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Abstract 

We have unified fields (electromagnetic field & gravitation field) by the introduction of a new 

universal constant . We had show that vacuum has many levels of energy and in every level 

we can found an infinite of other levels. Space and time are not inert, they act and interact 

with corpuscles and waves. 

                                                                   Résumé 

On a unifié les champs électromagnétiques et gravitationnel en un seul champs via 

l’introduction d’une nouvelle constante universelle. On a montré aussi que le vide possède 

une infinité de niveaux d’énergie. L’espace-temps n’est pas inerte et il interagit avec les 

corpuscules et les ondes. 

 ملخص                                                                     

في مجال واحد وذالك عبر إدخال ساكن كوني جديد. بينا أن الفراغ له عدة  والجاذبية يلقد قمنا بتوحيد المجال الكهرمغناطيس

زمان ليس عدما ولكن يتفاعل مع الجزيئات والموجات. -مستويات من الطاقة لا نهائية.الفضاء  
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1)Introduction: 

From 1899 , Planck had established an absolute system of unities as follows[1]: 

𝑀𝑃 = √
ℏ.𝑐

𝐺
= 2.18  10−8𝑘𝑔   (1)  , 

𝐿𝑃 = √
ℏ.𝐺

𝑐3
= 1.6  10−35𝑚          (2) ,  

𝑇𝑃 = √
ℏ.𝐺

𝑐5
= 5.39  10−44𝑠         (3). 

The Planck system signify that extension in space-temps is equivalent to energy. So the 

equation of motion of a corpuscle should be written in a full space-time which act on the 

corpuscle by a friction force in the opposite direction of the its speed. The equation of motion 

of such a corpuscle is: 

𝑑𝒑

𝑑𝑡
= 𝒇 − 𝑎. 𝒗  (4) 

Where : 𝒑: the moment of the corpuscle; 

𝑓: all unknown forces which act on the corpuscle; 

−𝑎. 𝒗 : an universal friction force due to the energy of the space-time; 

𝑎 : friction coefficient of the space-time; 

The friction coefficient ′′𝑎′′of the space-time is declared as a new universal constant.Space-

time is vacuum and vacuum is space-time. 

Of course equation (4) is not invariant by transformations of space and time but we will see 

how to change our view in exchanging energy. Let’s take it as the first idea which comes to us 

as thinking in classical manner. 

The MKS system (or cgs system) is a meshing of space-time where the unities of measure are 

as follows: 

𝑀 = 1 𝑘𝑔    : the unit of mass; 
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𝐿 = 1 𝑚       : the unit of length; 

𝑇 = 1 𝑠         : the unit of time. 

But here there is any relation ship between those unities. When Michelson try to measure the 

speed of light in 1891 in order to detect any motion of the ‘’aether’’ he was surprised that the 

speed of light is constant in any direction: the speed of light ′′𝑐′′ was declared an universal 

constant and it is independent from the choice of the referential of motion and from any 

corpuscle. With the constant ′′𝐺′′ the gravitational constant we can establish another relation 

ship between mass and length for example and with Planck constant ′′ℏ′′ we can resolve a 

system of three equations with three parameters and so Planck get the solutions (1), (2) & (3): 

there is a general equivalence between mass, length and time. Space-time can’t be ‘’inert’’ 

and should act on corpuscles. Space-time can’t be only a theatre of interactions between 

corpuscles but it participates and interact with them. 

The Planck meshing of space-time should conduct to the minimum energy in the minimum 

volume of the space-time. If we calculate it i.e. we have a mass 𝑀𝑃 in a volume 𝐿𝑃
3  we get an 

enormous value and anything can’t move in this media: we conclude that Planck meshing of 

space-time is not the good choice, another system should replace it and so one of the constants 

which form the Planck system is a derived constant.  

It is evident that we have particles which have a mass less than Planck mass (for example 

electrons). The constant which should be removed is the gravitational constant: gravitation 

strength is neglected in the subatomic particles.  

We propose to do the meshing of the space-time with three constants ′′ℏ′′, ′′𝑐′′&′′𝑎′′. The 

result is: 

𝑀 =
1

𝑐
. √ℏ. 𝑎   (5)     ,                 

𝐿 = √
ℏ

𝑎
           (6)      ,                

𝑇 =
1

𝑐
. √

ℏ

𝑎
    (7)          . 
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 We can expect that in the MKS system the constant ′′𝑎′′ should have a very low value: if we 

neglect it in the equation (4) we get the classical dynamic law. 

2)Determination of the constant ′′𝒂′′: 

The most evident experience to have an idea about the value of the constant ′′𝑎′′ is to 

determine the density of energy of vacuum in  the Universe by observations and to identify it 

to the theoretical vacuum energy [2]. There is also others experiences which allow us to 

determine this  constant such as the photo-electric experience and the black body radiation  

experience [3]. We will try in the following to determine this constant referring to recent 

cosmology observations. 

2-1)Wave-corpuscle  duality: 

2-1-1)Lorentz transformations: 

Let’s have  a corpuscle of a mass 𝑚 in motion in an inertial referential 𝑅(𝑂, 𝑥, 𝑦, 𝑧, 𝑡). Let’s 

have another inertial referential 𝑅′(𝑂′, 𝑥′, 𝑦′, 𝑧′, 𝑡′) in motion with a speed 𝑉 along the axis 

(𝑂, 𝑥) and that origins are coincident in the beginning of motion . Axis (𝑂, 𝑥)&(𝑂′, 𝑥′) are 

co-linear. 

The Lorentz transformations of space and time between the two referential are [4]: 

𝑥′ =
𝑥−𝑉.𝑡

√1−
𝑉2

𝑐2

            (8) 

𝑡′ =
𝑡−𝑥.𝑉/𝑐2

√1−
𝑉2

𝑐2

           (9)                 or    𝑐. 𝑡′ =
𝑐.𝑡−

𝑉

𝑐
.𝑥

√1−
𝑉2

𝑐2

          (9-bis) 

For  monochromatic plane waves the transformations of wave-vector and frequency are  the 

same of space and time: 

𝑘′ =
𝑘−𝜔.𝑉/𝑐2

√1−
𝑉2

𝑐2

  (10)                     or         𝑐. 𝑘′ =
𝑐.𝑘−

𝑉

𝑐
.𝜔

√1−
𝑉2

𝑐2

       (10-bis) 

𝜔′ =
𝜔−𝑘.𝑉

√1−
𝑉2

𝑐2

       (11) 
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Where:𝑘 & 𝑘′ are respectively the wave-vector in the referential  𝑅& 𝑅′; 

𝜔 & 𝜔′ are respectively the frequency in the referential 𝑅 & 𝑅′. 

2-2-2)The principle of relativity: 

The principle of relativity is that  the equations of nature are invariant by Lorentz 

transformations i.e there is invariance of the action of the corpuscle and also there is 

invariance of phase for plane waves. 

Every theory takes its validity by respecting the following steps: 

1st step–The respect of the  principle of least action i.e. that every physical phenomenon is 

described by a principle of action. The principle of conservation of energy and conservation 

of momentum comes from the least action principle. We should search an action that the 

equations of motion which comes from its minimisation describe the phenomenon in the 

laboratory and Nature. The action of a corpuscle is: 

                                            𝑆𝑐𝑜𝑟𝑝𝑢𝑠𝑐𝑙𝑒 = ∫𝐿(𝑋, �̇�). 𝑑𝑡  (12) 

Where 𝐿(𝑋, �̇�) its Lagrange function.  

