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Abstract: There have been published many research results on the Riemann hypothesis.
The Robin inequality is one of the most important propositions equivalent to the Riemann
hypothesis. At present, it is known that the Robin inequality holds for all odd and many even
numbers, but unknown for all numbers yet.
In this paper, we first find a new inequality equivalent to the Riemann hypothesis on the basis
of Robin theorem and Nicolas’ result. Next, we introduce the error terms suitable to Mertens’
formula and Chebyshev’s function, and obtain their estimates. With such estimates and pri-
morial numbers, we finally prove that the new inequality holds unconditionally for all numbers.
The result of this paper shows that the Riemann hypothesis is true.
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I. Introduction
Let N be the set of the natural numbers. The function ϕ(n) = n ·

∏
p|n (1− p−1) is called

Euler’s function of n ∈ N ([1]), where ϕ(1) = 1 and p|n denotes p is the prime divisor of n.
The function σ(n) =

∑
d|n d is called the sum of divisors function of n ∈ N ([1]), where σ(1) = 1

and d|n denotes d is the divisor of n ([1]).
G. Robin showed in his paper [2] (also see [3]).
[Proposition 1] If the Riemann hypothesis (RH [1]) is true, then

σ(n)

n
< eγ · log log n (0.1)

holds for any n ≥ 5041, where γ = 0.577 · · · is Euler’s constant ([1]).
[Proposition 2] If the RH is false, then there exist constants c > 0 and 0 < β < 1/2 such that

σ(n)

n
≥ eγ · log log n+

c · log log n

(log n)β
(0.2)

holds for infinitely many n ∈ N .
From (0.1) and (0.2), one easily see that (0.1) is equivalent to the RH. So (0.1) is called the
Robin criterion or the Robin inequality for the RH ([6-9]). Much papers have been attempted
to the Robin inequality. At present, it is known that the Robin inequality holds for all odd
≥ 17 ([6]) and many even numbers ([7, 8, 9]), but unknown for all numbers yet. Now new idea
is required to prove it in full generality ([7]).
There is another one than the Robin inequality.
Let p1 = 2, p2 = 3, p3 = 5, · · · be the first consecutive primes. The number =m := (p1 ·p2 · · · pm)
is called the primorial number of order m ([7, 10]).

1



J. L. Nicolas showed in his paper [10];
[Proposition 3] If the RH is true, then

c(n) :=

(
n

ϕ(n)
− eγ · log logn

)
·
√

log n ≤ c(=66) (0.3)

holds for any n ≥ 2, where

c(=66) = c(2 · 3 · · · 317) = 4.0628356921 · · · .

Nicolas indicated in [10] that the inequality (0.3) is also sufficient condition for the RH. Thus
(0.3) is one of the inequalities equivalent to the RH.
In this paper, we first find a new inequality equivalent to the Riemann hypothesis on the basis
of the Robin theorem and Nicolas’ result in [10]. Next, we introduce the error terms suitable
to well- known Mertens’ formula and Chebyshev’s function, and obtain their estimates. With
such estimates, we finally prove that the new inequality holds unconditionally for all numbers
by the primorial numbers.
The result of this paper shows that the Riemann hypothesis is true.

II. Main results of paper
The main results of this paper are as follows;
[Theorem 1] The RH is true if and only if there exists a constant c0 ≥ 1 such that

n

ϕ(n)
≤ eγ · log log(n · exp(c0 ·

√
log n)) (0.4)

holds for any number n ≥ 2.
Here (0.4) is a new inequality equivalent to the RH. However, it is of our interest whether (0.4)
holds unconditionally in deed or not. In this connection, we introduce the function;

Φ0(n) :=
exp(e−γ · n/ϕ(n))− log n√

log n
.

