

it is valid in the context of arbitrary categories. In order to establish the continuity of a functor

T : C → D they relied on a class of functors K : B → C in terms of which it is developed the concept

of K−continuity for the functor T . The continuity of T is seen as a particular case of K−continuity

for K = 1C.

It was only with K. Hofmann study on the categorical foundations of topological algebras [5]

that the concept of continuity was built upon the standard concept of the limit of a functor. Like

Bacon’s approach, given a functor T : C → D Hofmann develops the concept of continuity relative

to a functor K : B → C and assumes it exists the limits of K and TK. Then K−continuity of T

is given by means of an isomorphism T (lim K) ' lim TK, which has a form ressembling the ES

continuity condition, except that here lim K and lim TK refers to the standard definition of the

limit of a functor rather than to the limit of inverse systems.

The purpose of our study is to examine the definitions of continuity given by Holsztynski, Bacon-

Cordier-Porter and Hofmann and search if one of them may be considered as the most general

one in the sense of including the two previous ones as particular cases. One should notice that

the concept of continuity we consider is a kind of “intrinsic” concept since it doesn’t rely on any

topology one may ascribe to the sets Morf C(C,C
′), Morf D(D,D′) that would allow us to characterize

T : Morf C(C,C
′)→ Morf D(TC, TC ′) as continuous in the topological sense.

Our work is organized as follows. In section 2 we give a brief description of Holsztynski’s definition

of continuity of a functor relative to inverse systems. In section 3 we present the elements that were

used by Bacon, Cordier and Porter to develop their concept of continuity, which doesn’t depend on

any previous limit concept. This approach is able to include the Holzstynski’s treatment if we restrict

our attention to inverse systems. In section 4 we present the construction given by Hofmann, who

defined continuity using the concept of limit of a functor. This definition also includes Hozstysnki’s

treatment when restricted to inverse systems. In addition, we show how this defintion allows for a

modification that includes the Bacon-Cordier-Porter definition.

A word about notation. All functors we deal with are covariant. Given a functor F : B → C
sometimes we write Fob and Fmo to denote its action on the objects and morphisms of B. A morphism

u ∈ Morf B(B,B′) is written as u : B
B→ B′. Whenever we treat with inverses systems {Xα, pαβ}M , M

2



is a pre-ordered set where the indexes run. When we write relations like pα = pαβ pβ, uα = pαh, . . .

it is assumed they are valid ∀α ∈ M,∀β ∈ M , observing that α ≤ β whenever it appears in

pαβ, therefore, for ease of notation we omit this information. Finally, we follow the convention to

write natural transformations putting a dot over the arrow, e.g. u : F
·→ G denotes a natural

transformation between functors F and G.

2 Holsztynski’s definition of continuity

We review the concept of continuity developed by Holsztynski that is restricted to inverse systems

over a category. Its content is enounced in the following definition:

2.1 Def.: Continuity for inverse systems

Let T : C → D be a functor. T is said continuous for inverse systems iff

T lim←−{Xα, pαβ}M ' lim←−T{Xα, pαβ}M (1)

∀{Xα, pαβ}M inverse system on C. �

2.2 Remark: We recall that the limit of an inverse system {Xα, pαβ}M on a category C, denoted by

lim←−{Xα, pαβ}M , is a terminal object in the category inv{Xα, pαβ}M , i.e. it is an object {pα : X∞
C→

Xα}M ∈ Obj inv{Xα,pαβ}M satisfying

i. pα = pαβ pβ (2)

ii. The universal property for inverse systems:

∀{uα : W
C→ Xα}M ∈ Obj inv{Xα,pαβ}M with uα = pαβ uβ, ∃!h : W → X∞ with uα = pα h (3)

We summarize conditions i, ii in the commutative diagram below

Xβ

pαβ // Xα

X∞

pβ
aa

pα
==

W

uβ

XX

h

OO uα

FF

Denoting {qα : Y∞
D→ TXα}M = lim←−T{Xα, pαβ}M , condition (1) establishes an equivalence

{T (pα) : TX∞
D→ TXα}M ' {qα : Y∞

D→ TXα}M between terminal objects in

inv{TXα, T (pαβ)}M .

