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A sufficiently massive star in the end of its life will inevitably collapse into a
black hole as more deconfined degrees of freedom make the core ever softer. One
possible way to avoid the singularity in the end is by dimensional phase transition
of spacetime. Indeed, the black hole interior, two-dimensional in nature, can be
described well as a perfect fluid of free massless Majorana fermions and gauge bosons
under a 2-d supersymmetric mirror model with new understanding of emergent
gravity from dimensional evolution of spacetime. In particular, the 2-d conformal
invariance of the black hole gives rise to desired consistent results for the interior
microphysics and structures including its temperature, density, and entropy.
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The idea of no light escaping from a sufficiently massive astronomical object like a black
hole (BH) was first proposed more than two hundred years ago by Michell and Laplace
[1, 2]. Shortly after Einstein developed his theory of general relativity (GR), Schwarzschild
obtained the first modern BH solution of Einstein’s equations in vacuum [3]. The apparent
singularity of the solution at the event horizon r = 2GM does not seem to be physical and
can be removed in suitable coordinates. But the singularity at r = 0 is genuine indicating
that GR breaks down under such extreme conditions and new physics may be needed to
describe the BH interior within its event horizon.

In the following, we will apply recently developed supersymmetric mirror models (SMM)
and new understanding of gravity as an emergent classical phenomenon due to dimensional
phase transitions of spacetime to study such extreme celestial objects. In particular, the
interior of a black hole, two-dimensional in nature, can be elegantly described by the 2-d
model SMM2.

The existence of a mirror sector of the Universe has been conjectured since Lee and Yang
published their Nobel Prize-winning work on parity violation [4]. It is conceivable that
there exist two sectors of particles sharing the same gravity but governed by two separate
gauge groups under 4-d spacetime [5]. Some early works on mirror matter theory had
discussed interesting perspectives mainly in cosmology [6–8]. Later attempts to introduce
ad hoc feeble interactions between the two sectors might be too conservative [9–11]. Most
recent works [12–22] with new understanding of mirror symmetry, supersymmetry (SUSY),
and dimensional phase transitions of spacetime can consistently and quantitatively solve a
variety of puzzles in fundamental physics and cosmology and may indeed lead us to new
physics beyond the Standard Model we have been looking for.
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FIG. 1. The schematic diagram (not to scale) is shown for the Supersymmetric Mirror Models at
various phases of spacetime. Red arrows indicate the path of a collapsing star into a black hole.
Adapted from Ref. [22].

The idea [18–22] is that spacetime was first born with one time dimension. Mirror
symmetry is nothing but the orientation symmetry of the underlying geometry (same as
time reversal symmetry in 1-d). The sole scalar then acquired mass in the spontaneous
symmetry breaking mechanism leading to the emergence of the time arrow and another
dimension of space in inflation. In the resulting 2-d spacetime, Majorana fermions and U(1)
gauge bosons emerged and the hot big bang started at the scale of Planck energy.

As the Universe cooled down, Majorana fermions started to condense leading to the
process of double space inflation. Eventually 4-d spacetime formed at temperature of ∼ 1016

GeV and the two scalar inflatons decayed into massless quarks and leptons in two separate
sectors, respectively, to reheat the Universe. At the scale of ∼ 102 GeV, staged quark
condensation started a series of phase transitions including electroweak and QCD phase
transitions. As the Universe became cold enough, the ordinary sector has formed stars and
galaxies while the mirror sector serves as the dark matter observed today. Such a picture
under the proposed Supersymmetric Mirror Models is depicted in Fig. (1).

The reverse process from SMM4b to SMM2 as shown in Fig. (1) could also occur for a
massive star to collapse into a black hole from 4-d to 2-d. The underlying model (SMM2)
in 2-d spacetime has the on-shell Lagrangian [19, 20],

LSMM2 = −1

4
FµνF

µν +
i

2
(λ†Lσ̄

µ∂µλL + λ†Rσ
µ∂µλR) (1)

where Fµν = ∂µAν − ∂νAµ is the U(1) gauge tensor and the Majorana fermion λ has to be
neutral and does not couple to the gauge field Aµ. Both λ and Aµ are massless and have two
components or degrees of freedom (nf = nb = 2). They form the simplest N = 1 abelian
gauge SUSY multiplet (1, 1/2). As we shall use later, the effective number of relativistic
degrees of freedom g∗ = nb + 1/2nf = 3.

