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Abstract: There have been published many research results on the Riemann hypothesis.
The Robin inequality is one of the most important propositions equivalent to the Riemann
hypothesis. At present, it is known that the Robin inequality holds for all odd and many even
numbers, but unknown for all numbers yet.

In this paper, we first find a new inequality equivalent to the Riemann hypothesis on the basis
of Robin theorem and Nicolas’ result. Next, we introduce the error terms suitable to Mertens’
formula and Chebyshev’s function, and obtain their estimates. With such estimates and pri-
morial numbers, we finally prove that the new inequality holds unconditionally for all numbers.
The result of this paper shows that the Riemann hypothesis is true.

Keywords: Riemann hypothesis; Robin inequality; Fuler’s function; Primorial number; .
2010 MSC; 11M26, 11N05.

I. Introduction
Let N be the set of the natural numbers. The function ¢(n) = n-][,, (1 —p~1) is called
Euler’s function of n € N ([1]), where ¢(1) = 1 and p|n denotes p is the prime divisor of n.
The function o(n) = >, d is called the sum of divisors function of n € N ([1]), where (1) = 1
and d|n denotes d is the divisor of n ([1]).
G. Robin showed in his paper [2] (also see [3]).
[Proposition 1] If the Riemann hypothesis (RH [1]) is true, then

@ < e’ -loglogn (0.1)

holds for any n > 5041, where v = 0.577--- is Euler’s constant ([1]).
[Proposition 2] If the RH is false, then there exist constants ¢ > 0 and 0 < 8 < 1/2 such that

c-loglogn

Togn)? (0.2)

U—n) > €7 -loglogn +
n

holds for infinitely many n € N.
From (0.1) and (0.2), one easily see that (0.1) is equivalent to the RH. So (0.1) is called the
Robin criterion or the Robin inequality for the RH ([6-9]). Much papers have been attempted
to the Robin inequality. At present, it is known that the Robin inequality holds for all odd
> 17 ([6]) and many even numbers ([7, 8, 9]), but unknown for all numbers yet. Now new idea
is required to prove it in full generality ([7]).
There is another one than the Robin inequality.
Let p1 = 2, ps = 3, p3 =5, -+ be the first consecutive primes. The number S, := (p1-p2 - Pm)
is called the primorial number of order m ([7, 10]).



J. L. Nicolas showed in his paper [10];
[Proposition 3] If the RH is true, then

c(n) ::(@Zz) —¢e7-log logn> V/1ogn < ¢(Ses) (0.3)

holds for any n > 2, where
c(Ses) =c(2-3---317) = 4.0628356921 - - - .

Nicolas indicated in [10] that the inequality (0.3) is also sufficient condition for the RH. Thus
(0.3) is one of the inequalities equivalent to the RH.

In this paper, we first find a new inequality equivalent to the Riemann hypothesis on the basis
of the Robin theorem and Nicolas’ result in [10]. Next, we introduce the error terms suitable
to well- known Mertens’ formula and Chebyshev’s function, and obtain their estimates. With
such estimates, we finally prove that the new inequality holds unconditionally for all numbers
by the primorial numbers.

The result of this paper shows that the Riemann hypothesis is true.

II. Main results of paper
The main results of this paper are as follows;
[Theorem 1] The RH is true if and only if there exists a constant ¢ > 1 such that

% < e -loglog(n - exp(co - v/logn)) (0.4)
w(n
holds for any number n > 2.

Here (0.4) is a new inequality equivalent to the RH. However, it is of our interest whether (0.4)
holds unconditionally in deed or not. In this connection, we introduce the function;

Then it is obvious that (0.4) is equivalent to ®g(n) < ¢p (n > 2). Our aim is to determinate
such constant ¢y > 1. We give;

[Theorem 2] We have ®y(n) < 8 for any n > 2.

(Remark) 1) In fact, ®g(n) < 3 holds for any n > 2. But it is difficult to guarantee it in the
theoretical description. The number 8 is the most pertinent one to the question.