For further use in sections 3 and 4, we write down Holzstynski’s definition of projection

2.3: Def.: Projection

Let B and C be categories with Obj B = Obj C. A functor K : B → C is called a projection iff
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K(B) = B, ∀B ∈ Obj B, and K : Morf B(B,B′)→ Morf C(B,B
′) is surjective ∀B,B′ ∈ Obj B. �

Then, when K : B → C is a projection it becomes implicit that we are dealing with categories B and

C with Obj B = Obj C.

3 Bacon-Cordier-Porter’s definition of continuity

Here we review the concept of continuity developed by Bacon, Cordier and Porter. The concept is

referred to a fixed functor K and for this reason is called K−continuity. Before presenting it we

need to introduce some preliminary concepts. For the definition of comma category and the other

concepts see [4].

3.1 Def.: Codomain functor δC↓K

Let K : B → C be a functor, C ∈ Obj C and C ↓ K be the comma category of K−objects under C.

We define the codomain functor δC↓K : C ↓ K → B as follows

δC↓Kob : Obj C↓K → Obj B

(f,B)→ δC↓Kob (f,B) := B

δC↓Kmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ Morf B(B,B′)

h→ δC↓Kmo (h) := h �

3.2 Def.: Func(C ↓K,D ↓ TK)

Let K : B → C and T : C → D be functors and C ∈ Obj C, D ∈ Obj D. We define Func(C ↓ K,D ↓
TK) as the class having for elements functors V : C ↓ K → D ↓ TK such that δD↓TK ◦V = δC↓K . �

From this condition Func(C ↓ K,D ↓ TK) may be characterized in terms of a map V ∗ as we see

in the next result.

3.3 Res.: The condition δD↓TK ◦ V = δC↓K fixes the form of V ∈ Func(C ↓ K,D ↓ TK) as follows

Vob : Obj C↓K → ObjD↓TK

(f,B)→ Vob(f,B) := (V ∗(f), B)

Vmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ MorfD↓TK

(
(V ∗(f), B), (V ∗(f ′), B′)

)
h→ Vmo(h) = h

where

V ∗ : ∪
B∈ObjBMorf C(C,KB)→ ∪

B∈ObjBMorf D(D,TKB)

f : C
C→ KB → V ∗(f) : D

D→ TKB

satisfies

∀f : C
C→ KB, ∀f ′ : C C→ KB′,∃h : B

B→ B′ such that f ′ = K(h)f and V ∗(f ′) = TK(h)V ∗(f) (4)
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Proof: It follows straightforwardly from the condition δD↓TK ◦ V = δC↓K . �

3.4 Remark: Given f, f ′ the condition f ′ = K(h)f restricts the form of h : B
B→ B′. The other

condition V ∗(f ′) = TK(h)V ∗(f) restricts the form of V ∗. Generally, they constitute independent

conditions, but there are cases when V ∗(f ′) = TK(h)V ∗(f) appears as a consequence of having

f ′ = K(h)f .

3.5 Def.: δT : C ↓K → TC ↓ TK

Let K : B → C and T : C → D be functors. We define the functor δT : C ↓ K → TC ↓ TK as

δT ob : Obj C↓K → Obj TC↓TK

(f,B)→ δT ob(f,B) := (T (f), B)

δTmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ Morf TC↓TK

(
(T (f), B), (T (f ′), B′)

)
h→ δTmo(h) := h �

Our next definition associates to every morphism g : D
D→ TC an induced functor between comma

categories.

