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Abstract

Three problems in learning knowledge for self-driving vehicles are: how
a finite sample of information about driving, N, can yield an ability to deal
with the infinity of possible driving situations; the problem of generalising
from N without over- or under-generalisation; and how to weed out errors in
N. A theory developed with computer models to explain a child’s learning
of his or her first language, now incorporated in the SP System, suggests:
compress N as much as possible by a process that creates a grammar, G, and
an encoding of N in terms of G called E. Then discard E which contains all
or most of the errors in N, and retain G which solves the first two problems.

This paper is about how the knowledge about driving that is needed by self-
driving vehicles (SDVs) may be developed, taking account of the following prob-
lems: the finite body of information, N, which is the basis for learning must
give rise to a capability for dealing with the infinite range of possible situations
that may be encountered in driving; the problem of generalising from N with-
out over-generalisation (aka under-fitting), and without under-generalisation (aka
over-fitting); and the problem of learning knowledge that is largely or completely
free of any errors or ‘dirty data’ that may be in N.

The proposed solution to these three problems originated in research develop-
ing computer models of the learning of a first language or languages by children
[13], and is now a part of the SP System (SPS), meaning the SP Theory of Intelli-
gence and its realisation in the SP Computer Model ([14]—a book, [15]—a paper,
[17, Section 3]—one section of a paper). The proposed solution will be referred
to as the ‘SPS solution’.
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A point to bear in mind is that the SPS is work in progress, with some short-
comings as it stands now. This paper assumes that these weaknesses have been
overcome, as described in “A roadmap for the development of the SP Machine for
artificial intelligence” in [11].

To be clear, this paper is about theory, it is not reporting experiments with sec-
tions like ‘Method’, ‘Results’, and ‘Discussion’. The paper is about the potential
of a theory developed with computer models of the learning of a first language,
and later incorporated in the SP System,, may be applied in the development of
driving-related knowledge for SDVs.

1 Learning a first language
The language learning problem may be conceived in abstract terms as shown by
the Venn diagram in Figure 1.

In the figure, the smallest envelope represents the large but nevertheless finite
set of ‘utterances’ from which a young child learns—let us call her ‘Jane’. Here,
an ‘utterance’ is any spoken sound including gurgles and burps as well as ordinary
words, phrases, and sentences.

The middle-sized envelope represents the infinite set of utterances in a mature
knowledge of L.

We know that a mature knowledge of a language like English encompasses
infinitely many utterances because it provides for recursive structures like “This
is the horse and the hound and the horn, That belonged to the farmer sowing his
corn, ... That killed the rat that ate the malt, That lay in the house that Jack built.”
and that, in principle, there is no limit to the depth of the recursion. In a similar
way, since there is in principle no limit to the lengths of grammatical sentences,
and since there are normally many shorter versions of long sentence, the number
of potential sentences that may be created in any natural language is infinite. We
shall return to this point in connection with learning to drive.

The largest envelope in the figure represents the infinite set of all possible ut-
terances, including all the utterances in L, all utterances in the rest of the world’s
languages, both living and dead, and utterances that may not appear in any lan-
guage.

Notice that the smallest envelope, representing the finite set of utterances from
which Jane learns, overlaps the largest envelope, meaning that part of the infor-
mation from which she learns is not in L. It has been labelled ‘dirty data’ because,
with respect to L, those data may be seen as corrupted information.

A point to emphasise here is that, in learning a first language, dirty data means
haphazard errors like stumbling over the pronunciation of a word, getting one’s
words in the wrong order, stopping in the middle of a phrase, clause, sentence, or
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Figure 1: Categories of utterances involved in the learning of a first language, L.
In ascending order of size, they are: the finite sample of utterances from which
a child learns; the (infinite) set of utterances in a mature knowledge of L; and
the (infinite) set of all possible utterances. Adapted from Figure 7.1 in [13], with
permission.
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other grammatical solecisms. It does not mean hate speech, phishing, trolling, or
the like.

1.1 The unsupervised learning of a first language
There is good evidence that Jane may learn (a mature knowledge of) her first
language, L, in a manner that may be entirely ‘unsupervised’, meaning that there
is no need for ‘teaching’ in a conventional sense, or rewards or punishments, or
the labelling of data, or the correction of errors that Jane may make. While Jane
may benefit from aids like that, the weight of evidence is that, apart from the
opportunity to hear L spoken, she needs no assistance for successful learning of
her first language.