2) If the theorems 1, 2 hold, then it is not difficult to see that the Robin inequality holds for
all numbers> 5041. (See the proof of the theorem 1 below)

II1. Proof of the Theorem 1
If the RH is true, then by the proposition 3 (theorem 1.1 of [10]), there exists a constant

c1 = 4.07 > 1 such that
n C1
—— <7 loglogn + ——

¢(n) Viogn
holds for any n > 2. Thus there exists a constant c¢g > 13 > 1 such that

C1

Vlogn

e’ -loglogn + <

€o
<e7-loglogn+e” -log| 1+ =
- Viogn



= ¢ -loglog(n - exp(cp - v/logn)).
holds for any n > 2.
On the other hand, it is clear that o(n) - p(n) < n? for any n > 2. If (0.4) holds for any n > 2,
but the RH is false, then by the proposition 2 (Robin theorem 2), there exist constants ¢ > 0
and 0 < < 1/2 such that

c-loglogn _ o(n)
<
(logn)? — n

ﬁ < €7 -loglog(n - exp(co - /logn))

holds for infinitely many n € N. Here, since log(1 +¢) <t (¢t > 0), we have

loglog(n - exp(co - v/logn)

<loglogn + ——

e -loglogn + <

\/logn

and L
e"f - Co - c

~ (logn)t/2-6 . (loglogn)

-0 (n— 0),
but it is a contradiction.

IV. Reduction to the primorial numbers
We will make ready to prove the Theorem 2 from the section IV to the section VII.

Assume that n = qf‘l ---q)m is the prime factorization of n € N. Here q1,--- , g are distinct
primes, A1, -+, A, are nonnegative integers > 1 and w(n) = m ([6]).

Then it is easy to see that n > S, and

L:m _ 1 < M - 1y-1 Sm
) g(l g <J[a-p" G

b ¢

—

and so ®p(n) < (S, ). This shows that the boundedness of the function ®g(n) forn € N (n #
1) is reduced to one for the primorial numbers.

V. Some symbols
Recall some concepts and introduce some notes. The formula

Zp_l =loglogt+ b+ E(t)
p<t
is called Mertens’ formula [6], where ¢ > 1 is a real number, p is the prime number,

b=v+> (log(1—1/p)+1/p) =

p
= 0.261497212847643 - - -

is Mertens’ constant ([6]). We will call E(t) the error term of Mertens’ formula.
By (3.18), (3.20) of [5], we could know

-1 1
<FEll)< —— (t>1). 0.5
logzt ®) 10g2t ( ) 05)



And 9(t) = >_ ., logp is called the Chebyshev’s function ([1]). By the prime number theorem
([1]), we could write as

J({) =t-(14+0(t))
for any real t > 1. We will call 6(¢) the error term of J(¢). By (3.15) and (3.16) of [5], we see

-1 1

g7 <00 < o (12 40) (06)

Put Fi, i= S /0(Sm), then

m m

log(Fn) = — Z(log(l —1/pi) +1/ps) + Z 1/p; =
= loglog prm + v + E(pm) + £(Pm),

where

e(pm) = Y (log(1—1/p) +1/p) = O(1/pm).

p>p7n

From this
hd (ei’y ’ Fm) = logpm *Cm,
em = exp(E(pm) +€(pm)),

o exp(e™ - Fp) =pm €,

er, = exp(log pm, - (€ — 1)).
Furthermore, put
L4 log s’r‘rl =DPm - Qm, Oy = 1+ e(an)a

o K, :=/logSy,.

VI. Some estimates
6.1. An estimate of e, and €],
Assume that p,, > e'* below. The discussions for p,, < e'* are supported by MATLAB.
By (3.30) of [5],
(e77 - Fp) =logpm -em=e""- H (1-p;H ' <
i=1

<logpp + (pm > 2)
log pm
and for p,, > e we have respectively
em < 1.01, €, <1.08, (em-el,) <1l (0.7)

6.2. An estimate of (e, - €},)
If e,, <1 thene), <1and (ey-e),) <1. And if e, > 1 then, since e(p.,) <0,

0<r:=Epm)+elpm) <

<0.01
log” pim

and
2

X n
T r
em:1+7‘+z?§1+7’+m§

n=2



<1+7r+0.51-7%

em - €, = exp(r + (logpp) - (em — 1)) <
2

<l+hd-—
<1t+h+ oy

where
h:= (14logpm) -+ 0.51 - log p,, - r> < 0.08.