3.6 Def.: Let K : B → C and T : C → D be functors. Given a morphism g : D
D→ TC, it induces a

functor between comma categories g∗ : TC ↓ TK → D ↓ TK defined as follows

g∗ob : Obj TC↓TK → ObjD↓TK

(w,B)→ g∗ob(w,B) := (wg,B)

g∗mo : Morf TC↓TK
(
(w1, B1), (w2, B2)

)
→ MorfD↓TK

(
(w1g,B1), (w2g,B2)

)
u→ g∗mo(u) := u �

We are now equipped to define K-continuity of a functor according to Bacon-Cordier-Porter.

3.7 Def.: K−continuity

Let K : B → C and T : C → D be functors. We say that T is K-continuous at C ∈ Obj C iff

∀D ∈ Obj D, ∀V ∈ Func(C ↓ K,D ↓ TK), ∃!g : D
D→ TC such that V = g∗ δT . �

This condition is equivalent to the form given below:

∀D ∈ Obj D, ∀V ∗ : ∪
B∈ObjBMorf C(C,KB)→ ∪

B∈ObjBMorf D(D,TKB) satisfying (4)

∃!g : D
D→ TC, ∀f : C

C→ KB : V ∗(f) = T (f)g (5)

where the last relation is summarized in the commutative diagram

D
g

}}

V ∗(f)

##
TC

T (f) // TKB

We say that T is K-continuous if T is K continuous ∀C ∈ Obj C.
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3.8 Remark: We notice that the form of V ∗(f) given in (5) satisfies condition (4).

We define continuity as a particular case of K−continuity as follows. Let us assume B = C and

K = 1C, then K−continuity becomes continuity as defined below:

3.9 Def.: Continuous Functor

Let T : C → D be a covariant functor. T is continuous in C ∈ Obj C iff ∀D ∈ Obj D, ∀V ∈ Func(C ↓
1C, D ↓ T ), ∃!g : D

D→ TC, V = g∗T δT .

This condition is equivalent to

∀D ∈ Obj D, ∀V ∗ : ∪
C′∈Obj CMorf C(C,C

′)→ ∪
C′∈Obj CMorf D(D,TC ′) satisfying (4)

∃!g : D
D→ TC, ∀f : C

C→ C ′ : V ∗(f) = T (f)g � (6)

We now examine how the concept of K−continuity implies continuity relative to inverse systems

as given in §2.1.

3.10 Res.: Let K : B → C be a projection. If T : C → D is K-continuous then T is continuous for

inverse systems.

Proof: Let {Xα, pαβ}M be an inverse system in C and let us assume there is defined the inverse

limit {pα : X∞
C→ Xα}M = lim←−{Xα, pαβ}M . Given the covariant functor T : C → D we have that

{TXα, T (pαβ)}M is an inverse system in D and {T (pα) : TX∞
D→ TXα}M satisfies

T (pα) = T (pαβ)T (pβ) . (7)

Let {uα : W
D→ TXα}M be such that

uα = T (pαβ)uβ . (8)

Since K : Morf B(Xβ, Xα) → Morf C(Xβ, Xα) is a surjection, then for pαβ ∈ Morf C(Xβ, Xα), ∃qαβ ∈
Morf B(Xβ, Xα) such that K(qαβ) = pαβ. But pα = pαβ pβ then

pα = K(qαβ)pβ . (9)

Now, since X∞ ∈ Obj C and W ∈ Obj D we have that V ∈ Func(X∞ ↓ K,W ↓ TK) is characterized

by a map V ∗ : ∪
B∈ObjBMorf C(X∞, B)→ ∪

B∈ObjBMorf D(W,TB) satisfying (4), which reads as

∀f : X∞
C→ B, ∀f ′ : X∞

C→ B′, ∃h : B
B→ B′ with f ′ = K(h)f and V ∗(f ′) = TK(h)V ∗(f) . (10)

Consider now a particular choice for V ∗ such that for f ≡ pβ, f ′ ≡ pα (α ≤ β) we have V ∗(pα) = uα,