Then it is obvious that (0.4) is equivalent to Φ0(n) ≤ c0 (n ≥ 2). Our aim is to determinate
such constant c0 ≥ 1. We give;
[Theorem 2] We have Φ0(n) ≤ 8 for any n ≥ 2.
(Remark) 1) In fact, Φ0(n) ≤ 3 holds for any n ≥ 2. But it is difficult to guarantee it in the
theoretical description. The number 8 is the most pertinent one to the question.
2) If the theorems 1, 2 hold, then it is not difficult to see that the Robin inequality holds for
all numbers≥ 5041. (See the proof of the theorem 1 below)

III. Proof of the Theorem 1
If the RH is true, then by the proposition 3 (theorem 1.1 of [10]), there exists a constant
c1 = 4.07 ≥ 1 such that

n

ϕ(n)
≤ eγ · log log n+

c1√
log n

holds for any n ≥ 2. Thus there exists a constant c0 ≥ 13 ≥ 1 such that

eγ · log log n+
c1√
log n

≤

≤ eγ · log log n+ eγ · log

(
1 +

c0√
log n

)
=
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= eγ · log log(n · exp(c0 ·
√

log n)).

holds for any n ≥ 2.
On the other hand, it is clear that σ(n) · ϕ(n) ≤ n2 for any n ≥ 2. If (0.4) holds for any n ≥ 2,
but the RH is false, then by the proposition 2 (Robin theorem 2), there exist constants c > 0
and 0 < β < 1/2 such that

eγ · log log n+
c · log log n

(log n)β
≤ σ(n)

n
≤

≤ n

ϕ(n)
≤ eγ · log log(n · exp(c0 ·

√
log n))

holds for infinitely many n ∈ N . Here, since log(1 + t) ≤ t (t > 0), we have

log log(n · exp(c0 ·
√

log n)) ≤

≤ log log n+
c0√
log n

and

1 ≤ eγ · c0 · c−1

(log n)1/2−β · (log log n)
→ 0 (n→∞),

but it is a contradiction.

IV. Reduction to the primorial numbers
We will make ready to prove the Theorem 2 from the section IV to the section VII.
Assume that n = qλ1

1 · · · qλm
m is the prime factorization of n ∈ N . Here q1, · · · , qm are distinct

primes, λ1, · · · , λm are nonnegative integers ≥ 1 and ω(n) = m ([6]).
Then it is easy to see that n ≥ =m and

n

ϕ(n)
=

m∏
i=1

(1− q−1i )−1 ≤
m∏
i=1

(1− p−1i )−1 =
=m

ϕ(=m)

and so Φ0(n) ≤ Φ0(=m). This shows that the boundedness of the function Φ0(n) for n ∈ N (n 6=
1) is reduced to one for the primorial numbers.

V. Some symbols
Recall some concepts and introduce some notes. The formula∑

p≤t

p−1 = log log t+ b+ E(t)

is called Mertens’ formula [6], where t > 1 is a real number, p is the prime number,

b = γ +
∑
p

(log(1− 1/p) + 1/p) =

= 0.261497212847643 · · ·

is Mertens’ constant ([6]). We will call E(t) the error term of Mertens’ formula.
By (3.18), (3.20) of [5], we could know

−1

log2 t
< E(t) <

1

log2 t
(t > 1). (0.5)
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And ϑ(t) =
∑
p≤t log p is called the Chebyshev’s function ([1]). By the prime number theorem

([1]), we could write as
ϑ(t) = t · (1 + θ(t))

for any real t > 1. We will call θ(t) the error term of ϑ(t). By (3.15) and (3.16) of [5], we see

−1

log t
< θ(t) <

1

log t
(t ≥ 41). (0.6)

Put Fm := =m/ϕ(=m), then

log(Fm) = −
m∑
i=1

(log(1− 1/pi) + 1/pi) +

m∑
i=1

1/pi =

= log log pm + γ + E(pm) + ε(pm),

where
ε(pm) :=

∑
p>pm

(log(1− 1/p) + 1/p) = O(1/pm).

From this
• (e−γ · Fm) = log pm · em,

em := exp(E(pm) + ε(pm)),

• exp(e−γ · Fm) = pm · e′m,

e′m := exp(log pm · (em − 1)).

Furthermore, put
• log=m = pm · αm, αm := 1 + θ(pm),

• Km :=
√

log=m.