Therefore we have
(em : e:n - 1) S (1 + Ingm) . (E(pm) + 6(pm))""_

+0.6 - (1 + logpm)Q : (E(pm) + 5(pm))2 (em > 1)

6.3. An estimate of V,,
Here

Vi 1= Dm+1 (e;n+1 — Qmi1) = Pm - (e/rn — Q).
It is clear that
Pm+1 Om41 — Pm * Oy = 10gpm+1~

Since . |
OZ Pm+1
E(pmi1) — E(pm) = log( o >
Pm+1 0og Pm,
1 1
£(Pm 1)—8pm)=—10g<1— )— :
( * ( Pm+1 Pm+1
we have | )
6m+1 :( ngm >'<1+>)
€m 1ngm-l—l Pm+1 — 1
e;n—&-l _ Dm (Ingm : em)
bl = S exp
€m Pm+1 Pmt1 — 1
and ,
m : em
Vin = Pm .e/m.<p+1/+1 _ 1)—10gpm+1 —
Pm €y
= logpm+1 ' (,U ! e{m - l)a
where
Pm < (logpm : em> >
pi=——————|exp|l —— |—-1].
1ngerl Pm+1 — 1
Moreover L
. 2 . -
S ot L [OBPm e em-(l _ 108Pm em e’") <
2 Pm Pm
log prm
<em+0.52. 8P
DPm
and |
peoeh, —1<(em-en, —1)+0.6- o8 Pm.
Pm
6.4. An estimate of W,,
Here )
Wm :<Um - (Km—i-l - Kn )) T
m—+1

(0.9)



and
log pm41

Up = ———.
" 2. Vlogc\}m

Then

Km-i—l - K, = \/log Sm-‘rl - \/log S >
10g prm+1

>
T2 4/log St

Um - (Km+1 - Km) S

From this

IN

log pmy1 ( 1 _ 1 > <
2 \/10g %m \/IOg %m+1 B

10g” prm+1
< T (log 5,77

And it is known that p;,, <2 pj for py > 7 by 247p of [4] and so

log pm+1 < Qo - 10g prm,s

9 ::< log V2

10 g Pm

>< 1.025. (0.10)

Since o, > (1 —1/14), K41 > K, and the function (log®t)/t is decreasing on the interval
(€3, 400), we have

Wy BP9
T 4pm a2 pym - logpm
1.9-10~¢
(pm > €"). (0.11)

= P - (logpm)!/?
5. An estimate of S(p’, o)

Here
SW.o) =Y.

—— (0>0).
% p-(logp)

Put

= Zp_l =loglogt + b+ E(t).
p<t

Then by Abel’s identity ([1]), we have

, 1 tee
600 = Y ey =, T -

pop—0 P P’

/;OO (loglt) <t logt >
) _

/-‘roo dt /+oo dE
o o t- (logt)o+! b (logt)®

-1 E(t) teo g E(t)
‘+o<> ‘+oo+/

< % _o- B
~ o (logt)e P (logt)o P + t-(logt)ot!



< 1 + L + / o dt =
~o-(logp)?  (logp)ot? = J, t-(logt)o+3
1 1 o
o-(logp)®  (logp)o™2 = (0 +2)- (logp)ot2
B 1 . 2.0+2
~o-(logp)  (0+2) (logp/)7+?