V ∗(pβ) = uβ. That this choice exists it is readily seen if we take h ≡ qαβ satisfying K(qαβ) = pαβ for

in this case we have that (8) and (9) garantee (10). Since V is continuous, from (5) we have that

∃!g : W
D→ TX∞,∀pα : X∞

C→ Xα, V
∗(pα) = T (pα)g .
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i.e.

uα = T (pα)g . (11)

From (7), (8) and (11) the family {T (pα) : TX∞
D→ TXα}M satisfies the analogue of conditions (2)

and (3) relative to the inverse system {TXα, T (pαβ)}M , therefore

{T (pα) : TX∞
D→ TXα}M = lim←−{TXα, T (pαβ)}M

i.e. T : C → D is continuous for inverse systems. �

3.11 Remark: As we have seen, the definition of K-continuity of T : C → D assumes the existence

of a unique morphism g, but does not specify the conditions for this morphism to exist. However, in

the result just proved, the existence and uniqueness of g stated in §3.7 follows as a consequence of

existing the inverse limit of {TXα, T (pαβ)}M .

3.12 Res.: Continuity implies continuity for inverse systems

Let T : C → D be a functor. If T is continuous then T is continuous for inverse systems.

Proof. It follows directly from §3.9 since continuity is a particular case of K-continuity taking

K = 1C. �

4 Hofmann’s definition of continuity

Here we analyze the concept of continuity developed by Hofmann. The concept is stablished relative

to a functor previously fixed and employs the standard definition of limit.

First we introduce the concept of constant functor induced by an object.

4.1 Def.: Let C and D be categories and D ∈ Obj D. We define a constant functor DC : C → D as

follows

DCob : Obj C → Obj D

C → DCob := D

DCmo : Morf C → Morf D

h : C
C→ C ′ → DCmo(h) := 1D �

Given a functor it induces a natural transformation as follows:

4.2 Def.: Given categories C and D and a morphism F : D
D→ D′ we define a natural transformation

FC : DC
·→ D′C as

FC : Obj C → Morf D

C → FC(C) := F �

We recall the standard definition of the limit of a functor:

4.3 Def.: Limit of a functor
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Let K : B → C be a functor. The limit of K consists of a pair (lim K,λK) with lim K ∈ Obj C and

λK : (lim K)B
·→ K such that ∀C ∈ Obj C, ∀α : CB

·→ K, ∃!α : C
C→ lim K such that λK αB = α. �

Condition λK αB = α may be expressed in terms of the commutative diagram below (∀B ∈ Obj B):

C
α

{{

α(B)

!!
lim K

λK(B) // KB

We say that λK is the limit morphism and lim K is the limit object. As an abuse of notation we

write lim K as a shorthand for the pair (lim K,λK).

We need a preliminary result:

4.4 Res.: Let K : B → C and T : C → D be functors and let us assume that ∃ lim K. Then,

T ◦ (lim K)B = [T (lim K)]B.

Proof: It follows directly from definition 4.1. �

The next result garantees the existence of a unique funtor TK provided it exists the limits of K

and TK.

4.5 Res.: Let K : B → C and T : C → D be functors. If ∃ lim K, ∃ lim TK then ∃!TK : T (lim K)
D→

limTK such that λTKTKB = TλK , i.e. the diagram below is commutative

[T (lim K)]B

TλK &&

TKB // (lim TK)B

λTKyy
TK

Proof: Since it exists lim K it follows there is a natural transformation λK : (lim K)B
·→ K. Using

§4.4 we consider the natural transformation TλK : [T (lim K)]B
·→ TK. Since it also exists lim TK

there is a natural transformation λTK : (lim TK)B
·→ TK satisfying:

∀β : DB
·→ TK, ∃!β : D

D→ lim TK such that λTKβB = β . (12)

Identifying in (12): D ≡ T (lim K) and β ≡ TλK we have that ∃!β : T (lim K)
D→ lim TK such that

λTKβB = TλK . We identify the morphism TK with β and this ends our proof. �

We are now equipped to define K−continuity.