Probably the best evidence for a child’s ability to learn a first language with-
out correction of errors and the like are children like Christy Brown who achieved
a good knowledge of English mainly by listening to people around him, but be-
cause of his cerebral palsy his speech was largely unintelligible so there was little
opportunity to correct his language.

When he gained control over his left foot, his mother taught him to write and
spell, so that eventually he could demonstrate his excellent knowledge of English
by typing his autobiography (My Left Foot [7]), and other books. It is fairly clear
that Brown’s mother concentrated on the writing and spelling of English, and that
learning the language itself was his achievement.

This paper concentrates on unsupervised learning because:

• As just described, there is evidence that learning a first language may be
achieved without any kind of teaching, the correction of errors, or the pro-
vision of labelled examples, and so on.

• There is potential in unsupervised learning for a relatively straightforward
and effective means of building the knowledge needed by SDVs.

2 Three problems in learning a first language
In view of the evidence that the learning of a first language is normally unsuper-
vised and does not depend on the correction of errors or the like, there seem to be
three main things to be explained. They are essentially the same problems as were
mentioned in the introduction in connection with learning how to drive:

1. INF. How can Jane translate N, the large but finite sample of language L
which is the basis for her learning, into a body of knowledge, G, which
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provides the means of interpreting any of the infinite range of sentences in
the language L?

2. GEN. How can Jane generalise from N without over-generalisation or under-
generalisation?

3. DD. In the knowledge that Jane learns, how can she avoid the corrupting
effect of any errors or dirty data that may be in N?

Answers to these questions and the proposed SPS solution for both the learn-
ing of a first language and for learning how to drive is given later.

3 Three problems in learning to drive
At first sight, it may seem that the best way to develop driving skills in an SDV
is to teach them in much the same way that a driving instructor teaches a human
pupil.

This would make sense if the SDV had all the knowledge and intelligence of
a person but this is not yet the case. In particular, without programming, SDVs
(i.e. computers) do not have human abilities to model infinity via finite informa-
tion, to generalise without over- or under-generalisation, and to deal with dirty
data.

As indicated at the beginning, the proposed SPS solution is essentially the
same as is employed by children in the unsupervised learning of a first language
and may yield the same benefits in terms of the three problems mentioned earlier.

An advantage here of using unsupervised learning is that it has potential to cre-
ate detailed driving-related knowledge automatically or nearly so, with potential
to eliminate the many errors that can creep in via ordinary programming.

In summary, this is how things may work in the automation of leaning to drive:

• INF. With the learning of knowledge needed by SDVs, L would be the
entire ‘language’ comprising initiatives by the artificial driver (instructed
by human passengers), incoming information as they drive along in a wide
variety of situations, and responses by the SDV to changes in that incoming
information. N would be a large but finite sample of L.

With the learning of knowledge needed by SDVs, N would be compiled
from long drives with good human drivers in a wide variety of situations.

The INF problem is how, from N, to create an ability to model an infinitely
large L.
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• GEN. As with learning a first language, the GEN problem is how to gener-
alise from N without over- or under-generalisations.

• DD. As with learning a first language, the DD problem is how the learning
process can filter out corrupted or dirty data in N. Here, dirty data will mean
errors of various kinds that may creep into N, including what one hopes will
be rare errors made by any of the human drivers.

Notice that the many examples of bad driving that will be encountered on
the roads will not count as dirty data. They are merely examples of driving
situations that will need appropriate responses.

An important point about the SPS is that, with any given body of stored knowl-
edge, precisely the same software may serve both the analysis of incoming infor-
mation and the production of outgoing information. This is explained and dis-
cussed in [14, Sections 3.5 and 3.8] and [15, Section 4.5].

In an SDV, this feature of the SPS is potentially useful because: any one body
of learned knowledge may serve both the analysis of incoming information and
the creation of responses; in the learning process, there is no need to differentiate
between incoming information and responses by the SDV, so that both of them
may be built into a single body of knowledge.