So

1 2.042
S, o) <
#.0) < (logp')” * (0 +2)- (logp')o+2

and by the same method,

1 2.0+42 ,
_ < .
o (ogp) (@ 12) (ogp)r® =507

If p is the first prime > e'4, then p’ = 1202609 and it is 93118-th prime.
And if 0 = 1/2 and p’ = 1202609, then

0.5328 < S(p', 1/2) < 0.5362. (0.12)

VII. A Lemma for (1+logp) - E(p)
Now for any ¢ > 1 we introduce the following functions;

F(t) ==t -logt- E(t) —t-0(t),

ft)
g(t) =t d(t) === 0.13
(1) (=2 (013)
Then the functions f(t), g(t) and d(t) are continuous and piece differentiable functions on the
interval (1, +o00).
[Lemma] We have

8
VD - (logp)*/2

for any prime p > e'#, where the functions d(p) is given in (0.13).
For the proof of the Lemma, we make some ready from the section 7.1 to the section 7.3.

7.1. A condition (d)
If the Lemma does not hold, then there exists a prime number p > e'4 such that

8
VD - (logp)3/2’
We fix one of such primes p > e!? and take the functions f(t), ¢(t) and d(¢) as in (0.13) on
the interval [p, p + 1]. Then the functions f(t), ¢(¢t) and d(t) are continuous on the interval
[p, p+1]. And f(t), g(t) and d(t) are n-th continuously differentiable on the interval (p, p+1).
Moreover, f’(t) is the right continuous at ¢ = p. Put

fo)=rp+0), fp+1):=Ff(p+1-0).

Then f'(p) = (1 +1logp) - E(p) and (0.14) is equivalent to
8
VP (logp)3/2’

(1+1logp)- E(p) <d(p)-g'(p) +

(14 1logp) - E(p) > d(p) - ¢'(p) + (0.14)

d'(p) - g(p) >



Here put H(t) :=d'(t) - g(t) (t € (p, p+1)), then H'(t) <0 (t € (p

H'(t) = d"(t) - g(t) + d' (1)

o)

Oo(t) := E(t) —t-d(t) - g"(t) —t-d'(t) - '(1).

By (0.5), (0.6) for any t € (p, p+ 1) it is easy to see that

where

B <
"N 9" ()| _
t-d(0) " 0] = It d(0) -0 £ =
— e SO 2 )< § - oge- 0]+ 100 <
= 2-110gt < 0.04,
’ / _ / g/(t) _
0o 0] =1t 0)- 0| L0 =

|f(E) —d(t) - g' ()] <
<% <|(1+logt) B + |£(t2|)

<1 <2+ L ><008
— 2 \logt logt

|00(t)] < 0.01 4 0.04 + 0.08 = 0.13.

N

Thus we have

, p+1)).

In fact,

Therefore H'(t) < 0 (t € (p, p+1)). So there exists a point ¢y such that p < tp < p+ 1 and

Hpp+1)=H(p) +H(p+1)—-H(p) =

8 1
> + Oo(t - >2
h(p) = to ( bito) log to
8 1 1
>—4+ — —-013-1-— >
h(p) = to ( logt0>
8 1.21
> = — 2>
hp) p

>1.(8_1.21.h(p))2 7.942232,
p VD - (log p)3/

where h(t) := v/t - (logt)3/2. Hence for any t € (p, p+ 1), we have

7.9422 7.9422
Ht)>Hp+1) > —

H(p) + H'(to) >

(0.15)



We will call (0.15) the condition (d). To prove the Lemma, it is sufficient to obtain a certain
contradiction from (0.15).
7.2. Estimates of the different derivatives
For any t € (p, p+1),
() = (1+logt) - ( ),

1

- B(t <0,
t logt

1

2

() = ( - B0)>0,

and

and by the condition (d)
d'(t) - g(t) = f'(t) — d(t) - ¢'(t) > 0,
d'(t) - g(t) = f(t) = d(t) - g"(t) = 2 d'(t) - '(t) <O,
d"'(t) - g(t) = f"(t) — dt) - "' (t)—
—3- (d”(t) g () +d(t)- g”(t)> > 0.