On the other hand, gravity in 2-d is described by the smooth spacetime geometry as
follows [21],

R+ 2Λ = −8πGT µµ = 0 (2)
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where R is the Ricci curvature scalar, Λ is the cosmological constant, and the energy-
momentum tensor T µµ has to be traceless. In SMM2 as shown in Eq. (1), free massless
Majorana fermions and U(1) gauge bosons make a perfect fluid resulting in the vanishing
trace of Tµν and therefore is consistent with the 2-d gravity / spacetime model of Eq. (2).

Eqs. (1-2) together describe a conformally invariant 2-d quantum and spacetime theory.
Its effective number of relativistic degrees of freedom g∗ = 3 is identically the central charge c
of the Virasoro symmetry algebra in 2-d conformal field theory (CFT) [23]. The correspond-
ing Weyl anomaly in 2-d CFT [24] can produce a non-vanishing trace of 2ρΛ = −c/(24πG)R
due to nontrivial metric, where ρΛ can be interpreted as vacuum energy density and related
to the cosmological constant via Λ = 8πGρΛ. This trace anomaly, introduced dynamically
by the inflaton scalars of Majorana condensates [19], is related to a topological invariant
- the Euler characteristic [25], which may be important for studying nontrivial spacetime
topology during the double space inflation process SMM2b [19].

However, for a static spherically symmetric black hole, its interior should be Ricci-flat,
i.e, R = 0 and can then be studied in 2-d CFT on a torus. The Euler characteristic of a
torus vanishes and makes it consistent that the black hole interior should be static and free
of the trace anomaly or Λ = 0. The general solution of the 2-d metric can then be written
as,

ds2 = e2ω(x)(dt2 − dx2) (3)

where ω(x) defines the conformal transformations of the metric.
We will present the views of the BH interior by both a distant exterior observer and

an interior one. The two reference frames are connected by the global scale transformation
under 2-d CFT. There are two quantities that the two observers see the same: proper energy
density ρ and total entropy SBH.

The view of the exterior observer is fairly simple for a Schwarzschild black hole with
mass M and radius R = 2GM . The BH interior can be regarded as a 2-d torus with two
circumferences of 2R (space) and 2πR (time), which can also be viewed externally as a
dual of the event horizon surface, notably with the same area A = 4πR2. Its conformally
invariant 2-d energy density is,

ρ =
M

2R
=

1

4G
(4)

which is the same as the CFT Casimir energy density ρc = Ec/(2R) = c/(12G) with no
negative sign under the condition of c = g∗ = 3. This 2-d structure with a constant energy
density provides a natural explanation of the linear relation between mass and radius of the
black hole.

The entropy of an n+ 1 dimensional CFT on R×Sn can be given by the Cardy-Verlinde
formula [26, 27],

S =
2πR

n

√
Ec(2E − Ec) (5)

where Ec = 2Rc/(12G) is the Casimir energy in 2-d CFT (i.e., n = 1) and the total energy
E = 2Rρ is exactly the same as Ec if the central charge c = g∗ = 3. Under the BH
conditions of n = 1 and c = g∗ = 3, Eq. (5) becomes the well-known Bekenstein-Hawking
entropy [28, 29],

SBH =
A

4G
. (6)
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Based on Maldacena’s AdS/CFT correspondence [30] and Witten’s arguments [31], Ver-
linde proposed a more general entropy formula for the same CFT on R× Sn as [27],

S =
cA

12nG
(7)

which again gives the same entropy as Eq. (6) for n = 1 and c = g∗ = 3.
The BH entropy can also have an equivalent thermodynamic explanation. Namely, the

exterior observer sees no free energy from the black hole, i.e., its partition function Z = 1.
As such, the entropy is solely determined by its total energy / massM and temperature 1/β
where β = 2πR is the Euclidean time period or the time circumference of the torus. Then,
the same BH entropy can be easily calculated from

SBH = ln(Z) + βM = βM =
A

4G
(8)

where, notably, the interior temperature of 1/β viewed by the exterior observer is twice as
high as the surface temperature that is responsible for Hawking radiation [29, 32].

From the view of the interior observer, the BH interior is composed of a perfect fluid of
Majorana fermions and gauge bosons governed by SMM2. Its energy and entropy densities
in 2-d spacetime can be obtained as,

ρ =
π

6
g∗T 2

in =
π

2
T 2

in (9)

s =
ρ

Tin
=
π

2
Tin (10)

where Tin is the interior temperature. Such an expression of 2-d entropy density in Eq. (10)
has also been obtained in general 2-d CFT in the high temperature limit [26, 33].