VI. Some estimates
6.1. An estimate of em and e′m
Assume that pm ≥ e14 below. The discussions for pm ≤ e14 are supported by MATLAB.
By (3.30) of [5],

(e−γ · Fm) = log pm · em = e−γ ·
m∏
i=1

(1− p−1i )−1 <

< log pm +
1

log pm
(pm ≥ 2)

and for pm ≥ e14 we have respectively

em < 1.01, e′m < 1.08, (em · e′m) < 1.1. (0.7)

6.2. An estimate of (em · e′m)
If em ≤ 1 then e′m ≤ 1 and (em · e′m) ≤ 1. And if em > 1 then, since ε(pm) < 0,

0 < r := E(pm) + ε(pm) <
1

log2 pm
≤ 0.01

and

em = 1 + r +

∞∑
n=2

rn

n!
≤ 1 + r +

r2

2 · (1− r)
≤
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≤ 1 + r + 0.51 · r2,

em · e′m = exp(r + (log pm) · (em − 1)) ≤

≤ 1 + h+
h2

2 · (1− h)
,

where
h := (1 + log pm) · r + 0.51 · log pm · r2 ≤ 0.08.

Therefore we have
(em · e′m − 1) ≤ (1 + log pm) · (E(pm) + ε(pm))+

+0.6 · (1 + log pm)2 · (E(pm) + ε(pm))2 (em > 1). (0.8)

6.3. An estimate of Vm
Here

Vm := pm+1 · (e′m+1 − αm+1)− pm · (e′m − αm).

It is clear that
pm+1 · αm+1 − pm · αm = log pm+1.

Since

E(pm+1)− E(pm) =
1

pm+1
− log

(
log pm+1

log pm

)
,

ε(pm+1)− ε(pm) = − log

(
1− 1

pm+1

)
− 1

pm+1
,

we have
em+1

em
=

(
log pm

log pm+1

)
·
(

1 +
1

pm+1 − 1

)
,

e′m+1

e′m
=

pm
pm+1

· exp

(
log pm · em
pm+1 − 1

)
and

Vm = pm · e′m·
(
pm+1 · e′m+1

pm · e′m
− 1

)
− log pm+1 =

= log pm+1 · (µ · e′m − 1),

where

µ :=
pm

log pm+1
·
(

exp

(
log pm · em
pm+1 − 1

)
−1

)
.

Moreover

µ ≤ em +
1

2
· log pm · e2m

pm
·
(

1− log pm · em
pm

)−1
≤

≤ em + 0.52 · log pm
pm

and

µ · e′m − 1 ≤ (em · e′m − 1) + 0.6 · log pm
pm

. (0.9)

6.4. An estimate of Wm

Here

Wm :=

(
Um − (Km+1 −Km)

)
· 1

Km+1
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and

Um :=
log pm+1

2 ·
√

log=m
.

Then
Km+1 −Km =

√
log=m+1 −

√
log=m ≥

≥ log pm+1

2 ·
√

log=m+1

.

From this
Um − (Km+1 −Km) ≤

≤ log pm+1

2
·
(

1√
log=m

− 1√
log=m+1

)
≤

≤ log2 pm+1

4 · (log=m)3/2
.

And it is known that p2k+1 ≤ 2 · p2k for pk > 7 by 247p of [4] and so

log pm+1 ≤ Ω0 · log pm,

Ω0 :=

(
1 +

log
√

2

log pm

)
≤ 1.025. (0.10)

Since αm ≥ (1 − 1/14), Km+1 ≥ Km and the function (log3 t)/t is decreasing on the interval
(e3, +∞), we have

Wm ≤
log3 pm

4 · pm · α2
m

· Ω2
0

pm · log pm
≤

≤ 1.9 · 10−4

pm · (log pm)1/2
(pm ≥ e14). (0.11)

6.5. An estimate of S(p′, σ)
Here

S(p′, σ) :=
∑
p≥p′

1

p · (log p)σ
(σ > 0).

Put
s(t) :=

∑
p≤t

p−1 = log log t+ b+ E(t).

Then by Abel’s identity ([1]), we have

S(p′, σ) =
∑

p>p′−0

1

p · (log p)σ
=

∫ +∞

p′

1

(log t)σ
· ds(t) =

=

∫ +∞

p′

1

(log t)σ
·
(

dt

t · log t
+ dE(t)

)
=

=

∫ +∞

p′

dt

t · (log t)σ+1
+

∫ +∞

p′

dE(t)

(log t)σ
=

≤ −1

σ · (log t)σ
|+∞p′ +

E(t)

(log t)σ
|+∞p′ +

∫ +∞

p′

σ · E(t)

t · (log t)σ+1
· dt ≤
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≤ 1

σ · (log p′)σ
+

1

(log p′)σ+2
+

∫ +∞

p′

σ

t · (log t)σ+3
· dt =

=
1

σ · (log p′)σ
+

1

(log p′)σ+2
+

σ

(σ + 2) · (log p′)σ+2
=

=
1

σ · (log p′)σ
+

2 · σ + 2

(σ + 2) · (log p′)σ+2

So

S(p′, σ) ≤ 1

σ · (log p′)σ
+

2 · σ + 2

(σ + 2) · (log p′)σ+2

and by the same method,

1

σ · (log p′)σ
− 2 · σ + 2

(σ + 2) · (log p′)σ+2
≤ S(p′, σ).