2nd step-The respect of the principle of locality i.e. the phenomenon that happen in a region 

of space and time affect directly only their nearest environment. If we act on a system in the 

position (𝑋, 𝑡)  in space-time, the only direct effect is on the nearest infinitely close 

neighbourhood. How to guaranty that a theory respect the principle of locality?: it is done by 

the principle of least action. 

Let’s take the action of a corpuscle as: 

                                         𝑆𝑐𝑜𝑟𝑝𝑢𝑠𝑐𝑙𝑒 = ∫𝐿(𝑋, �̇�, 𝑡). 𝑑𝑡     (13) 

To guaranty the locality the Lagrange function in equation (13) should depend only of the 

spatial coordinates of the system i.e. for a corpuscle it should depend only from its position 

𝑋(𝑡) and its first derivative �̇�(𝑡). The neighbouring  points does not intervene only via  its 

time derivative i.e. at the limit when ∆𝑡 → 𝑧𝑒𝑟𝑜  by [𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡)]/∆𝑡. 

In other terms in a referential, the effect is detected at a distance 𝑥 only after a time 𝑡 and that 

𝑑𝑥

𝑑𝑡
 has a finite value 𝑣(𝑥, 𝑡) which is less or equal to the speed of information 𝑐. 
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3rd step-The respect of the principle of relativity i.e. the equations of motion should be 

invariants by Lorentz transformations. The equations of motion should be invariants in 

inertials referentials i.e. the same equations in different referentials. 

4th step-The respect of the gauge invariance i.e. a change on the system which does not 

affect the action or the equations of motion: it is called a symmetry. Let’s take an example in 

the classical fundamental law of dynamics: 

                                                         𝑭 = 𝑚.
𝑑2𝑿

𝑑𝑡2
    (14) 

This equation remain the same if we translate the origin of coordinates of a fix value or we 

rotate the axles of coordinates of a fixed angles. Which is conserved in classical dynamics is 

the total energy of the corpuscle:   When there is a symmetry there is something which is 

conserved.  

2-2-2-1)The principle of least action: 

2-2-2-1-1)The equations of Euler-Lagrange: 

A corpuscle which have the generalised coordinates {𝑞𝑖 , 𝑖 = 1,2,3} follow a trajectory 

developed in time and  which have the equation [5]: 

𝑞 = 𝑞𝑖(𝑡),   𝑖 = 1,2,3         (15) 

Here referring to the referential  𝑅 we  have (𝑞1 = 𝑥, 𝑞2 = 𝑦, 𝑞3 = 𝑧) . 

The components  of generalised speed are defined as: 

𝑞�̇� =
𝑑𝑞𝑖(𝑡)

𝑑𝑡
 , 𝑖 = 1,2,3       (16) 

The action 𝑆  associated to the corpuscle is defined as: 

𝑆 = ∫ 𝐿(𝑞𝑖 , �̇�𝑖 , 𝑡). 𝑑𝑡              (17) 

Where 𝐿 is a function of 𝑞𝑖, 𝑞�̇� and possible of 𝑡. 

The quantity 𝑆 is  extreme  for the real trajectory of the corpuscle. We have: 

𝑑𝑆 = 0                                  (18) 
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If we put that the 𝑞𝑖 are independents from each else and that the variation of the function 

𝐿(𝑞𝑖, �̇�𝑖, 𝑡)is happened at constant time we get the Euler-Lagrange equations as follows: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞�̇�
) −

𝜕𝐿

𝜕𝑞𝑖
= 0                (19) 

The solutions of equations (19) define the trajectory of the corpuscle. 

The quantity 𝐿 is linked to the energy of the corpuscle an it is called almost the kinetic 

potential. It is the difference  of kinetic energy and the potential energy of the corpuscle in the 

case that  the forces which act on the corpuscle are derived from a potential i.e. they are 

conservatives forces. 

In case that those forces are non conservatives the Euler-Lagrange are [5]: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞�̇�
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖            (20) 

Where 𝑄𝑖 :generalized forces. 

The importance of Lagrange equations is that instead we treat with vectors quantity such as 

forces and accelerations in the classical dynamics, we have  scalar quantities where appear 

only positions and speeds . 

2-2-2-1-2) The Hamilton equations: 

We define the generalised moments as: 

𝑝𝑖 =
𝜕𝐿

𝜕𝑞�̇�
                           (21) 

We define the Hamilton function as: 

𝐻 = ∑𝑞�̇� . 𝑝𝑖 − 𝐿                   (22) 

From  that the 𝑞𝑖&𝑝𝑖 are independents and that 𝐿(𝑞𝑖, �̇�𝑖 , 𝑡) is independent from time  we get 

the equations of Hamilton as the following: 

𝑞�̇� =
𝜕𝐻

𝜕𝑝𝑖
                                (23) 

�̇�𝑖 = −
𝜕𝐻

𝜕𝑞𝑖
                          (24) 
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𝜕𝐻

𝜕𝑡
= −

𝜕𝐿

𝜕𝑡
                      (25) 

The Hamiltonian of a corpuscle is the total  energy of the corpuscle i.e. the sum of its  kinetic  

energy and its potential energy. The advantage of the equations of Hamilton is that they are 

equations of the first order but Lagrange equations are of the second order. Also with the 

equations of Hamilton we deal only with positions and moments, the notion of inertia doesn’t 

appear explicitly.  

2-2-2-2)Equation  of motion: 

Let’s suppose that the corpuscle is in rest in the referential  𝑅′. The action 𝑆′ of the corpuscle 

in this referential is as: 

𝑑𝑆′ = 𝐿′. 𝑑𝑡′                    (26) 

Where 𝐿′ is a constant that we search. In principle this constant is the kinetic potential of the 

corpuscle in the referential 𝑅′. It is different from the conception of the classical mechanics 

which consider the mass is ‘’inert’’ and has no function only to resist to the variation to the 

speed of the corpuscle. 

The principle of relativity requires that: 

𝑑𝑆′ = 𝑑𝑆      (27) 

So we get: 

𝐿. 𝑑𝑡 = 𝐿′. 𝑑𝑡′   (28) 

The position of the corpuscle in the referential  𝑅 is 𝑥 = 𝑉. 𝑡 and so from equation (9) we get: 

𝑑𝑡′ = 𝑑𝑡. √1 −
𝑉2

𝑐2
      (29) 

Replace (29) in (28) we get : 

𝐿 = 𝐿′. √1 −
𝑉2

𝑐2
           (30) 
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For weak speeds we should found the expression of the kinetic energy in the classical 

mechanics. So when 𝑉 ≪ 𝑐 we get from equation (30): 

𝐿 ≈ 𝐿′ −
1

2
. 𝐿′.