Using the two views of the energy density in Eqs. (4,9), we can obtain the temperature
of the BH interior,

Tin =
1√
2πG

' 0.4√
G

(11)

which is constant and just below the Planck energy of 1/
√
G ∼ 1019 GeV but well above the

double space inflation energy scale of 1016 GeV. This means that the interior temperature
does meet the criteria for SMM2 in 2-d spacetime and this BH model is self-consistent. The
constant energy density and temperature also indicate that such BH interior structures are
indeed stable.

As viewed by the interior observer, the torus is conformally dilated as follows,

2R→ Ls ≡ eω2R, 2πR→ Lt ≡ e−ω2πR (12)

where Ls and Lt are the different space and time scales (or sizes of the torus) for the interior
observer under the global dilation or scale transformation. From Lt = 1/Tin, we can obtain
the dilation factor as,

eω =

√
2π

G
R ' 4.58× 1038 M

M�
. (13)

It is now easy to calculate the entropy from the point of view of the interior observer,

SBH = eω2Rs =
A

4G
(14)
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which is the same Bekenstein-Hawking entropy. To demonstrate the enormous BH size seen
by the interior observer, we can calculate it for one solar mass to be eω2R ∼ 1042 m in
contrast to the size of the observable Universe (1027 m).

In summary, black holes are presented to be 2-d in nature under the picture of dimensional
transitions of spacetime. The apparent singularity at the event horizon under 4-d general
relativity is most likely topological describing a transition from the exterior 4-d spacetime
to the interior 2-d spacetime. Techniques especially topological ones developed in studies
of renormalization group, loop quantum gravity, and other quantum gravity approaches
could be applied around the event horizon and possibly elsewhere such as the space inflation
process of the early Universe.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grant No.
PHY-2011890. Funding from the faculty research support program at the University of
Notre Dame is also acknowledged.

[1] P.-S. Laplace, Exposition Du Systeme Du Monde, 1st ed. (Cercle-Social, 1796).
[2] J. Michell, On the means of discovering the distance, magnitude, &c. of the fixed stars, in

consequence of the diminution of the velocity of their light, in case such a diminution should be
found to take place in any of them, and such other data should be procured from observations,
as would be farther necessary for that purpose., Philos. Trans. R. Soc. Lond. 74, 35 (1784).

[3] K. Schwarzschild, über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie, Sitzungsberichte K. Preußischen Akad. Wiss. Berl. , 189 (1916); On the gravita-
tional field of a mass point according to Einstein’s theory, arXiv:physics/9905030 (1999),
arXiv:physics/9905030.

[4] T. D. Lee and C. N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev.
104, 254 (1956).

[5] I. Y. Kobzarev, L. B. Okun, and I. Y. Pomeranchuk, On the possibility of experimental obser-
vation of mirror particles, Sov J Nucl Phys 3, 837 (1966).

[6] S. I. Blinnikov and M. Y. Khlopov, Possible Astronomical Effects of Mirror Particles, Sov.
Astron. 27, 371 (1983).

[7] E. W. Kolb, D. Seckel, and M. S. Turner, The shadow world of superstring theories, Nature
314, 415 (1985).

[8] H. M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47, 456 (1993).
[9] Z. Berezhiani and L. Bento, Neutron–Mirror-Neutron Oscillations: How Fast Might They Be?,

Phys. Rev. Lett. 96, 081801 (2006).
[10] J.-W. Cui, H.-J. He, L.-C. Lü, and F.-R. Yin, Spontaneous mirror parity violation, common

origin of matter and dark matter, and the LHC signatures, Phys. Rev. D 85, 096003 (2012).
[11] R. Foot, Mirror dark matter: Cosmology, galaxy structure and direct detection, Int. J. Mod.

Phys. A 29, 1430013 (2014).
[12] W. Tan, Neutron oscillations for solving neutron lifetime and dark matter puzzles, Phys. Lett.