4 The state of play
In the light of what has been said so far, what is the state of SDV research on INF,
GEN, and DD? A search of recent work in this area shows that, even in papers
where one would expect the INF, GEN, and DD issues to be be discussed (eg in
connection with safety), those concepts are largely invisible. For example, there
is no mention of them in:

• “Self-driving cars: a survey” [3];

• A special issue of IEEE Computer on “Self-driving cars” introduced in [8];

• “An improved safety algorithm for artificial intelligence enabled processors
in self driving cars” [9];

• “The key technology toward the self-driving car” [19].

• “Query-efficient imitation learning for end-to-end autonomous driving” [18].

Some other papers about SDVs do consider generalisation, but the treatment
of the subject is disappointing:
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• “On a formal model of safe and scalable self-driving cars” [12]. Although
this paper focuses on safety, there are only a few brief mentions of general-
isation, beginning with:

“The challenge with scenario-based approaches has to do with
the notion of ‘generalisation’, in the sense of the underlying as-
sumption that if the AV [autonomous vehicle] passes the scenar-
ios successfully then it is likely to pass other similar scenarios as
well. The danger, just as in machine learning, is ‘overfitting’ the
system to pass the test. Even if extra care is taken not to overfit,
the arguments of generalisation are weak at best.”

Collectively, the remarks are a long way from a satisfactory analysis of
generalisation, and there is no mention of INF or DD.

• “Rethinking self-driving: multi-task knowledge for better generalisation
and accident explanation ability” [20]. With regard to generalisation in the
development of SDVs, this paper notes that in studies by other researchers
there has been “Poor generalization ability of unobserved driving environ-
ment given limited diversity of training scenerios.” (p. 1). The proposed
solution is “... a new driving system for better generalization ... by enabling
it to do simpler driving-related perception task before generating commands
for difficult driving task.”

The main problem here seems to be that the proposed solution is entirely ad
hoc with no attempt to relate it to any other conceptual framework or theory.

• “Synthetic examples improve generalization for rare classes” [6]. This rela-
tively general paper about generalization includes discussion of the issue in
relation to SDVs: “The ability to detect and classify rare occurrences in im-
ages has important applications—[in] for example, ... detecting infrequent
traffic scenarios that pose a danger to self-driving cars.” [6, Abstract]. Us-
ing simulated data, the authors conclude, as one might expect, that: “... as
the amount of simulated data is increased, accuracy on the target class im-
proves.” but that, with larger amounts of data, there can be distortions in
the identification of other classes [6, Abstract]. Also “the variation of sim-
ulated data generated is very important, and maximum variation provides
maximum performance gain.” [6, p. 870].

These results with simulated data are much as one might expect but seem
not to provide much help in, for example, dealing with traffic scenarios
that occur only rarely. Nevertheless, the study serves a useful purpose in
drawing attention to the issue of rare scenarios. Of course, this matters
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most if those rare scenarios are dangerous. This issue is discussed briefly in
Section 6.5, below.

• “Deep fully convolutional networks with random data augmentation for en-
hanced generalization in road detection” [10]. In this paper: “It is demon-
strated that significant generalization gains in the learning process are at-
tained by randomly generating augmented training data using several geo-
metric transformations and pixelwise changes, such as affine and perspec-
tive transformations, mirroring, image cropping, distortions, blur, noise, and
color changes.” [10, Abstract]. It appears that the ‘generalization’ that has
been achieved in this research is not generalisation in the sense of going
beyond the information that has been given, but is merely the addition of
some variety to the data from which the model learns.

This sampling of recent studies suggests that the important subjects of INF
and GEN is not well understood, and the DD problem has not been considered at
all.

In none of the papers above is there any mention of the possibility that, in
SDVs, one body of knowledge may serve both the analysis of incoming informa-
tion and the production of responses.

5 Solving the INF-GEN-DD problems via informa-
tion compression

This main section describes how the problems that have been described may be
solved via IC in unsupervised learning in the SPS solution.

In its broad structure, this method is the same for learning driving-related
knowledge as it is for learning a first language, although the details may differ
in the two cases.

Here is the proposed solution:

1. Start with N, a large sample of the language L which includes the kinds of
dirty data that one would normally find in such a sample.

2. Then compress N as far as possible using a relatively mature version of the
SP Computer Model which we may call ‘M-SPCM’.

3. With M-SPCM, the original data, N, would be reduced to a grammar, G,
and an encoding of N in terms of G, where the encoding is called E.