If p′ is the first prime ≥ e14, then p′ = 1202609 and it is 93118-th prime.
And if σ = 1/2 and p′ = 1202609, then

0.5328 ≤ S(p′, 1/2) ≤ 0.5362. (0.12)

VII. A Lemma for (1 + log p) · E(p)
Now for any t > 1 we introduce the following functions;

f(t) := t · log t · E(t)− t · θ(t),

g(t) :=
√
t, d(t) :=

f(t)

g(t)
. (0.13)

Then the functions f(t), g(t) and d(t) are continuous and piece differentiable functions on the
interval (1, +∞).
[Lemma] We have

(1 + log p) · E(p) ≤ d(p) · g′(p) +
8

√
p · (log p)3/2

for any prime p ≥ e14, where the functions d(p) is given in (0.13).
For the proof of the Lemma, we make some ready from the section 7.1 to the section 7.3.
7.1. A condition (d̄)
If the Lemma does not hold, then there exists a prime number p ≥ e14 such that

(1 + log p) · E(p) > d(p) · g′(p) +
8

√
p · (log p)3/2

. (0.14)

We fix one of such primes p ≥ e14 and take the functions f(t), g(t) and d(t) as in (0.13) on
the interval [p, p + 1]. Then the functions f(t), g(t) and d(t) are continuous on the interval
[p, p+1]. And f(t), g(t) and d(t) are n-th continuously differentiable on the interval (p, p+1).
Moreover, f ′(t) is the right continuous at t = p. Put

f ′(p) := f ′(p+ 0), f ′(p+ 1) := f ′(p+ 1− 0).

Then f ′(p) = (1 + log p) · E(p) and (0.14) is equivalent to

d′(p) · g(p) >
8

√
p · (log p)3/2

.
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Here put H(t) := d′(t) · g(t) (t ∈ (p, p+ 1)), then H ′(t) < 0 (t ∈ (p, p+ 1)). In fact,

H ′(t) = d′′(t) · g(t) + d′(t) · g′(t) =

=
1

t
·
(
∂0(t)− 1− 1

log t

)
,

where
∂0(t) := E(t)− t · d(t) · g′′(t)− t · d′(t) · g′(t).

By (0.5), (0.6) for any t ∈ (p, p+ 1) it is easy to see that

|E(t)| ≤ 1

log2 t
≤ 0.01,

|t · d(t) · g′′(t)| = |t · d(t) · g(t)|·
∣∣∣∣g′′(t)g(t)

∣∣∣∣=
= |t · f(t)|·

∣∣∣∣g′′(t)g(t)

∣∣∣∣≤ 1

4
· (| log t · E(t)|+ |θ(t)|) ≤

≤ 1

2 · log t
≤ 0.04,

|t · d′(t) · g′(t)| = |t · d′(t) · g(t)|·
∣∣∣∣g′(t)g(t)

∣∣∣∣=
=

1

2
· |f ′(t)− d(t) · g′(t)| ≤

≤ 1

2
·
(
|(1 + log t) · E(t)|+ |f(t)|

2 · t

)
≤

≤ 1

2
·
(

2

log t
+

1

log2 t

)
≤ 0.08.

Thus we have
|∂0(t)| ≤ 0.01 + 0.04 + 0.08 = 0.13.

