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Abstract

This paper proposed proof of Goldbach Conjecture by using a function such that the ”num-
bers solution of the conjecture” were bounded to the function. The function sketches after
Eratoshenes Sieve under modulo term such that the function fullfilled prime condition in closed
intervals.
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Preface

Goldbach conjecture was the oldest open problem in mathematics. The problem stated in two
parts one for any odd numbers and one for any even numbers. The conjecture for any odd numbers
already been solved in 2013. As the other parts, had not been solved, even when I started wrote
this paper in February 2021.

The parts that had not been solved stated that every even number can be stated as the sum of two
primes. Its hard to proof because the solution of each even number rarely unique. Even more, the
solution seem came in random pattern which correspond to randomness of primes itself as leftover
in multiplication group.

The possibilities to proof the conjecture lies in generalization of conjecture such that the general-
ization model can sum up the conjecture throughly. In other hands, the summation/ generalization
must approachable to at least one proof method that already accepted. In mathematics, the proof
can be done by using direct proof, indirect proof, induction, and counter argument.

1 Initial Study

Every even numbers, was a product of some natural integers with 2. So every even number can be
stated as 2m for every m ∈ N. Let k ∈ [ 0,m) ⊆ N such that 2m = (m+ k) + (m− k). As to made
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m± k (both m+ k and m− k) as the solution to Golbach Conjecture (GC) both of m± k must be
primes.

One way to show that both m± k was prime, is to show that every m± k must not be divisible to
any number between [2,m−k) for m−k and any integers [2,m+k) for m+k. But, as Eratosthenes
sieve implemented, the numbers of integers can be reduced to some prime set. The prime set filled
with every prime that had value less than

√
2m. In term of modulo, the statement m±k was prime

would satisfied:
(m± k) mod xi 6≡ 0, ∀xi ∈ Xm (1)

for m ∈ Z+, k ∈ [ 0,m ) ⊆ Z and xi ∈ Xm := {xi primes less than
√

2m}.

Given theorem below:

Theorem 1. for any given a, b, k ∈ N such that a mod b ≡ c for c ∈ N, then (a+ k) mod b ≡ c+ k

Then, based of the theorem 1, congruation (1) can be simplified as:

|m mod x| 6≡ k, ∀xi ∈ Xm (2)

for Xm := {xi|x primes less than
√

2m}.

Notice that although by definition, (2) show the criterion of prime, there were cases, when k = m−1
would made m− k not divisible by Xm and m + k seem to be the same. It would made m± k full
filled condition (2). But, as 1 (one) was not prime (any more) then it wasn’t a solution for GC. As
implication, k must be restrict to

[
0 , m− 2

]
instead, rather than [ 0 ,m ).

As other cases, when m−k = xi ∈ X it may made m±k pairs as primes and made it into solutions
of GC. But as definition any of k = m − xi won’t satisfied condition (2). As the possibilities that
k = m−xi may exists as primes, it would sum the condition (2) that restrict on

[
0 , m− 2

]
be the

lower bound of the numbers solution that should exists for GC in every m.

Let |mmodxi| represent as both of ”mmodxi” and ”(xi−m) modxi” for any xi ∈ Xm. Let f(m, i)
was numbers of solution that |mmodxi| would had. As the function f(m, i) can be summarized,
the summarized, f(m, i) would suffice function below:

f(m, i) =

{
1 for |mmodxi| ≡ 0 or xi = 2
2 for |mmodxi| 6≡ 0 and xi 6= 2

Let y(i,m) ∈
[

0 , m− 2 ] ⊆ N such that |y(i,m) modxi| ≡ |mmodxi|. Let Y (i,m) be the set that
contains every y(i,m). We can deduce that the number of element in Y (i,m) (stated as n(Y (i,m)))
suffice criterion below:

n(Y (i,m)) =

⌊
f(m, i) · (m− 1)

xi

⌋
(3)

Let Xm := {p1, p2, ..., pk} such that pk ≤
√

(2m), but pk+1 ≥
√

2m. As we construct
⋃
Y (i,m),

for all i ≤ k ∈ N. Its obvious that every y(i,m) ∈ Y (i,m) didn’t suffice conditions (2). In
contrast, all of its complement’s would suffice (2) and would be counted as solution of GC. Let
K(i,m) =

⋂
Y c(i,m). By definitions, K(i,m) only contains k such that |m mod xi| 6≡ |k modxi|,

∀xi ∈ Xm.
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As we deduce that m− 1 = n(Y (i,m) ) + n(Y c(i,m) ), we can approximate n(Y c(i,m) ), and it’s
value would satisfied:

n(Y c(i,m)) ≥ (m− 1)− n(Y (i,m) )