𝑉2

𝑐2
        (31) 

It is evident from equation (31) that: 

𝐿′ = −𝑚. 𝑐2                  (32) 

And so from (30) and (31) we have : 

𝐿 = −𝑚. 𝑐2. √1 −
𝑉2

𝑐2
           (33) 

We generalise the equation (33)  for every speed of the corpuscle : 

𝐿 = −𝑚. 𝑐2. √1 −
𝑣2

𝑐2
           (34) 

And that from (34) the moment of the corpuscle is: 

𝒑 =
𝜕𝐿

𝜕𝒗
=

𝑚.𝒗

√1−
𝑣2

𝑐2

                     (35) 

We define the inertia of the corpuscle as the ratio of its moment to its speed: 

𝜉 =
𝑝

𝑣
=

𝑚

√1−
𝑣2

𝑐2

                      (36) 

The energy of the corpuscle is equal to its Hamiltonian in (22) i.e.: 

𝐸 = 𝐻 = 𝒑. 𝒗 − 𝐿 =
𝑚.𝑐2

√1−
𝑣2

𝑐2

= 𝜉. 𝑐2  (37) 

 

If this corpuscle is in motion in the referential 𝑅 it signify that it is under a friction force due 

to vacuum which is the extension of the space-time. Remainder that space-time according to 

Planck system of unities is like a ‘’foam’’ of energy. The same idea of continuous media for 

vacuum (or space-time) is presented by Lev Landau &E.Lifchitz in their theory of fields [6]: 
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to determine the position of a corpuscle we should have a referential filled with an infinite 

number  of bodies everywhere in space and it behave like a ‘’medium’’. Every body had its 

own clock which it function in an arbitrary manner. This system of bodies is the referential of 

the theory of the gravitation i.e. the theory of general relativity as presented by Landau & 

E.Lifchitz. If we choose an arbitrary referential in the theory of general relativity than the 

laws of Nature should be available in any system of coordinates: we will conclude a similar 

conclusion in our actual development. So we summarise that we can predict that there is a 

gravitational  interaction field due to our corpuscle and the strength of this field can determine 

the coupling constant   ′′𝐺′′. Yes constant ′′𝐺′′ is an universal constant and  is also predictable.  

The action of the ‘’foam’’ on the corpuscle is a friction force which act in the opposite 

direction of motion. This force is a serial coefficients of the exponents of the speed of the 

corpuscle. We take only the first exponent i.e. the friction force is as: 

𝒇 = −𝑎. 𝒗                    (38) 

This friction is of course independent from the choice of the corpuscle i.e. it is universal. The 

coefficient of friction ′′𝑎′′ is declared as a new universal constant.  

We associate to the corpuscle an inertial time as: 

 

𝜉 = 𝑎. 𝜏                   (39) 

Its inertial time in rest is as : 

𝑚 = 𝑎. 𝜏0                (40) 

Idem for inertial length as : 

𝑙 = 𝑐. 𝜏                    (41) 

And inertial length in rest as : 

𝑙0 = 𝑐. 𝜏0 =
𝑚.𝑐

𝑎
      (42) 

We have always this relation ship for inertial time : 
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𝜏 =
𝜏0

√1−
𝑣2

𝑐2

                (43) 

It is very easy to verify that equation (43) is invariant by Lorentz transformations i.e. we have 

in referential 𝑅′ the inertial time of the corpuscle is: 

𝜏′ =
𝜏0

√1−
𝑣′2

𝑐2

           (44) 

Where : 

𝑣′ =
𝑑𝑥′

𝑑𝑡′
     (45) 

Proof: 

We can consider that the speed of the corpuscle is constant between the instant 𝑡 and 𝑡 + 𝑑𝑡 in 

the referential 𝑅 which corresponds to the instants 𝑡′ and 𝑡′ + 𝑑𝑡′ in the referential ′ . From 

equation (9) we get: 

𝑑𝑡′ =
1−𝑣.𝑉/𝑐2

√1−
𝑉2

𝑐2

. 𝑑𝑡  (46) 

If we indicate by 𝜏′ the inertial time of the corpuscle in the referential 𝑅′ and by 𝜏 its inertial 

time in the referential 𝑅 than from (46) we deduce that: 

𝜏′ =
1−𝑣.𝑉/𝑐2

√1−
𝑉2

𝑐2

. 𝜏  (47) 

Replace (43) the expression of 𝜏 in (47) than we have: 

𝜏′ =
𝜏0

√1−
(𝑣−𝑉)2

(1−
𝑣.𝑉

𝑐2
)2.𝑐2

    (48) 

Let’s determinate the speed 𝑣′ of the corpuscle. From (8) and (9) we have: 

𝑣′ =
𝑑𝑥′

𝑑𝑡′
=

𝑣−𝑉

1−
𝑣.𝑉

𝑐2

     (49) 

Replace (49)  in (48)  we get: 
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𝜏′ =
𝜏0

√1−
𝑣′2

𝑐2

            (50) 

And that’s CQFD. 

The constancy  of the speed ′′𝑐′′ implies the constancy of the energy and momentum in 

inertial referential as the following: 

𝐸2 − 𝑝2. 𝑐2 = 𝑚2. 𝑐4   (51) 

And also the constancy of the pseudo-module [7] : 

𝑑𝑠2 = 𝑐2. 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2    (52) 

The moment can be written as the following: 

𝒑 = 𝜉. 𝒗 =
𝐸

𝑐2
. 𝒗                                   (53)  

It is evident that a corpuscle with a speed 𝑐 has a moment 
𝐸

𝑐
 according to (53). 

The Hamiltonian is as: 

𝐻 = 𝑎. 𝜏. 𝑐2                                        (54) 

If we add another dimension to the referential 𝑅 which is the inertial position ′′𝑐. 𝜏′′ of the 

corpuscle , the speed  of the corpuscle along this dimension is from (23): 

𝜕𝐻

𝜕(𝑎.𝜏.𝑐)
= 𝑐                                      (55) 

Where ′′𝑎. 𝜏. 𝑐′′ is the moment of the corpuscle along its inertial dimension. 

The friction force along this dimension is from (24) as: 

−𝜕𝐻

𝜕(𝑐.𝜏)
= −𝑎. 𝑐                                 (56) 

It is like that the corpuscle had a speed of ′′𝑐′′ along its inertial dimension and there is always 

a friction force equal to ′′ − 𝑎. 𝑐′′ which act on along this dimension. 
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It is evident that the equation of motion of the corpuscle in the three dimensional space  is as 

(thinking in classical manner) : 

𝑑𝒑

𝑑𝑡
= 𝒇 − 𝑎. 𝒗      (57)                or      

𝑑

𝑑𝑡
(𝒑 + 𝑎. 𝑿) = 𝒇         (57-bis) 

Where 𝒇 : all unknown forces which act on the corpuscle ; 

−𝑎. 𝒗 : an universal friction force which act always in the opposite side of the direction of 

motion due to vacuum which the same the space-time. 

𝑿: the position of the corpuscle. 

But equation (57) is non relativist invariance we can’t take it and we will see how to replace it 

to get the kinetic energy of the corpuscle as in classical mechanics. 

Let’s remark that when we write the position 𝑿of the corpuscle in fourth space dimensions as: 

𝑿 = (𝑐. 𝜏, 𝑥, 𝑦, 𝑧)    (58) 

The speed of the corpuscle in fourth dimensions is : 

𝑽 = (𝑐.
𝑑𝜏

𝑑𝑡
, �̇�, �̇�, �̇�)  (59) 

This speed should coincide to ′′𝑐′′ along the inertial dimension when the energy of the 

corpuscle is varying. So we have: 

𝑑𝜏

𝑑𝑡
= 1              (60) :when the energy of the corpuscle is varying; 

𝑑𝜏 = 0             (61) : when the energy of the corpuscle is constant (i.e. its three 

dimensional speed is constant in module) . 

So the speed in fourth dimensions is : 

𝑽=(c,�̇�, �̇�, �̇�) = (𝑐, 𝒗)       (62) 

The moment in fourth dimensions is : 

𝑷 = 𝑎. 𝜏. 𝑽 = (𝑎. 𝜏. 𝑐, 𝒑) = 𝑚. 𝑐. (
1

√1−
𝑣2

𝑐2

,
𝒗

𝑐.√1−
𝑣2

𝑐2

) = 𝑚. 𝑐. 𝑢𝑖 = 𝑝𝑖            (63) 
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Where 𝑢𝑖 is the quadri-dimensional speed in the forth dimensions space-time (𝑐𝑡, 𝑥, 𝑦, 𝑧).  

𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑠
                                                                                                (64) 

With  𝑥0 = 𝑐. 𝑡, 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧                                              (65) 

         𝑑𝑠 = 𝑐. 𝑑𝑡.√1 −
𝑣2

𝑐2
                                                                     (66):deduced 

from (52). 

And: 

𝑝𝑖 = 𝑚. 𝑐. 𝑢𝑖 = (
𝐸

𝑐
, 𝒑)                                                                          (67) 

The square of the vector 𝑥𝑖 is the following pseudo-module: 

(𝑥0)2 − (𝑥1)2 − (𝑥2)2 − (𝑥3)2                                                           (68) 

This square doesn’t change for every fixed rotations of the fourth coordinates system where 

the Lorentz transformations are a particular case (We follow the same analysis done by Lev 

Landau & E.Lifchitz in their book “theory of fields” ). 

In general we call a quadri-vector  𝐴𝑖 the fourth quantities 𝐴0, 𝐴1, 𝐴2, 𝐴3 when in fourth 

transformations of coordinates system they are transformed as the 𝑥𝑖. In Lorentz 

transformations we have: 

𝐴0′ =
𝐴0−

𝑉

𝑐
.𝐴1

√1−
𝑉2

𝑐2

      ,      𝐴1′ =
𝐴1−

𝑉

𝑐
.𝐴0

√1−
𝑉2

𝑐2

      ,     𝐴2
′
= 𝐴2  ,    𝐴3′ = 𝐴3         (69) 

Here 𝑉  is the three dimensional speed of 𝑅′  (𝑂′, 𝑐. 𝑡′, 𝑥′, 𝑦′, 𝑧′) . 

The square of every quadri-vector is the pseudo-scalar  as defined in (52). 

In order to simplify writing equations,  we introduce another kind of quadri-vector as the 

following: 

𝐴0 = 𝐴
0,    𝐴1 = −𝐴

1,    𝐴2 = −𝐴
2,        𝐴3 = −𝐴

3                      (70) 

The square of the quadric-vector is now as the following: 
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𝐴𝑖𝐴𝑖 = 𝐴
0𝐴0 + 𝐴

1𝐴1 + 𝐴
2𝐴2 + 𝐴

3𝐴3                                        (71) 

The quantities 𝐴𝑖 are called the contra-variant corposants and the quantities 𝐴𝑖 are called the 

covariant corposants of the quadri-vector. 

The scalar product of two quadric-vectors is as the following: 

𝐴𝑖𝐵𝑖 = 𝐴
0𝐵0 + 𝐴

1𝐵1 + 𝐴
2𝐵2 + 𝐴

3𝐵3 = 𝐴𝑖𝐵
𝑖                           (72) 

The product 𝐴𝑖𝐵𝑖 is an invariant scalar for every fixed rotations of coordinates system. 

So for a corpuscle its four speed is : 

𝑢0 = 𝑢
0 =

1

√1−
𝑣2

𝑐2

   ,  

 𝑢1 = −𝑢
1 =

−�̇�

𝑐.√1−
𝑣2

𝑐2

 , 

  𝑢2 = −𝑢
2 =

−�̇�

𝑐.√1−
𝑣2

𝑐2

    ,  

 𝑢3 = −𝑢
3 =

−�̇�

𝑐.√1−
𝑣2

𝑐2

       (73) 

We remark that: 

𝑑𝑠2 = 𝑑𝑥𝑖𝑑𝑥
𝑖                                                      (74) 

So we get that: 

𝑢𝑖𝑢𝑖 = 1         ,  𝑝𝑖𝑝𝑖 = 𝑚
2. 𝑐2                          (75) 

The fourth acceleration of the corpuscle is defined as: 

𝑤𝑖 =
𝑑𝑢𝑖

𝑑𝑠
=
𝑑2𝑥𝑖

𝑑𝑠2
                                                    (76) 

Deriving (75) we get: 

𝑢𝑖𝑤
𝑖 = 𝑢𝑖𝑤𝑖 = 0                                                (77) 
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We define the quadri- force vector as : 

𝑔𝑖 =
𝑑𝑝𝑖

𝑑𝑠
= 𝑚. 𝑐.

𝑑𝑢𝑖

𝑑𝑠
                                            (78) 

Its elements verify the identity:  

   𝑔𝑖𝑢
𝑖 = 0                                                        (79) :deduced from (77) 

We have: 

𝑔𝑖 =
𝑑𝑝𝑖

𝑑𝑠
= 𝑚. 𝑐.

𝑑𝑢𝑖

𝑑𝑠
= (

𝑭.𝒗

𝑐2.√1−
𝑣2

𝑐2

,
𝑭

𝑐.√1−
𝑣2

𝑐2

)             (80) 

With: 

    𝑭 =
𝒅𝒑

𝑑𝑡
=

𝑑

𝑑𝑡
(
𝑚.𝒗

√1−
𝑣2

𝑐2

)                                         (81) :the ordinary three-dimensional  

force      

Lets develop the expression of 𝑔𝑖 : 

𝑔0 = 𝑔
0 =

1

𝑐2.√1−
𝑣2

𝑐2

.
𝑑𝐸

𝑑𝑡
      with    𝐸 =

𝑚.𝑐2

√1−
𝑣2

𝑐2

    &   𝑭. 𝒗 =
𝑑𝐸

𝑑𝑡
         

𝑔1 = −𝑔
1 =

−1

𝑐.√1−
𝑣2

𝑐2

.
𝑑

𝑑𝑡
(
𝑚.�̇�

√1−
𝑣2

𝑐2

)  

𝑔2 = −𝑔
2 =

−1

𝑐.√1−
𝑣2

𝑐2

.
𝑑

𝑑𝑡
(
𝑚.�̇�

√1−
𝑣2

𝑐2

)  

𝑔3 = −𝑔
3 =

−1

𝑐.√1−
𝑣2

𝑐2

.
𝑑

𝑑𝑡
(
𝑚.�̇�

√1−
𝑣2

𝑐2

)               (82) 

Replace (73) & (82)  in (82) we get: 
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0 = 𝑔𝑖𝑢
𝑖 =

1

𝑐2.(1−
𝑣2

𝑐2
)
.
𝑑𝐸

𝑑𝑡
−

�̇�

𝑐2.(1−
𝑣2

𝑐2
)
.
𝑑

𝑑𝑡
(

𝑚.�̇�

√1−
𝑣2

𝑐2

) −
�̇�

𝑐2.(1−
𝑣2

𝑐2
)
.
𝑑

𝑑𝑡
(

𝑚.�̇�

√1−
𝑣2

𝑐2

) −

�̇�

𝑐2.(1−
𝑣2

𝑐2
)
.
𝑑

𝑑𝑡
(

𝑚.�̇�

√1−
𝑣2

𝑐2

)        

𝑑𝐸

𝑑𝑡
− �̇�.

𝑑

𝑑𝑡
(
𝐸

𝑐2
. �̇�) − �̇�.

𝑑

𝑑𝑡
(
𝐸

𝑐2
. �̇�) − �̇�.

𝑑

𝑑𝑡
(
𝐸

𝑐2
. �̇�) = 0      (83) 

Suppose that 𝑣 ≠ 𝑐 than (83) becomes: 

𝑑𝐸

𝑑𝑡
−
(�̇�2+�̇�2+�̇�2)

𝑐2
.
𝑑𝐸

𝑑𝑡
−

�̇�

𝑐2
. 𝐸.