B 797, 134921 (2019), arXiv:1902.01837.

https://doi.org/10.1098/rstl.1784.0008
https://arxiv.org/abs/physics/9905030
https://doi.org/10.1103/PhysRev.104.254
https://doi.org/10.1103/PhysRev.104.254
https://doi.org/10.1038/314415a0
https://doi.org/10.1038/314415a0
https://doi.org/10.1103/PhysRevD.47.456
https://doi.org/10.1103/PhysRevLett.96.081801
https://doi.org/10.1103/PhysRevD.85.096003
https://doi.org/10.1142/S0217751X14300130
https://doi.org/10.1142/S0217751X14300130
https://doi.org/10.1016/j.physletb.2019.134921
https://doi.org/10.1016/j.physletb.2019.134921
https://arxiv.org/abs/1902.01837


6

[13] W. Tan, Neutron-mirror neutron oscillations in stars (2019), arXiv:1902.03685 [astro-ph,
physics:hep-th, physics:nucl-ex].

[14] W. Tan, Neutron-mirror neutron oscillations for solving the puzzles of ultrahigh-energy cosmic
rays (2019), arXiv:1903.07474 [astro-ph, physics:hep-ph].

[15] W. Tan, Kaon oscillations and baryon asymmetry of the universe, Phys. Rev. D 100, 063537
(2019), arXiv:1904.03835.

[16] W. Tan, Laboratory tests of the ordinary-mirror particle oscillations and the extended CKM
matrix (2019), arXiv:1906.10262 [hep-ex, physics:hep-ph, physics:nucl-ex].

[17] W. Tan, Invisible decays of neutral hadrons (2020), arXiv:2006.10746 [hep-ph].
[18] W. Tan, Dark energy and spontaneous mirror symmetry breaking (2019), arXiv:1908.11838

[gr-qc, physics:hep-ph, physics:hep-th].
[19] W. Tan, Hierarchy of Supersymmetric Mirror Models and Dimensional Evolution of Spacetime,

Preprint: https://osf.io/8qawc (Open Science Framework, 2020).
[20] W. Tan, No single unification theory of everything (2020), arXiv:2003.04687 [physics].
[21] W. Tan, From Neutron and Quark Stars to Black Holes, Preprint: https://osf.io/2jywx (Open

Science Framework, 2020).
[22] W. Tan, First Principles of Consistent Physics, Preprint: https://osf.io/cj94u (2021).
[23] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Graduate Texts in

Contemporary Physics (Springer, New York, 1997).
[24] S. Deser, M. J. Duff, and C. J. Isham, Non-local conformal anomalies, Nucl. Phys. B 111, 45

(1976); M. J. Duff, Twenty years of the Weyl anomaly, Class. Quantum Grav. 11, 1387 (1994).
[25] M. J. Duff, Observations on conformal anomalies, Nuclear Physics B 125, 334 (1977).
[26] J. L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.

B 270, 186 (1986).
[27] E. Verlinde, On the Holographic Principle in a Radiation Dominated Universe (2000),

arXiv:hep-th/0008140.
[28] J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7, 2333 (1973).
[29] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
[30] J. M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, Adv.

Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200.
[31] E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement In Gauge The-

ories, Adv. Theor. Math. Phys. 2, 505 (1998), arXiv:hep-th/9803131.
[32] S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).
[33] I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly,

Phys. Rev. Lett. 56, 746 (1986).

https://arxiv.org/abs/1902.03685
https://arxiv.org/abs/1902.03685
https://arxiv.org/abs/1903.07474
https://doi.org/10.1103/PhysRevD.100.063537
https://doi.org/10.1103/PhysRevD.100.063537
https://arxiv.org/abs/1904.03835
https://arxiv.org/abs/1906.10262
https://arxiv.org/abs/2006.10746
https://arxiv.org/abs/1908.11838
https://arxiv.org/abs/1908.11838
https://doi.org/10.31219/osf.io/8qawc
https://arxiv.org/abs/2003.04687
https://doi.org/10.31219/osf.io/2jywx
https://doi.org/10.31219/osf.io/cj94u
https://doi.org/10.1016/0550-3213(76)90480-6
https://doi.org/10.1016/0550-3213(76)90480-6
https://doi.org/10.1088/0264-9381/11/6/004
https://doi.org/10.1016/0550-3213(77)90410-2
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://arxiv.org/abs/hep-th/0008140
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arxiv.org/abs/hep-th/9803131
https://doi.org/10.1038/248030a0
https://doi.org/10.1103/PhysRevLett.56.746

	Truly two-dimensional black holes under dimensional transitions of spacetime
	Abstract
	Acknowledgments
	References