On the other hand, we have

1 1 1 1.08
Pat) = 101 < (14 oy + oy )< T

R =101 (14 )< 52

t log? t 27
Q)= L)< 11 = 2,
ot L8] 5 %8




From this for any ¢ € (p, p + 1) we have respectively

Doy := [d(t) - ¢'(t)] = Po(t) - Qu(t) < 0.08,

Doy = [d(1) - "(5)] = Po(t) - Qa(t) < 227,
Do = [d(t) - (1) = Po(1) - Qs(1) < .
Dig = |d'(t) - g(t)| < Pi(t) + Do < 0.16,
Dii=d(6) g (6] = Dio - Qi(1) < 3
Diy = |d(1) 9" (1)] = Dao - Qa(t) < 2%,

1.3
Dyo = |d"(t) - g(t)] < Pa(t) + Doz +2- D11 < <

0.7
Doy :=|d"(t) - ¢'(t)] = Dao - Q1(2) < PR
D5y = ‘d”l(t) -g(t)| < P3(t) + Dos+

3.4

+3- (D12 + Da1) < =

Here i, j in D;; (4, j = 0, 1, 2, 3) denote the orders of the derivatives of the functions d(t), g(t)
respectively. While, for any t1, t2 € (p, p+ 1)

,:‘g(tz) g (to)
g(t1) g(t1)

where t1 < tg <ty or t1 > tg > to.

Thus by the condition (d) for any ¢, t2 € (p, p+ 1) we have

<1+ <1+05-1078,

d”(tl) DQO 1.31 \/tQ . (log t2)3/2
A= < . . < 0.0079. 0.16
VT () T Ht) |70 = 70422 t = (0.16)
dm(tl) D30 3.41 \/752 . (log t2)3/2 _8
= < . . <1.8-107°. 0.17
2T () T Ht) |70 = 70422 2 = (0.17)
7.3. Functions A\ (z) and \y(z)
For any t € [p, p+ 1], let
xr:i=t—p.

Then 0 <z <1,when p<t<p+1. Put

log(1+
)\1(37) = 1(0g2) — T,
log(1+2-x)
Ao(x) == T gz D
1 3
B = T Ba = T

10



Then the functions A (z) and Az(z) are continuous on the interval [0, 1] and differentiable on
the interval (0, 1). And

= 0.07192809488736 - - - # 0,

1

= 0.11907024642854 - - - # 0,

Also

and

S S|
log3 (1+2-t)

" _ 1 (_4)
Aa(@) = log3 (1+2-1)%

Put

then
Gl(o) = 07 Gl(l) = 07 Gl(ﬂl) = 05
|G1(z)] <0.1, Vz e (0, 1)
pon o A@) NS ()
Gl(x) T a as )
|G (x)] < 0.8, Ve (0, 1)

ai az
|GY ()] <10.6, Ve (0, 1)

On the one hand,

. _log(7/4) 3
bri=M(Bs) = log 2 4
= 0.05735492205760 - - - £ 0,

. _log(5/2) 3
by = Aa(f2) = log3 4

= 0.08404376714647 - - - # 0,

Also put
_ Au(x) - Aa(a)

GQ(Q?) : bl bg s

11



then

G2(0) =0, G2(1) =0, Gz2(B2) =0,
|Ga(r)] <0.18,
—0.18 < Ga(w) — Ga(z) <0, Vte (0, 1)
rooy o A(@) As(e)
Gy(x) = 1b1 - 2{)72,
Gy(@)| < 2.2, Yz e (0, 1)
—1.4 < G4(z) — G (x) < 0.4,
Gy o M) )

by by

by
|GY(x)| <18.2, Vax € (0, 1).

And for any x € (0, 1) we have
Gy (z) — GY'(z) < 0.

This shows that the function G4 (z) — G/ (z) is monotonic decreasing on the interval (0, 1). S

GY(@)~ GY(@) = lim (Gh(x) - Gl(x)) =
z—1—

= 0.14190388505204 - - -, Vz € (0,1)
Thus for any « € (0, 1) we have

do

: 1 1!
OrSnleSll(G2 (x) — GY(z)) > 0.1419.