Therefore H ′(t) < 0 (t ∈ (p, p+ 1)). So there exists a point t0 such that p < t0 < p+ 1 and

H(p+ 1) = H(p) +H(p+ 1)−H(p) = H(p) +H ′(t0) >

>
8

h(p)
+

1

t0
·
(
∂0(t0)− 1− 1

log t0

)
≥

≥ 8

h(p)
+

1

t0
·
(
− 0.13− 1− 1

log t0

)
≥

≥ 8

h(p)
− 1.21

p
≥

≥ 1

h(p)
·
(

8− 1.21 · h(p)

p

)
≥ 7.9422
√
p · (log p)3/2

,

where h(t) :=
√
t · (log t)3/2. Hence for any t ∈ (p, p+ 1), we have

H(t) ≥ H(p+ 1) >
7.9422

√
p · (log p)3/2

≥ 7.9422√
t · (log t)3/2

. (0.15)
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We will call (0.15) the condition (d̄). To prove the Lemma, it is sufficient to obtain a certain
contradiction from (0.15).
7.2. Estimates of the different derivatives
For any t ∈ (p, p+ 1),

f ′(t) = (1 + log t) · E(t),

f ′′(t) =
1

t
·
(
E(t)− 1− 1

log t

)
< 0,

f ′′′(t) =
1

t2
·
(

1 +
1

log2 t
− E(t)

)
> 0,

and

g′(t) =
1

2 ·
√
t
> 0,

g′′(t) =
−1

4 · t ·
√
t
< 0,

g′′′(t) =
3

8 · t2 ·
√
t
> 0,

and by the condition (d̄)
d′(t) · g(t) = f ′(t)− d(t) · g′(t) > 0,

d′′(t) · g(t) = f ′′(t)− d(t) · g′′(t)− 2 · d′(t) · g′(t) < 0,

d′′′(t) · g(t) = f ′′′(t)− d(t) · g′′′(t)−

−3·
(
d′′(t) · g′(t) + d′(t) · g′′(t)

)
> 0.

On the other hand, we have

|E(t)| ≤ 1

log2 t
, |θ(t)| ≤ 1

log t
,

P0(t) := |f(t)| ≤ 2 · t
log t

≤ 0.15 · t,

P1(t) := |f ′(t)| ≤ 1

log t
+

1

log2 t
≤ 0.08,

P2(t) := |f ′′(t)| ≤ 1

t
·
(

1 +
1

log t
+

1

log2 t

)
≤ 1.08

t
,

P3(t) := |f ′′′(t)| ≤ 1

t2
·
(

1 +
2

log2 t

)
≤ 1.02

t2
,

Q1(t) :=

∣∣∣∣g′(t)g(t)

∣∣∣∣= 1

2 · t
=

0.5

t
,

Q2(t) :=

∣∣∣∣g′′(t)g(t)

∣∣∣∣≤ 1

4 · t2
=

0.25

t2
,

Q3(t) :=

∣∣∣∣g′′′(t)g(t)

∣∣∣∣≤ 3

8 · t3
≤ 0.38

t3
,
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From this for any t ∈ (p, p+ 1) we have respectively

D01 := |d(t) · g′(t)| = P0(t) ·Q1(t) ≤ 0.08,

D02 := |d(t) · g′′(t)| = P0(t) ·Q2(t) ≤ 0.04

t
,

D03 := |d(t) · g′′′(t)| = P0(t) ·Q3(t) ≤ 0.06

t2
,

D10 := |d′(t) · g(t)| ≤ P1(t) +D01 ≤ 0.16,

D11 := |d′(t) · g′(t)| = D10 ·Q1(t) ≤ 0.08

t
,

D12 := |d′(t) · g′′(t)| = D10 ·Q2(t) ≤ 0.04

t2
,

D20 := |d′′(t) · g(t)| ≤ P2(t) +D02 + 2 ·D11 ≤
1.3

t
,

D21 := |d′′(t) · g′(t)| = D20 ·Q1(t) ≤ 0.7

t2
,

D30 := |d′′′(t) · g(t)| ≤ P3(t) +D03+

+3 · (D12 +D21) ≤ 3.4

t2
.