𝑑�̇�

𝑑𝑡
−

�̇�

𝑐2
. 𝐸.

𝑑�̇�

𝑑𝑡
−

�̇�

𝑐2
. 𝐸.

𝑑�̇�

𝑑𝑡
= 0   (84) 

So: 

𝑑𝐸

𝑑𝑡
(1 −

𝑣2

𝑐2
) −

𝐸

2.𝑐2
.
𝑑𝑣2

𝑑𝑡
= 0                                                   (85) 

Let’s do the following balance in equation (85): 

*If  𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 than we get from (85) that 0 = 0 (nothing) but we are in contradiction to 

our hypothesis that the energy is varying so we should exclude this case. 

*The energy  is varying so we have 
𝑑𝐸

𝑑𝑡
=

𝑑

𝑑𝜏
(𝑎. 𝑐2. 𝜏) = 𝑎. 𝑐2 than we get from 

(85)&(43): 

𝑎. 𝑐2. (1 −
𝑣2

𝑐2
) −

𝑚

2.√1−
𝑣2

𝑐2

.
𝑑𝑣2

𝑑𝑡
= 𝑎. 𝑐2. (1 −

𝑣2

𝑐2
) −

1

√1−
𝑣2

𝑐2

.
𝑑𝜀

𝑑𝑡
= 0           (86) 

With: 

𝜀 =
1

2
. 𝑚. 𝑣2                             (87) 

And : 

  𝑑𝑡 =
1

𝑎.𝑐2
.
𝑑𝜀

√1−
𝑣2

𝑐2

                       (88) 
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So we get from (86), (87) & (88) that: 

 1 −
𝑣2

𝑐2
= 1                               (89) 

It comes that the corpuscle should be in rest (𝑣 = 0) but we have exclude the constant speed. 

From (86) we have: 

 
𝑑𝜀

𝑑𝑡
= 𝑎. 𝑐2. (1 −

𝑣2

𝑐2
)

3

2
              (90) 

To resolve  the dilemma of equation (90) that the energy is varying and the speed of the 

corpuscle is approximately  constant is that the speed of the corpuscle vary slowly close to the 

speed of light ′′𝑐′′:it is the balance which we search. I think that this dilemma is similar to the 

dilemma of wave-corpuscle duality: how  to have a corpuscle present in a position (𝑡, 𝒙) and 

the same time it is a plane wave present everywhere, the solution was that the speed of the 

corpuscle should be identified to the group speed of a packet of plane waves. 

Another solution is that the speed of the corpuscle is varying slowly nearly zero to be 

approximately conform to equation (89). In this case we have: 

𝜀 ≈
1

2
. 𝑚. 𝑣2 −

3

4
. 𝑚.

𝑣4

𝑐2
         (91) 

Let’s remark that when the corpuscle has a speed closely to ′′𝑐′′ it signify that a corpuscle is 

like light and it can have a wave behaviour. It signify also that it should be  maintained in 

motion by an external force equal approximately to ′′𝑎. 𝑐′′. 

Let’s define the proper time ′′𝜁′′of the corpuscle as the following: 

𝑑𝜁 =
𝑑𝑠

𝑐
= 𝑑𝑡.√1 −

𝑣2

𝑐2
                             (92) 

The time ′′𝜁′′ is the time indicated by a clock moving with the corpuscle at the same speed: it 

is like it is attached to the corpuscle. Between two positions 𝐴 & 𝐵  is space-time we have: 

𝜁𝐵 − 𝜁𝐴 =
1

𝑐
. ∫ 𝑑𝑠
𝑡𝐵
𝑡𝐴

= ∫ √1 −
𝑣2

𝑐2
𝑡𝐵
𝑡𝐴

. 𝑑𝑡    (93) 
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We remark that  the proper time is always less  the time of the referential of motion :we 

conclude  that a mobile clock  function slowly than a fixed clock. 

The laws of Nature are invariants in inertial referentials. The referential of the fixed clock is 

an inertial referential but the referential of the  mobile clock is not an inertial referential.  If 

the motion of the corpuscle is happened approximately in constant speed than its universe line 

is a straight line parallel to the axle of time. A universe line of a corpuscle is its trajectory  in 

four-dimensional space-time constructed by the universe points from which the corpuscle 

passes . A universe point  is the three dimensional space coordinates 𝑥, 𝑦, 𝑧  and the time 𝑡 

when the corpuscle passes. 

The interval of time of any clock is of course 
1

𝑐
. ∫ 𝑑𝑠 among its universe line (Suppose that 

this clock is attached to a corpuscle). The universe line of a fixed clock in an inertial 

referential is a straight line parallel to the axle of time. In another hand we have that the fixed 

clock indicate always a time interval superior than the interval time indicated by the mobile 

clock. It comes that the integral ∫𝑑𝑠 between two universe points presents its maximum value 

if those points  are linked by a universe straight line. We suppose that those points and lines 

which links them are that the elementary intervals 𝑑𝑠 along those lines are times genre. 

An interval is a time genre  when the module of the line which link two universe points 

(𝑐. 𝑡1 , 𝑥1, 𝑦1, 𝑧1 ) and (𝑐. 𝑡2,𝑥2,𝑦2, 𝑧2) is positive. 

This module is the following square: 

𝑠12
2 = 𝑐2. 𝑡12

2 − 𝑙12
2       (94) 

With :    𝑡12 = 𝑡2 − 𝑡1       and     𝑙12
2 = (𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2 

If the square (94) is negative than the interval is a space genre. 

Two events had a causal relation only if the interval which separate them is time genre. This 

result comes from that any interaction can’t spread with a speed more than the light speed. 

The notions of  “before’’ and “ after” had an absolute sense. 

In our case the corpuscle can’t be in motion in constant speed because its energy is varying 

continuously. Than to be conform with the image of constant speed the motion of the 

corpuscle should be in curved trajectory to get the same length interval as in straight motion 
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in constant speed. An important conclusion that the motion of free massive corpuscle never 

can’t be in straight line: it is always curved. This phenomenon is called universal gravitation: 

the vacuum curve the motion of  every massive corpuscle. 

The same analysis can be done referring to the proper time of the corpuscle. From (92) we 

have: 

∫𝑑𝑠 = ∫ 𝑐. 𝑑𝜁 = ∫√1 −
𝑣2

𝑐2
𝑐. 𝑑𝑡 < ∫ 𝑐. 𝑑𝑡   (95) 

If the speed is augmenting continuously than from (95) we get an interval less than the case of 

constant speed and to be in coherence with the image of constant speed than an observer 

attached to the corpuscle see the light in curved motion. 

To be coherent from the beginning, let’s search the action of the corpuscle in the quadric-

dimensional  space-time. The first idea which comes is that this action is proportional to the  

integral of  the interval 𝑑𝑠. We should at first verify that 𝑑𝑠′ = 𝑑𝑠 to be conform with (27). 

We can take it also as a demonstration of equation (27) by following the same path of Lev 

Landau & E.Lifchitz in their book “Theory of fields”. 