This value is really important for us below.
7.4. Proof of the Lemma
Let

(0.18)

Fi(z) :
Fy(x) :

Gi(z)-d' (o)
Go(z) - d'(x)

)

then

F1(0) = Fi(1) = Fi(1) = 0.
Hence there exists a point 77 such that 0 < 71 < 1 and F{' (1) = 0, that is,

FY'(m) =G (m)-d'(m)+2-Gi(m)-d"(m) +G(m) -d” (m) = 0.

Similarly, since

F5(0) = Fy(1) = F»(f2) = 0,
there exists a point 72 such that 0 < 1y < 1 and F{'(n2) = 0, that is,

Fy(n2) = Gy (m2) - d'(m2) + 2 - Go(n2) - d" (n2) + G(n2) - d" (12) = 0.
From this Fy(n2) — Fy'(n1) = 0, that is,

Gy (n2) - d'(n2) — GY(m) - d'(m) =

=(2-Gi(m)-d"(m) —2-Gy(n2) - d"(n2))+

12



+(G1(m) - d" (m) — Ga(n2) - d"' (n2)).
Here
G5(n2) - d'(n2) — G{(m) - d'(m) =
= (Gy(n2) — GY(m)) - d'(n2)) + GY(m) - (d'(n2) — d'(m))

and, since d'(t) > 0 for any t € (21, x2) by the condition (d), we have
(G5 (n2) = G3(n2)) - d'(m2) = do - d'(n2),

G/ll(nl)) ) (d/(ﬁz) - d’(m)) =
=GY(m))-d"(n) - (n2 —m),

where 171 < 19 < M2 or g < Mg < M.
Finally, by (0.16), (0.17) and (0.18), we have

1 S‘G’{(m)‘. d" (o) +2.‘G’1(m) |d"(m) N
do d'(n2) do d'(n2)
+2_’G’2(772) |a"(n2) ‘Gl(m) | () ’Gz(nz) [2" () |
do d'(n2) do d'(n2) do d'(n2) |~
10.6 2% 0.8
< . .
= 0.1419 A 0.1419 At
2% 2.2 0.1 0.18
. . s <
01419 Ax 01419 2" 014190 Az <

<0.6+0.09+0.25+1.3-10"%+1.5-107% < 0.95,

but it is a contradiction. This shows that the condition (d) is not valid.
So the proof of the Lemma is completed.

VIII. Proof of the Theorem 2
Put C,, := ®,(3,,). Then first, if 2 < p,,, < e'*, then we could verify C,, < 3 by MATLAB
(see the table 1 and the table 2). Next, if p,, > e!*, then put A,, := 8 — 9.3 - S(py, 1/2) and
we will prove C,, < A,, by the mathematical induction with respect to m.
If m = 93118 then we have

093118 =2.035--- < 8—-9.3- S(pm, 1/2)

Now assume that p,, > e'* and C,, < A,,. Then by the section 6.3, we have

1
Con1 = 7 (pm - (€1, — ) + Vin) =
= e )+ Vi)
K,, Vin
= G- I <
Km+1 Km—',—l
K 1
<Ay 0 logpmt1 - (1 €p, — 1) < A + B,
Km+1 Km+1 EPm (M )
where 1
B, = : (Ingm+1 : (,U' : e;n - 1)_
Kerl

A (K1 — Kin))-

13



By the assumption C,, < A,,, we get

K A
eiiqga'rn‘i‘Am'm:Oém'(l—Fm )

and by laking logari‘ hm Of bOth SideS
1:g€771 (1:gi77l) ' (57” 1) <— 6 (I'”L)
vV pm * Qg

From this

em <1+

: Pm gy
log pm VPm - Qm

1 A
Epn) +c(pm) < — . (9 )+ m )
(p ) (p ) log Pm (p ) vV Pm - Qm

and the both sides multiply by

Pm - log pm,
Dm
then 1
d(pm) = \/ﬁ “(Pm - 1ogpm - E(pm) — pm - 0(pm)) <
A,
< Tm - \/ﬁ log pym, - 5(pm)~

Thus by the Lemma,
(1+logpm) - (E(pm) +e(pm)) <
A 8

< = + ,
2 VPm * Qm \VPm - (logpm)3/2

because ¢(py,) < 0 and
log prm
2

< (1 + log pim,).