Here i, j in Dij (i, j = 0, 1, 2, 3) denote the orders of the derivatives of the functions d(t), g(t)
respectively. While, for any t1, t2 ∈ (p, p+ 1)

ρ0 :=

∣∣∣∣g(t2)

g(t1)

∣∣∣∣≤ 1+

∣∣∣∣g′(t0)

g(t1)

∣∣∣∣≤ 1 + 0.5 · 10−8,

where t1 < t0 < t2 or t1 > t0 > t2.
Thus by the condition (d̄) for any t1, t2 ∈ (p, p+ 1) we have

Λ1 :=

∣∣∣∣d′′(t1)

d′(t2)

∣∣∣∣≤∣∣∣∣ D20

H(t2)

∣∣∣∣·ρ0 ≤ 1.31

7.9422
·
√
t2 · (log t2)3/2

t1
≤ 0.0079. (0.16)

Λ2 :=

∣∣∣∣d′′′(t1)

d′(t2)

∣∣∣∣≤∣∣∣∣ D30

H(t2)

∣∣∣∣·ρ0 ≤ 3.41

7.9422
·
√
t2 · (log t2)3/2

t21
≤ 1.8 · 10−8. (0.17)

7.3. Functions λ1(x) and λ2(x)
For any t ∈ [p, p+ 1], let

x := t− p.

Then 0 ≤ x ≤ 1, when p ≤ t ≤ p+ 1. Put

λ1(x) :=
log(1 + x)

log 2
− x,

λ2(x) :=
log(1 + 2 · x)

log 3
− x,

β1 :=
1

4
, β2 :=

3

4
.
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Then the functions λ1(x) and λ2(x) are continuous on the interval [0, 1] and differentiable on
the interval (0, 1). And

λ1(0) = 0, λ1(1) = 0,

λ2(0) = 0, λ2(1) = 0,

a1 := λ1(β1) =
log(5/4)

log 2
− 1

4
=

= 0.07192809488736 · · · 6= 0,

a2 := λ2(β1) =
log(3/2)

log 3
− 1

4
=

= 0.11907024642854 · · · 6= 0,

Also

λ′1(x) :=
1

log 2
· 1

(1 + t)
− 1,

λ′′1(x) :=
1

log 2
· (−1)

(1 + t)2

and

λ′2(x) :=
1

log 3
· 2

(1 + 2 · t)
− 1,

λ′′2(x) =
1

log 3
· (−4)

(1 + 2 · t)2
.

Put

G1(x) :=
λ1(x)

a1
− λ2(x)

a2

then
G1(0) = 0, G1(1) = 0, G1(β1) = 0,

|G1(x)| ≤ 0.1, ∀x ∈ (0, 1)

G′1(x) :=
λ′1(x)

a1
− λ′2(x)

a2
,

|G′1(x)| ≤ 0.8, ∀x ∈ (0, 1)

G′′1(x) :=
λ′′1(x)

a1
− λ′′2(x)

a2
,

|G′′1(x)| ≤ 10.6, ∀x ∈ (0, 1)

On the one hand,

b1 := λ1(β2) =
log(7/4)

log 2
− 3

4
=

= 0.05735492205760 · · · 6= 0,

b2 := λ2(β2) =
log(5/2)

log 3
− 3

4
=

= 0.08404376714647 · · · 6= 0,

Also put

G2(x) :=
λ1(x)

b1
− λ2(x)

b2
,

11



then
G2(0) = 0, G2(1) = 0, G2(β2) = 0,

|G2(x)| ≤ 0.18,

−0.18 < G2(x)−G1(x) < 0, ∀t ∈ (0, 1)

G′2(x) :=
λ′1(x)

b1
− λ′2(x)

b2
,

|G′2(x)| ≤ 2.2, ∀x ∈ (0, 1)

−1.4 < G′2(x)−G′1(x) < 0.4,

G′′2(x) :=
λ′′1(x)

b1
− λ′′2(x)

b2
,

|G′′2(x)| ≤ 18.2, ∀x ∈ (0, 1).

And for any x ∈ (0, 1) we have
G′′′2 (x)−G′′′1 (x) < 0.

This shows that the function G′′2(x)−G′′1(x) is monotonic decreasing on the interval (0, 1). So

G′′2(x)−G′′1(x) ≥ lim
x→1−0

(G′′2(x)−G′′1(x)) =

= 0.14190388505204 · · · , ∀x ∈ (0, 1)

Thus for any x ∈ (0, 1) we have

δ0 := min
0≤x≤1

(G′′2(x)−G′′1(x)) ≥ 0.1419. (0.18)

This value is really important for us below.
7.4. Proof of the Lemma
Let

F1(x) := G1(x) · d′(x),

F2(x) := G2(x) · d′(x)

then
F1(0) = F1(1) = F1(β1) = 0.