Apart from encodings of N, E is likely also to contain anything else in N
which cannot be encoded at all, including haphazard features of N which
may be seen as dirty data.
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4. The next step is to discard E and retain G. This may solve the INF-GEN-DD
problems as follows:

• INF. G is likely to express, or, in the jargon of theoretical linguistics,
‘generate’ an infinite set of patterns, even though it was derived from
the finite sample, N. This is because G would normally contain re-
cursive structures or simple iterations, either of which would yield an
infinite set of possibilities.
If N is large enough, G would generate the majority of recurrent pat-
terns in L but there may still be unfamiliar patterns that are missing.
However, G would normally include rules for all the individual sym-
bols in the symbol set, eg individual letters, digits, and punctuation
symbols. This would mean that, where necessary, any possible se-
quence of those symbols could be learned.
That last point means that, in effect, the recognition or analysis of
already-known structures would be combined with the learning of new
structures. That combining of recognition/analysis with unsupervised
learning is an important feature of how the SPS works.
In short, the SPS provides for the expansion of G in the light of new
driving experiences, after the initial period of learning. This would
help to make up for any deficiencies in that initial learning.

• GEN. Since G normally contains all the generalisations from N, and
since G is retained, this is likely to solve the GEN problem.

• DD. Since E normally contains all the dirty data in N, and since E is
discarded, this is likely to solve the DD problem.

6 Evidence and arguments in support of the pro-
posed SPS solution

What evidence or arguments are there in support of the ideas described above?
Some possibilities are described here.

6.1 Evidence from computer models of the learning of English-
like artificial languages

With the unsupervised learning of artificial English-like languages [13], there is
informal evidence that the learning process, which is essentially the compression
of N, can yield generalisations which are intuitively correct:
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“An artificial text with no segmentation markers was prepared from a
simple grammar but all instances of two of the (64) sentences gener-
ated by the grammar were excluded from the text. When the [SNPR]
program was run on this text it successfully retrieved the original
grammar despite the fact that the generative range of the grammar
was not fully represented in the sample. In the course of building
up the grammar it produced many wrong generalisations all of which
were corrected. Every one of the correct generalisations, including
those required to predict the missing sentences, were retained as per-
manent fixtures in the grammar.” [13, p. 197]

Here, the discarding of E is not made explicit, but from the focus on G with
no mention of E, it is clear that E has been excluded from consideration.

A word of caution with this kind of evidence is that: “It is a mistake to allow
one’s knowledge of English (say) to dictate what is right and wrong when one
is dealing with a text which may look superficially like a subset of English but
whose true structure may be significantly different from English.” (ibid.).

With regard to ‘dirty data’: “In practice, the programs MK10 and SNPR have
been found to be quite insensitive to errors (of omission, addition, or substitution)
in their data.” [13, p. 209]. Errors of omission and their corrections may be seen
as generalisation, but the correction of errors of addition or substitution are more
clearly the correction of dirty data.

6.2 Reasoning from the SPS solution itself
Another approach to the validation of the SPS solution is to consider the workings
of the process itself:

• In the SPS solution, SP-patterns or parts of SP-patterns which are relatively
frequent are stored in G. The assumption or meta-theory which lies behind
the SPS solution is that anything that occurs relatively frequently is more
likely than not to be part of the relatively stable structures which the learning
process is attempting to reveal.

A point of interest is that, in the SPS solution, repeating patterns can include
patterns that are discontinuous in the sense that they may be interleaved with
other information, and they may be abstractions that contain references to
lower-level patterns.

• By contrast with the grammar G, the file E—which is the encoding of N
in terms of G—is a repository of things that are, individually, relatively
rare. In this case, the assumption or meta-theory behind the SPS solution
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is that features or SP-patterns that occur rarely are more likely than not to
be dirty data or incidental features which are not part of the relatively stable
structures which the learning process is designed to reveal. Thus discarding
E has the desired effect of discarding all or most of the dirty data.

In short, generalisations are likely to be favoured in the creation and retention
of G, while dirty data and other information with no long-term significance are
likely to be eliminated via their assignment to E and its subsequent disposal.