Since
0< Ay =8-93-S(pm, 1/2) <3.1
and (1 —1/14) < o, < (1 +1/14), if g > 1, then
2 2 3.2
(1 +1logp)® - (E(pm) +elpm))” < —.

By the Lemma, the sections 6.3 and 6.4, we put
Bm . Km+1 S Tl +T2 +T37
where
Tl = 10gpm+1 ! (1 + Ingm) : (E(pm) + E(pm))_
_Am : (Km+1 - K’m)7

10g Py
Ty = 0.6 - log pruyr - o0,
p

m

T3:=0.6- Ingm—i-l ’ (1 + Ingm)2 : (E(pm) + 5(pm))2'
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By K41 > Ky, the section 6.4 and (0.10) we have

Tl Am
< (U, — (K1 — Ko,
Ko S Un = (Kt = Kn)+
+ 1 . 8 : logpm-‘rl
Km+1 VPm * (Ingm)S/z -
1 8- O
< Am : Wm :
- + m pTﬂ ) (logp’fn)l/2 -
0.0007 n 8.51 < 8.6
= pm - (10gpm)Y2 " P (10gpm) /2 T pm - (log pm)'/?
and
T, _ 0.6 - log® pyn, 0 -
Km+l o \/pm * Oy, Pm - Ingm -
0.5
= pm - (log pm)'/?’
T log? po, Q
3 <06.32. 28 DPm 0 <
Km+1 vV Pm - Om  DPm * logpm
0.1

= P - (log pm)1/?’

Thus if e,, > 1 then
9.3

P - (log pm) /2
Next, if e, < 1 then by the section 6.3 we obtain

B, <

. log? Pmt1 0.5

B,, <0.6 < .
Pm - Km DPm (logpm)l/Q

Finally, we have Cy, 11 < A,,+1 and so the proof of the Theorem 2 is finished.

IX. Algorithm and Tables for Sequence {C,,}
The table 1 shows the values of C,, to w(n) = m for n € N. There are only values for 1 < m < 10
here. But it is not difficult to verify C,, < 3 for 31 < p,,, < e'*. The table 2 shows the values
of C,, for 93109 < m < 93118. Of course, all the values in the table 1 and the table 2 are
approximate with order 1073,

The algorithm for C),, to w(n) = m by MATLAB is as follows:
Function RH-PN-Index, cle, gamma=0.57721566490153286060; format long,
P =12,3,57,,1202609); M=length(P);
form=1:M; p=P(l:m); ¢=1-1./p; F=prod(1./q); V = sum(log(p)); V1= (V)2
m, p(m), Cp = (exp(exp(—gamma) x F') — V)/V1, end.
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Table 1 Table 2

m | Pm Cn m DPm Crm
1| 2] 2.85947164195016 93109 | 1202477 | 2.03539811396126
2 3 | 2.68745829155593 93110 | 1202483 | 2.03540315703560
3 5 | 2.60801514536984 93111 | 1202497 | 2.03540820013863
4 71 2.73115431266735 93112 | 1202501 | 2.03541335720468
5| 11 | 2.57452833561573 93113 | 1202507 | 2.03541860543873
6 | 13| 2.60523306367574 03114 | 1202549 | 2.03542353469470
71 17 | 2.56004537210806 93115 | 1202561 | 2.03542848676219
8 | 19 | 2.63431939241882 93116 | 1202569 | 2.03543350721711
9| 23 | 2.67311558160837 93117 | 1202603 | 2.03543829985003

10 [ 29 | 2.60637352799328 03118 | 1202609 | 2.03544318364830
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