Hence there exists a point η1 such that 0 < η1 < 1 and F ′′1 (η1) = 0, that is,

F ′′1 (η1) = G′′1(η1) · d′(η1) + 2 ·G′1(η1) · d′′(η1) +G(η1) · d′′′(η1) = 0.

Similarly, since
F2(0) = F2(1) = F2(β2) = 0,

there exists a point η2 such that 0 < η2 < 1 and F ′′1 (η2) = 0, that is,

F ′′2 (η2) = G′′2(η2) · d′(η2) + 2 ·G′2(η2) · d′′(η2) +G(η2) · d′′′(η2) = 0.

From this F ′′2 (η2)− F ′′1 (η1) = 0, that is,

G′′2(η2) · d′(η2)−G′′1(η1) · d′(η1) =

= (2 ·G′1(η1) · d′′(η1)− 2 ·G′2(η2) · d′′(η2))+
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+(G1(η1) · d′′′(η1)−G2(η2) · d′′′(η2)).

Here
G′′2(η2) · d′(η2)−G′′1(η1) · d′(η1) =

= (G′′2(η2)−G′′1(η1)) · d′(η2)) +G′′1(η1) · (d′(η2)− d′(η1))

and, since d′(t) > 0 for any t ∈ (x1, x2) by the condition (d̄), we have

(G′′2(η2)−G′′2(η2)) · d′(η2) ≥ δ0 · d′(η2),

G′′1(η1)) · (d′(η2)− d′(η1)) =

= G′′1(η1)) · d′′(η0) · (η2 − η1),

where η1 < η0 < η2 or η2 < η0 < η1.
Finally, by (0.16), (0.17) and (0.18), we have

1 ≤
∣∣∣∣G′′1(η1)

δ0

∣∣∣∣·∣∣∣∣d′′(η0)

d′(η2)

∣∣∣∣+2·
∣∣∣∣G′1(η1)

δ0

∣∣∣∣·∣∣∣∣d′′(η1)

d′(η2)

∣∣∣∣+
+2·
∣∣∣∣G′2(η2)

δ0

∣∣∣∣·∣∣∣∣d′′(η2)

d′(η2)

∣∣∣∣+∣∣∣∣G1(η1)

δ0

∣∣∣∣·∣∣∣∣d′′′(η1)

d′(η2)

∣∣∣∣+∣∣∣∣G2(η2)

δ0

∣∣∣∣·∣∣∣∣d′′′(η2)

d′(η2)

∣∣∣∣≤
≤ 10.6

0.1419
· Λ1 +

2× 0.8

0.1419
· Λ1+

+
2× 2.2

0.1419
· Λ1 +

0.1

0.1419
· Λ2 +

0.18

0.1419
· Λ2 ≤

≤ 0.6 + 0.09 + 0.25 + 1.3 · 10−8 + 1.5 · 10−8 ≤ 0.95,

but it is a contradiction. This shows that the condition (d̄) is not valid.
So the proof of the Lemma is completed.

VIII. Proof of the Theorem 2
Put Cm := Φ0(=m). Then first, if 2 ≤ pm ≤ e14, then we could verify Cm ≤ 3 by MATLAB
(see the table 1 and the table 2). Next, if pm ≥ e14, then put Am := 8 − 9.3 · S(pm, 1/2) and
we will prove Cm ≤ Am by the mathematical induction with respect to m.
If m = 93118 then we have

C93118 = 2.035 · · · ≤ 8− 9.3 · S(pm, 1/2).

Now assume that pm ≥ e14 and Cm ≤ Am. Then by the section 6.3, we have

Cm+1 =
1

Km+1
· (pm · (e′m − αm) + Vm) =

= Cm ·
Km

Km+1
+

Vm
Km+1

≤

≤ Am ·
Km

Km+1
+

1

Km+1
· log pm+1 · (µ · e′m − 1) ≤ Am +Bm,

where

Bm :=
1

Km+1
· (log pm+1 · (µ · e′m − 1)−

−Am · (Km+1 −Km)).
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By the assumption Cm ≤ Am, we get

e′m ≤ αm +Am ·
Km

pm
= αm ·

(
1 +

Am√
pm · αm

)
and by taking logarithm of both sides

log e′m = (log pm) · (em − 1) ≤ θ(pm) +
Am√
pm · αm

.