4.6 Def.: K−continuity (according to Hofmann)

Let K : B → C be a functor. The functor T : C → D is K-continuous iff

i. ∃ lim K ⇒ ∃ lim TK

ii. TK : T (lim K)→ lim TK is an isomorphism �

We need a preliminary result:
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4.7 Res.: Let K : B → C be a projection such that ∃ lim K. For every inverse system on C,
{Xα, pαβ}M , it exists {pα : lim K

C→ Xα}M such that {pα : lim K
C→ Xα}M = lim←−{Xα, pαβ}M .

Proof: Let {Xα, pαβ}M be an inverse system in C. If K is a projection then it exists qαβ : Xβ
B→ Xα

with K(qαβ) = pαβ. If it exists lim K we have the following conditions i, ii, iii:

i. There is a natural transformation λK : (lim K)B
·→ K such that for the qαβ : Xβ

B→ Xα we have

λK(Xα) = K(qαβ)λK(Xβ), i.e.

λK(Xα) = pαβλ
K(Xβ) . (13)

ii. For any β : WB
·→ K we also have β(Xα) : W

C→ Xα satisfies

β(Xα) = pαββ(Xβ) . (14)

iii. There is a unique β : W
C→ lim K such that

λK(Xα)β = β(Xα) . (15)

Then, if we identify pα = λK(Xα) and uα ≡ β(Xα) we notice that relations (13), (14), (15) correspond

to the conditions (2) and (3). Then {pα : lim K
C→ Xα}M = lim←−{Xα, pαβ}M . �

We will now examine how K-continuity implies continuity relative to inverse systems.

4.8 Res.: Let K : B → C be a projection. If ∃ lim K and T : C → D is K-continuous then T is

continuous for inverse systems.

Proof: Let K : B → C be a projection and assume it exists lim K. Let T : C → D be K−continuous.

By definition ∃ lim TK, ∃TK : T (lim K)
D→ limTK, which is an isomorphism. Let {Xα, pαβ}M be

an inverse system on C and let us assume there is defined the inverse limit.

Since K : B → C is a projection then for pαβ : Xβ
C→ Xα we have qαβ : Xβ

B→ Xα such that

K(qαβ) = pαβ.

If it exists lim K we have defined a natural transformation λK : (lim K)B
·→ K such that λK(Xα) :

lim K
C→ Xα satisfies λK(Xα) = pαβλ

K(Xβ). From 4.7 we identify {λK(Xα) : lim K
C→ Xα}M =

lim←−{Xα, pαβ}M .

The functor T determines an inverse system {TXα, T (pαβ)}M in D and T (λK(Xα)) : T lim K
D→ TXα

satisfies

T (λK(Xα)) = T (pαβ)T (λK(Xβ)) . (16)

If it exists lim TK we have defined a natural transformation λTK : (lim TK)B
·→ TK such that

λTK(Xα) : lim TK
D→ TXα. Given β : WB

·→ TK we consider β(Xα) : W
D→ TXα, which satisfies

β(Xα) = T (pαβ)β(Xβ) . (17)

Then ∃!β : W
D→ lim TK with λTK(Xα)β = β(Xα).
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From 4.5 TK satisfies λTK(Xα)TK = T (λK(Xα)) and since TK is isomorphism we obtain

λTK(Xα) = T (λK(Xα))T−1K ∴ λTK(Xα)β = T (λK(Xα))T−1K β, which becomes

β(Xα) = T (λK(Xα))T−1K β . (18)

Then considering (16), (17) and (18) we have shown that {T (λK(Xα)) : T lim K
D→ TXα} satisfies

the properties (2) and (3) relative to the inverse system {TXα, T (pαβ)}, therefore

{T (λK(Xα)) : T lim K
D→ TXα} = lim←−{TXα, T (pαβ)}

i.e. T is continuous for inverse systems. �

We now propose a modification of Hofmann’s definition in order to relate it to the Bacon-Cordier-

Porter’s definition.