In the referential 𝑅′ we have also from equation (94): 

𝑠′12
2 = 𝑐2. 𝑡′12

2 − 𝑙′12
2     (96) 

With :    𝑡′12 = 𝑡′2 − 𝑡′1  and     𝑙′12
2 = (𝑥′2 − 𝑥′1)

2 + (𝑦′2 − 𝑦′1)
2 + (𝑧′2 − 𝑧′1)

2 

For light which move with constant speed 𝑐 in the two inertial referentials 𝑅 & 𝑅′ we have of 

course that: 

   𝑠′12
2 = 𝑠12

2 = 0           (97) 

We can consider that equation (94) or equation (52) are the intervals between two points in 

the quadric-dimensional space-time (𝑐𝑡, 𝑥, 𝑦, 𝑧) but with a special form geometry: The 

Minkowski geometry. 

From (97) it is evident that if 𝑑𝑠 = 0 in an inertial referential that 𝑑𝑠′ = 0 in any other 

inertial referential. In another hand 𝑑𝑠 & 𝑑𝑠′ are infinitely little in the same order that we can 

consider 𝑑𝑠2 & 𝑑𝑠′2 are mutually proportional: 
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𝑑𝑠2 = 𝛾. 𝑑𝑠′2                 (98) 

The factor of proportionality 𝛾 is only a function of the absolute relative speed of the two 

referentials and is not a function of space coordinates and time coordinate otherwise the 

points of space-time will not be equivalents as implies the homogeneity of space-time. This 

factor is also independent from the sens of the relative speed because this makes default of the 

isotropy of space-time . 

Let’s have three inertial referentials 𝑅, 𝑅1 & 𝑅2 and let’s take 𝑉1 & 𝑉2  the relatives speeds of 

respectively 𝑅1 & 𝑅2  in the referential 𝑅  .So we have: 

𝑑𝑠2 = 𝛾(𝑉1). 𝑑𝑠1
2      &      𝑑𝑠2 = 𝛾(𝑉2). 𝑑𝑠2

2              (99) 

We have also: 

                                  𝑑𝑠1
2 = 𝛾(𝑉12). 𝑑𝑠2

2                  (100) 

Where 𝑉12 the absolute speed of 𝐾2 referring to 𝐾1. So from (99) & (100) we get: 

𝛾(𝑉2)

𝛾(𝑉1)
= 𝛾(𝑉12)                          (101) 

But 𝑉12 depends not only of the modules of 𝑽𝟏& 𝑽𝟐 but also of the angle between the two 

vectors. As this angle doesn’t exist  in the first member of equation (101), so equation (101) 

can’t be verified if only the function 𝛾(𝑉) is equal to one. So we have: 

 𝑑𝑠2 = 𝑑𝑠′2                              (102) 

We return now to search the action of the corpuscle in four dimensions. For a free corpuscle 

i.e. a corpuscle which is not under any force, the action is an integral of a scalar. The unique 

convenient scalar is the  interval 𝑑𝑠  .So the action  should be  as: 

𝑆 = 𝛼. ∫ 𝑑𝑠
𝐵

𝐴
                            (103) 

With : 𝛼 a constant which characterise the corpuscle. 

The integral ∫ 𝑑𝑠
𝐵

𝐴
 has its great value along a universe straight line. Along a curved line this 

integral will be more great. For the principle of least action of a mechanical system we can 
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define an integral 𝑆 called action which presents a minimum for real motion i.e. its variations 

𝛿𝑆 are equal to zero. It comes that the constant 𝛼 should be negative. 

We have: 

       𝛿𝑆 = 𝛼. ∫ 𝛿. 𝑑𝑠
𝐵

𝐴
= 0     (104) 

Or from (74) we have: 

𝑑𝑠 =
𝑑𝑥𝑖𝑑𝑥

𝑖

𝑑𝑠
   so 𝛿𝑑𝑠 =

𝑑𝑥𝑖𝛿𝑑𝑥
𝑖

𝑑𝑠
= 𝑢𝑖𝑑𝛿𝑥

𝑖  

 Than : 

      𝛿𝑆 = 𝛼. ∫ 𝑢𝑖𝑑𝛿𝑥
𝑖𝐵

𝐴
= 𝛼. ∫ [𝑑(𝑢𝑖𝛿𝑥

𝑖) − 𝛿𝑥𝑖𝑑𝑢𝑖
𝐵

𝐴
]      (105) 

So: 

    𝛿𝑆 = 𝛼. [𝑢𝑖𝛿𝑥
𝑖]𝐴
𝐵 − 𝛼. ∫ 𝛿𝑥𝑖

𝑑𝑢𝑖

𝑑𝑠
𝑑𝑠

𝐵

𝐴
                    (106) 

As in classical mechanics to find the equations of motions of a corpuscle we should compare 

many trajectories of the corpuscle which all pass from two given points i.e. satisfying the limit 

conditions that (𝛿𝑥𝑖)𝐴 = (𝛿𝑥
𝑖)𝐵 = 0. The real trajectory of the corpuscle is deduced from 

the condition that 𝛿𝑆 = 0. Than we conclude from (106) that 
𝑑𝑢𝑖

𝑑𝑠
= 0 expressing the 

constancy of the speed of a free corpuscle in the quadri-dimensional form of coordinates.  

To determinate the variation of the action as a function of coordinates , we put that the point 𝐴 

is given as (𝛿𝑥𝑖)𝐴 = 0 and that the point 𝐵 is any point of space-time which satisfy the 

equation of motion i.e. its belong to the real trajectory of the corpuscle. In consequence the 

integral in (106) is equal to zero and by putting that (𝛿𝑥𝑖)𝐵 = 𝛿𝑥
𝑖  it comes : 

     𝛿𝑆 = −𝛼. 𝑢𝑖 . 𝛿𝑥
𝑖             (107) 

Referring to classical mechanics the partials derivations 
𝜕𝑆

𝜕𝑥
,
𝜕𝑆

𝜕𝑦
 ,
𝜕𝑆

𝜕𝑧
  are the components of 

the moment vector of the corpuscle and −
𝜕𝑆

𝜕𝑡
  is its energy. So it comes that the covariant 

components of the four moment of the corpuscle is: 
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𝑝𝑖 = −
𝜕𝑆

𝜕𝑥𝑖
= −𝛼. 𝑢𝑖 = (

𝐸

𝑐
, −𝒑)                         (108) 

So we deduce from (108) and (73)  that: 

𝛼 = −𝑚. 𝑐                                        (109) 

The transformations of energy and moment are as follows: 

𝐸′ =
𝐸−𝒑.𝑽

√1−
𝑉2

𝑐2

                                        (110) 

𝒑′ =
𝒑−

𝐸

𝑐2
.𝑽

√1−
𝑉2

𝑐2

                                         (111) 

Equations (110) ,(111) and (75)  are what implies the relativist invariance of equation of 

motion deduced from the principle of least action in four dimensions .  

To find the equation of motion it comes from (75) that: 

𝑝𝑖𝑝𝑖 =
𝜕𝑆

𝜕𝑥𝑖

𝜕𝑆

𝜕𝑥𝑖
=

1

𝑐2
(
𝜕𝑆

𝜕𝑡
)2 − (

𝜕𝑆

𝜕𝑥
)2 − (

𝜕𝑆

𝜕𝑦
)2 − (

𝜕𝑆

𝜕𝑧
)2 = 𝑚2. 𝑐2              (112) 

Equation (112) is the Hamilton-Jacobi  relativist equation of motion of the corpuscle. . 

We have obtain the equation of motion (112) with the hypothesis that the quadric-dimensional 

speed of the corpuscle 
𝑑𝑢𝑖

𝑑𝑠
= 0. But we had seen that a massive corpuscle can’t never move 

in a straight line with constant speed otherwise it should be like light or it is in rest. Equation 

of motion is not the good equation, it is only a step to get the good equation. 