6.3 Reasoning from evidence for the importance of informa-
tion compression in human learning, perception and cog-
nition

Another reason that we may have confidence in the proposed solution is that it
is consistent with much evidence for the importance of IC in human learning,
perception, and cognition. This comes from two main sources:

• Direct empirical evidence. Beginning with pioneering research by Fred At-
tneave [1, 2], Horace Barlow [4, 5], and others, there has been an accumu-
lation of evidence for the importance of IC in the workings of brains and
nervous systems. Much of that evidence is described in [16].

• Indirect evidence. The SP Computer Model works exclusively via IC and in-
corporates the concept of SP-multiple-alignment which is a powerful frame-
work for the compression of information [17, Section 5.7].

The central importance of IC in the SP Computer Model, coupled with the
versatility of the SP Computer Model in modelling several aspects of intel-
ligence ([14, Chapters 5 to 10], [15, Sections 5 to 14]), is itself evidence for
the importance of IC in human intelligence.

6.4 Reasoning from biology and engineering
Yet another reason for having confidence in the SPS solution is that it is consistent
with biological arguments for the importance of IC in the workings of brains and
nervous systems [16, Section 4].

Even if we knew nothing about specific animals, principles of evolution by
natural selection should lead us to expect that IC would be important in every an-
imal’s systems for the storage and transmission of information. This is because
natural selection would probably favour IC: by allowing more information to be
stored in a given storage space, or by requiring a smaller storage space for a given
amount of information; and by speeding up the transmission of a given body of
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information along a given communication channel, or by requiring a smaller band-
width for the transmission of a given body of information at a given speed.

Since IC is likely to be important in the workings of brains and nervous sys-
tems, it would be surprising if IC were not exploited (via the SPS solution) for the
purposes of generalisation and the weeding out of dirty data.

Similar principles apply in engineering. Instead of natural selection we may
invoke the artificial selection that applies in engineering when an inefficient prod-
uct is displace by something that is more efficient. It is true that the QWERTY
phenomenon may sometimes apply—when there are factors that make it difficult
to replace an inefficient system with something more efficient—but there is still a
general tendency to favour more efficient systems and retire less efficient systems.

6.5 What to do about driving scenarios that occur only rarely,
especially if they are dangerous?

As was mentioned earlier, the research by [6] has served a useful purpose in draw-
ing attention to the question of what, if anything, should be done about driving
scenarios that occur only rarely. This is clearly of most interest if the rare scenar-
ios are also dangerous. In the light of the proposed solution, two tentative answers
are offered here:

• Make N as big and varied as possible. A fairly obvious answer to the prob-
lem of rare and dangerous scenarios is to make N as big as possible and
as varied as possible, aiming to take in possible dangers. This may seem
extravagant but the costs associated with a large N will be spread across the
many SDVs that may take advantage of the knowledge gleaned from that
large N.

• Take advantage of generalisations. The whole point of adopting a robust
and well-founded system for generalisation is to increase the range of sce-
narios that one may deal with effectively beyond what we may learn directly
from N. If we know what to do about a tiger that has leapt into the back of
our vehicle, we should know what do about a lion or a leopard etc in the
same kind of situation.

7 Conclusion
The proposal in this paper for the development of driving expertise in SDVs draws
on previous research into the learning of a first language by a child, and also the
SPS solution.
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Key problems are: INF: How, from a finite sample of driving-related data,
N, to create an ability to analyse an infinity of different possible driving situa-
tions; GEN: How to generalise correctly (without over-generalisations or under-
generalisations) from a finite body of driving-related information; DD: How to
learn knowledge which is correct, despite the inevitable ‘dirty data’ in the infor-
mation which is the basis for learning.

In brief, the proposed solution is: Starting with N, compress it as much as
possible by a learning process that creates a grammar, G, and an encoding of N in
terms of G called E. Then: discard E which contains dirty data (DD), and retain
G which provides for INF and GEN. Four justifications for the proposed solution
are described.

In SDVs, a potentially useful feature of the SPS is that exactly the same soft-
ware may serve both the analysis of incoming information and the creation of
responses by the SDV.

In view of the importance of robust solutions for the INF-GEN-DD problems,
and in view of the apparent shortcomings of published research in those area, it
seems that any SDV that has been developed without the SPS solution is unlikely
to provide the levels of safety that will be demanded by politicians and the general
public.
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