4.9 Res.: Let K : B → C be a functor. The functor T : C → D is K-continuous iff

i. ∃ lim K ⇒ ∃ lim TK

ii. TK : T (lim K)→ lim TK is an isomorphism

iii. ∀α : CB
·→ K, ∀β : DB

·→ TK, ∃!χ : D
D→ TC such that T−1K β = T (α)χ

i.e. the diagram below is commutative

D

χ

��

β // lim TK

T−1
K
��

TC
T (α) // T (lim K)

4.10 Res.: Let K : B → C be a functor such that ∃ lim K. If T : C → D is K−continuous according

to definition 4.9 then T is K−continuous according to the Bacon-Porter-Cordier definition.

Proof: Let C ∈ Obj C, D ∈ Obj D and consider a map

V ∗ : ∪
B∈ObjBMorf C(C,KB)→ ∪

B∈ObjBMorf D(D,TKB)

satisfying (4). In order to show that T is K−continuous we must verify (5). Then let us assume

f : C
C→ KB, f ′ : C

C→ KB′ satisfying f ′ = K(h)f and V ∗(f ′) = TK(h)V ∗(f) for a certain

h : B
B→ B′.

Since ∃ lim K let us consider a natural transformation α : CB
·→ K satisfying α(B) = f , α(B′) = f ′.

Then for the given h : B
B→ B′ we have α(B′) = K(h)α(B). We also have λK(B)α = α(B) for a

unique α : C
C→ lim K.

Since ∃ lim TK let us consider a natural transformation β : DB
·→ TK satisfying β(B) = V ∗(f),

β(B′) = V ∗(f ′). Then, for the same h : B
B→ B′ previously considered we have β(B′) = TK(h)β(B).

In addition we also have the condition λTK(B)β = β(B) for a unique β : D
D→ lim TK.

The K−continuity of T provide us with an isomorphism TK : T (lim K)
D→ lim TK satisfying
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λTK(B) = T (λK(B))T−1K , then λTK(B)β = T (λK(B))T−1K β and from §4.9.iii ∃!χ : D
D→ TC such

that λTK(B)β = T (λK(B))T (α)χ = T (α(B))χ i.e. β(B) = T (α(B))χ, or in a more suitable nota-

tion: V ∗(f) = T (f)χ. Then we have proven (5) and this shows that T is K−continuous according

to the Bacon-Cordier-Porter definition. �

5 Conclusion

The concept of continuity of a functor is not consensually established and in our work we have focused

our attention on three definitions. The first one, due to Holsztynski, deals with inverse systems and

arises in the context of Shape theory. The second one, due to Bacon, Cordier and Porter, was also

developed in the context of Shape theory and employs a framework that depends neither on inverse

systems nor on the limit concept. The third definition, due to Hofmann, defines continuity using

the concept of limit and seeks application in topological algebras. In its original form none of them

includes simultaneously the other two as particular cases.

It is only with the addition of condition §4.9iii to Hofmann’s original definition that this modified

form becomes a general definition including the two previous ones.

It is not clear what elements could be added to or even what modifications could be made on

the Bacon-Cordier-Porter definition in order to make it the most general one. From the analysis

of sections 3 and 4 we observe that for f : C
C→ KXα the key point is to harmonize equations

V ∗(f) = T (f)g (see (5)) with V ∗(f) = T (λK(Xα))T−1K β, which is the farther we can go in §4.10

without imposing condition §4.9iii. Such attempt, if possible, may demand some modifications on

the definitions given in section §3, which consequently would affect the content of the Shape theory

formulated by Bacon-Cordier-Porter leading to a modified form. The analysis of the properties of

this modified Shape theory deserve some investigation.
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