2-2-2-3)Theory of fields:   

Let’s develop equation (57) and see what does it mean: 

𝒇 =
𝑑2(𝑎.𝜏.𝒙)

𝑑𝜏2
= 𝑎. 𝜏.

𝑑2𝒙

𝑑𝜏2
+ 2. 𝑎. 𝒗 = 𝑎. 𝜏.

𝑑𝒗

𝑑𝜏
+ 2. 𝑎. 𝒗 =

𝑑𝟐(𝜉.𝒙)

𝑑𝑡𝟐
=
𝑑𝒑

𝑑𝑡
− 𝑎. 𝒗    (113) 

Let’s note that equation (113) is independent from the choice of the origin of the referential. 

Let’s develop the conventional definition of the force: 
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𝑑𝒑

𝑑𝑡
=
𝑑(𝑎.𝜏.𝒗)

𝑑𝑡
= 𝑎. 𝒗 + 𝑎. 𝜏.

𝑑𝒗

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑚.𝒗

√1−
𝑣2

𝑐2

) =
𝑚

√1−
𝑣2

𝑐2

.
𝑑𝒗

𝑑𝑡
+

𝑚.𝒗

2.(1−
𝑣2

𝑐2
)3/2
.
𝑑𝑣2

𝑐2.𝑑𝑡
  (114) 

It comes that: 

𝑎. 𝒗 =
𝑚.𝒗

2.(1−
𝑣2

𝑐2
)3/2
.
𝑑𝑣2

𝑐2.𝑑𝑡
      (115) 

So: 

𝑎 =
𝑚

2.(1−
𝑣2

𝑐2
)3/2
.
𝑑𝑣2

𝑐2.𝑑𝜏
        (116) 

We have: 

𝑑𝜏 = 𝑑 (
𝜏0

√1−
𝑣2

𝑐2

) =
𝜏0

2.(1−
𝑣2

𝑐2
)3/2
.
𝑑𝑣2

𝑐2
  (117) 

Replace (117) in (116) we have: 

𝑎 =
𝑚

𝜏0
        (118) 

We get nothing special. 

Let’s  define the following force as: 

𝑮 =
𝑑𝑷

𝑑𝑠
= (

1

𝑐2.√1−
𝑣2

𝑐2

.
𝑑

𝑑𝑡
(
𝑚.𝑐2

√1−
𝑣2

𝑐2

) ,
1

𝑐.√1−
𝑣2

𝑐2

.
𝑑𝒑

𝑑𝑡
) = (

𝑑𝑊

𝑑𝑡

𝑐2.√1−
𝑣2

𝑐2

,
𝑭

𝑐.√1−
𝑣2

𝑐2

)     (119) 

With that: 

𝑭 =
𝑑𝒑

𝑑𝑡
                                            (120): the classical definition of the force. 

𝑑𝑊

𝑑𝑡
=
𝑑

𝑑𝑡

(

 
 𝑚.𝑐2

√1−𝑣
2

𝑐2
)

 
 
= 𝑑𝐻

𝑑𝑡
                       (121) 
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If we adopt the same definition in classical mechanics that 𝑊 is the work of the classical force 

𝑭 than we have: 

𝑭. 𝒗 =
𝑑𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑡
                                         (122) 

We have also this relation: 

𝒑 =
𝐸

𝑐2
. 𝒗                                                    (123) 

We have also the following invariant as a consequence of the invariance of the speed of light: 

𝐸2

𝑐2
− 𝑝2 = 𝑚2. 𝑐2                                         (124) 

So from (124) and (123) we get: 

𝑣2 = 𝑐2 −
𝑚2.𝑐6

𝐸2
                                           (125) 

From (119) we have: 

𝒇. 𝒗 = 𝑭. 𝒗 − 𝑎. 𝑣2 =
𝑑𝐸

𝑑𝑡
− 𝑎. 𝑐2 −

𝑎.𝑚2.𝑐6

𝐸2
=
𝑑𝐸

𝑑𝑡
− 𝑎. 𝑐2. (2 −

𝑣2

𝑐2
) =

𝑑𝐸

𝑑𝑡
− 𝑎. 𝑣2   

(126)    

  It comes that: 

𝑣 = 𝑐                                                           (127) 

The speed of the corpuscle is equal to ′′𝑐′′ only referring to its proper time but the referential 

which is attached to the corpuscle is not an inertial referential. The only way to get out from 

this contradiction is to accept that the corpuscle can have a wave behaviour like light in a 

curved line motion. Along its inertial time coordinate the corpuscle is like light and had the 

speed ′′𝑐′′ . It is like maintained in motion with a force: 

𝑓 = 𝑎. 𝑐                                                         (128) 

 

The work of this force along the inertial length of the corpuscle is:  
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∆𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑓. ∆𝑙                                          (129) 

With : 

∆𝑙 = 𝑙 − 𝑙0 = 𝑐(𝜏 − 𝜏0) ≈
1

2
.
𝜏0.𝑣

2

𝑐
    if 𝑣 ≪ 𝑐 (130)  

Of course the force 𝑓 = 𝑎. 𝑐 respect relativist invariance. This force ‘’maintain’’ the 

corpuscle in motion with a speed 𝑐 along its inertial coordinate. In the four dimensions space-

time the motion of the corpuscle is in a curved universe line but we can consider this motion 

is constant between the time 𝑡 and 𝑡 + 𝑑𝑡  and the corpuscle is maintained in motion by the 

force 𝒇 = 𝑎. 𝒗 just in this laps of time. At the same time the corpuscle can have a waving 

behaviour. 

Let’s suppose that the corpuscle is in constant speed. The characteristics of a plane wave is its 

frequency 𝜔  and wave-vector  . We can form a four-vector 𝑘𝑖  as the following: 

𝑘0 =
𝜔

𝑐
 , 𝑘1 = 𝑘𝑥   , 𝑘

2 = 𝑘𝑦   , 𝑘
3 = 𝑘𝑧          (131) 

Of course  the four components should have the same dimension. 

If the corpuscle can have a waving behaviour necessary there is a relation ship between its 

four dimension moment and its four dimension wave-vector: 

𝑝𝑖 = 𝛽. 𝑘𝑖                                                            (132) 

Where :      𝛽: a new universal constant . 

So we have: 

𝐸

𝑐
= 𝛽.

𝜔

𝑐
                                                                     (133) 

𝒑 = 𝛽. 𝒌                                                                    (144) 

It comes that from equation (51) : 

(𝛽.
𝜔

𝑐
)2 − (𝛽. 𝑘)2 = (𝑚. 𝑐)2                                    (145) 

In other terms equation (145) becomes: 
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𝜔2

𝑐2
− 𝑘2 = (

𝑚.𝑐

𝛽
)2                                                    (146) 

The wave-vector  associated to the corpuscle is not a linear function of the frequency i.e. the 

medium in which the corpuscle move is a dispersive  medium. A dispersive medium for 

waves correspond for  the corpuscle to a viscous medium : there is friction in space-time and 

this doesn’t surprise us. 