≥ (m− 1)−
⌊
f(m, i) ·m

2 · xi

⌋
≥

⌊
(m− 1)·

(
1− f(m, i)

xi

)⌋
(4)

based on (4), we can construct n(K(i,m) ) = n(
⋂
Y c(i,m) ). It’s value would be bounded by the

product of n(Y c(i,m) ) as shown:

n

(
K(i,m)

)
≥

⌊
m− 1·

( k∏
i=0

xi − f(m, i)

xi

)⌋

≥
⌊
m− 1

2
·
( k∏

i=1

xi − 2

xi

)⌋
(5)

let g(m) :=
⌊
m−1
2 ·

∏k
i=1

xi−2
xi

⌋
. As it is stated at (5), we conclude that g(m) was the lower bound

of n(K(i,m) ) for any m ∈ N.

Let ĝ(m) = m−1
2 ·

∏k
i=1

xi−2
xi

. Notice that ratio ĝ(k2)
ĝ(k1)

≈ g(k2)
g(k1)

, would follows two criterion:

1. case for k1 + 1 = k2 where Xk1 = Xk2 = {x0, x1, ..., xk}.

ĝ(k2)

ĝ(k1)
≥

k2−1
2 ·
(∏k

i=1
xi−2
xi

)
k1−1
2 ·
(∏k

i=1
xi−2
xi

)
≥ k1

k1 − 1
≥ 1 (6)

2. case for k1 =
x2
k+1
2 and k2 =

x2
k+1+1

2
such that X(k1−1) = Xk1 − {xk} and X(k2−1) = Xk2 − {xk+1}

ĝ(k2)

ĝ(k1)
≥

(
k2
2 − 1

)
·
(∏k+1

i=1
xi−2
xi

)
(

k1
2 − 1

)
·
(∏k

i=1
xi−2
xi

)

≥

x2
k+1−1

4 ·
(∏k

i=1
xi−2
xi

)
·
(

xk+1−2
xk+1

)
x2
k−1

4 ·
(∏k

i=1
xi−2
xi

)

≥

(
x2(k+1) − 1

)
·
(

xk+1−2
xk+1

)
x2k − 1

(7)
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Since minimum gap of xi and xi+1 for i ≥ 2 was two, then:

ĝ(k2)

ĝ(k1)
≥

x2k+1 − 1

x2k − 1
· xk+1 − 2

xk+1

≥ (xk + 2)2 − 1

x2k − 1
· xk + 2− 2

xk + 2

≥
x3k + 4x2k + 3xk

x3k + 2x2k − xk − 2
(8)

Note that 4x3k + 3xk > 2x2k − xk − 2 for every k ∈ N and (8) was well defined in N. As

implication, case for k1 =
x2
k+1
2 and k2 =

x2
k+1+1

2 gave results ĝ(k2)
ĝ(k1)

≥ g(k2)
g(k1)

≥ 1.

As both cases that shown in (6) and (8) gave results that g(k2)
g(k1)

≥ 1. It easily shown that g(m) ≥ 1

for every m ∈ [ 7 , 13 ]. As 13 =
x2
2+1
2 was the lower bound of

x2
i+1
2 for i ≥ 3 ∈ N, we can conclude

that g(m) ≥ 1 for every m ∈ [ 7 , ∞ ).

2 Proof

Let h(m) be a function that mapped every m ≥ 2 ∈ N to total numbers of k ∈ [ 0 , m − 2 ] such
that both m ± k was primes. Notice that sum of (m + k) + (m − k) = 2m construct every even
numbers that greater than 2 as m ∈ N went up. Its obvious that h(m) mapped m to the numbers
of solutions that Goldbach Conjecture had described for 2m.

Exists lower bound function g(m) :=
⌊
m−1
2 ·

∏k
i=1

xi−2
xi

⌋
for xi ∈ Xm := {xi primes, xi ≤

√
2m }

such that h(m) ≥ g(m) for every m ∈ N. Since g(m) ≥ 1 for m ≥ 7, then h(m) would satisfied
h(m) ≥ 1 for m ≥ 7. Since its already known that h(m) ≥ 1 for every m ∈ [ 2 , 6 ], then h(m) ≥ 1
for every m ∈ [ 2 , ∞ ).

As every m had m ± k that were primes, and sum of (m + k) + (m − k) = 2m construct every
even numbers that greater than 2, then its true that every even number that greater than 2 can be
represent as sum of two primes. (Q.E.D)

Figure 1: h(m)(green) bounded by g(m) (red) for m ∈ [ 2, 10000 ]

4


	Initial Study
	Proof