From this

em ≤ 1 +
1

log pm
·
(
θ(pm) +

Am√
pm · αm

)
,

E(pm) + ε(pm) ≤ 1

log pm
·
(
θ(pm) +

Am√
pm · αm

)
and the both sides multiply by

pm · log pm√
pm

then

d(pm) :=
1
√
pm
· (pm · log pm · E(pm)− pm · θ(pm)) ≤

≤ Am√
αm
−√pm · log pm · ε(pm).

Thus by the Lemma,
(1 + log pm) · (E(pm) + ε(pm)) ≤

≤ Am
2 · √pm · αm

+
8

√
pm · (log pm)3/2

,

because ε(pm) < 0 and
log pm

2
≤ (1 + log pm).

Since
0 < Am = 8− 9.3 · S(pm, 1/2) ≤ 3.1

and (1− 1/14) ≤ αm ≤ (1 + 1/14), if e1 > 1, then

(1 + log p)2 · (E(pm) + ε(pm))2 ≤ 3.2

pm
.

By the Lemma, the sections 6.3 and 6.4, we put

Bm ·Km+1 ≤ T1 + T2 + T3,

where
T1 := log pm+1 · (1 + log pm) · (E(pm) + ε(pm))−

−Am · (Km+1 −Km),

T2 := 0.6 · log pm+1 ·
log pm
pm

,

T3 := 0.6 · log pm+1 · (1 + log pm)2 · (E(pm) + ε(pm))2.
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By Km+1 ≥ Km, the section 6.4 and (0.10) we have

T1
Km+1

≤ Am
Km+1

· (Um − (Km+1 −Km))+

+
1

Km+1
· 8 · log pm+1√

pm · (log pm)3/2
≤

≤ Am ·Wm +
1
√
αm
· 8 · Ω0

pm · (log pm)1/2
≤

≤ 0.0007

pm · (log pm)1/2
+

8.51

pm · (log pm)1/2
≤ 8.6

pm · (log pm)1/2

and
T2

Km+1
≤ 0.6 · log3 pm√

pm · αm
· Ω0

pm · log pm
≤

≤ 0.5

pm · (log pm)1/2
,

T3
Km+1

≤ 0.6 · 3.2 · log2 pm√
pm · αm

· Ω0

pm · log pm
≤

≤ 0.1

pm · (log pm)1/2
,

Thus if em > 1 then

Bm <
9.3

pm · (log pm)1/2
.

Next, if em ≤ 1 then by the section 6.3 we obtain

Bm ≤ 0.6 · log2 pm+1

pm ·Km
≤ 0.5

pm · (log pm)1/2
.

Finally, we have Cm+1 ≤ Am+1 and so the proof of the Theorem 2 is finished.

IX. Algorithm and Tables for Sequence {Cm}
The table 1 shows the values of Cm to ω(n) = m for n ∈ N. There are only values for 1 ≤ m ≤ 10
here. But it is not difficult to verify Cm ≤ 3 for 31 ≤ pm ≤ e14. The table 2 shows the values
of Cm for 93109 ≤ m ≤ 93118. Of course, all the values in the table 1 and the table 2 are
approximate with order 10−3.

The algorithm for Cm to ω(n) = m by MATLAB is as follows:
Function RH-PN-Index, clc, gamma=0.57721566490153286060; format long,
P = [2, 3, 5, 7, · · · , 1202609]; M=length(P);
for m = 1 : M ; p = P (1 : m); q = 1−1./p; F = prod(1./q); V = sum(log(p)); V 1 = (V )1/2;
m, p(m), Cm = (exp(exp(−gamma) ∗ F )− V )/V 1, end.
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Table 1 Table 2

m pm Cm
1 2 2.85947164195016
2 3 2.68745829155593
3 5 2.60801514536984
4 7 2.73115431266735
5 11 2.57452833561573
6 13 2.60523306367574
7 17 2.56004537210806
8 19 2.63431939241882
9 23 2.67311558160837

10 29 2.60637352799328

m pm Cm
93109 1202477 2.03539811396126
93110 1202483 2.03540315703560
93111 1202497 2.03540820013863
93112 1202501 2.03541335720468
93113 1202507 2.03541860543873
93114 1202549 2.03542353469470
93115 1202561 2.03542848676219
93116 1202569 2.03543350721711
93117 1202603 2.03543829985003
93118 1202609 2.03544318364830
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