The group speed of the wave is  as defined  : 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
=
𝑑𝜔

𝑑𝐸
.
𝑑𝐸

𝑑𝑘
= 𝑣                                        (147) 

The phase speed is as defined: 

𝑣𝑓 =
𝜔

𝑘
=
𝛽

𝑝
. 𝑐. √

𝑝2

𝛽2
+
𝑚2.𝑐2

𝛽2
= 𝑐.√1 +

𝑚2.𝑐2

𝑝2
= 𝑐. √1 +

𝑐2

𝑣2
. (1 −

𝑣2

𝑐2
) =

𝑐2

𝑣
  (148)                                                         

The corpuscle is like a packet of waves which are reinforced around its position and  

annihilate themselves above. This condition requires that: 

∆𝑘𝑥. ∆𝑥 ≥ 1   , ∆𝑘𝑦. ∆𝑦 ≥ 1    , ∆𝑘𝑧 . ∆𝑧 ≥ 1                   (149) 

∆𝜔. ∆𝑡 ≥ 1                                                                      (150) 

Where       ∆𝑘: the uncertainty  about the wave-vector; 

                  ∆𝑋: the uncertainty about the position of the corpuscle; 

                 ∆𝜔: the uncertainty about the frequency (i.e. about the energy of the corpuscle) 

                  ∆𝑡: the uncertainty about the time. 

The equation of motion is: 

𝑑𝒑

𝑑𝑡
= 𝒇 − 𝑎. 𝒗                (151) 

Which is only valid locally in the position 𝑿± ∆𝑿 at the time 𝒕 ± ∆𝒕 .So this equation can’t 

be the solution to found the real trajectory of the corpuscle. The only way to found the 
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trajectory of the corpuscle is to determine its action i.e. to apply the principle of least action in 

a curved space-time and respecting the principle of uncertainty (149) &(150). 

2-2-2-3-1)Motion of a charged corpuscle  in an electromagnetic field: 

In the interaction of a charged corpuscle with an electromagnetic field we consider only its 

electric charge 𝑒  which can be positive, negative or equal to zero and  we neglect its spin the 

intrinsic momentum of the corpuscle. 

The electromagnetic field is characterised by the quadric-potential 𝐴𝑖 which its components 

are a function of coordinates and time. The action of the corpuscle  is the sum of the action 

(103) for a free corpuscle and the action of the electromagnetic field: 

𝑆 = ∫ (−𝑚𝑐. 𝑑𝑠 − 𝛾.
𝑒

𝑐
𝐴𝑖𝑑𝑥

𝑖)
𝐵

𝐴
        (152) 

The factor 
1

𝑐
  is chosen for commodity. 

The coefficient 𝛾  is a conversion factor since there is not any known relation ship between 

the potential vector or the electric charge with the MKS system or cgs system. The only fact 

which we know is that gravitational field is acting in great scale and electromagnetic field is 

acting in microscopic scale.  

The time component of the quadric-potential is the scalar potential of the field and it is noted 

𝐴0 = 𝜑 and the  three space components of the field are the vector potential 𝑨 of the field. 

We have: 

                      𝐴𝑖 = (𝜑,𝑨)                                   (153) 

We can write the integral (152) as: 

𝑆 = ∫ (−𝑚𝑐. 𝑑𝑠 + 𝛾.
𝑒

𝑐
. 𝑨. 𝑑𝑿 − 𝛾𝑒. 𝜑𝑑𝑡)

𝐵

𝐴
              (154) 

Introduce the speed 𝒗 =
𝑑𝑿

𝑑𝑡
 of  the corpuscle , equation (154) becomes: 

𝑆 = ∫ (−𝑚. 𝑐2. √1 −
𝑣2

𝑐2
+ 𝛾

𝑒

𝑐
. 𝑨. 𝒗 − 𝛾𝑒. 𝜑) . 𝑑𝑡

𝑡2
𝑡1

      (155) 
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So the Lagrange function of the corpuscle is: 

𝐿 = −𝑚. 𝑐2. √1 −
𝑣2

𝑐2
+ 𝛾

𝑒

𝑐
. 𝑨. 𝒗 − 𝛾𝑒. 𝜑                      (157) 

The equation  (157) is different from equation  (35) for a free corpuscle by the term 

𝛾
𝑒

𝑐
. 𝑨. 𝒗 − 𝛾𝑒. 𝜑 which describe the interaction of the corpuscle with the  field. 

The derivative  
𝜕𝐿

𝜕𝒗
 is the generalised momentum of the corpuscle noted as  . We found that: 

𝑷 =
𝑚.𝒗

√1−
𝑣2

𝑐2

+ 𝛾
𝑒

𝑐
. 𝑨 = 𝒑 + 𝛾

𝑒

𝑐
. 𝑨                            (158) 

Where 𝒑 =
𝑚.𝒗

√1−
𝑣2

𝑐2

 is the ordinary momentum of the corpuscle. 

The Hamilton function  of the corpuscle in the field is: 

𝐻 = 𝒗.
𝜕𝐿

𝜕𝒗
− 𝐿 =

𝑚.𝑐2

√1−
𝑣2

𝑐2

+ 𝛾𝑒.𝜑                                    (159)    

The Hamilton function  should be written as a function of generalised momentum  and as a 

function of speed. From (158) & (159) we have: 

(
𝐻−𝛾𝑒.𝜑

𝑐
)2 − (𝑷 − 𝛾

𝑒

𝑐
. 𝑨)2 = 𝑚2. 𝑐2                         (160) 

Than we have: 

𝐻 = √𝑚2. 𝑐4 + 𝑐2. (𝑷 − 𝛾
𝑒

𝑐
. 𝑨)2 + 𝛾𝑒. 𝜑                (161) 

Let’s write the Hamilton-Jacobi  equation for a corpuscle placed in an electro-magnetic  field. 

This equation is obtained by replacing in the Hamilton function the generalised momentum 

by 
𝜕𝑆

𝜕𝑿
 and 𝐻 by −

𝜕𝑆

𝜕𝑡
  .  We get from (160): 

(𝑔𝑟𝑎𝑑 𝑆 − 𝛾
𝑒

𝑐
. 𝑨)2 −

1

𝑐2
. (
𝜕𝑆

𝜕𝑡
+ 𝛾𝑒.𝜑)2 +𝑚2. 𝑐2 = 0        (162) 
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2-2-3-2)Locally equation of motion of an electric charge in a field: 

We suppose that the electric charge is small and can’t affect the electromagnetic field . We get 

the equation of motion by varying the action so we can use the Lagrange equations (19) as: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝒗
) −

𝜕𝐿

𝜕𝑿
= 𝟎                                                             (163) 

We neglect any non conservative force in equation (163). The Lagrange function 𝐿  is given 

by equation (157). 

The derivative 
𝜕𝐿

𝜕𝒗
  is given by equation (158). Also we have: 

𝜕𝐿

𝜕𝑿
≡ ∇𝐿 = 𝛾

𝑒

𝑐
. 𝑔𝑟𝑎𝑑(𝑨. 𝒗) − 𝛾𝑒. 𝑔𝑟𝑎𝑑(𝜑)        (164) 

As we know in mathematics that for any two vectors 𝑨 & 𝒗  we have: 

𝑔𝑟𝑎𝑑(𝑨. 𝒗) = (𝑨∇). 𝒗 + (𝒗∇). 𝑨 + 𝒗 × 𝑟𝑜𝑡𝑨 + 𝑨 × 𝑟𝑜𝑡𝒗    (165) 

Locally the speed  𝒗  of the corpuscle is approximately constant so we take it constant . We 

have: 

𝜕𝐿

𝜕𝑿
= 𝛾

𝑒

𝑐
(𝒗∇). 𝑨 + 𝛾

𝑒

𝑐
. 𝒗 × 𝑟𝑜𝑡𝑨 − 𝛾𝑒. 𝑔𝑟𝑎𝑑(𝜑)            (166) 

So locally the Lagrange equations are as the following: 

𝑑

𝑑𝑡
(𝒑 + 𝛾

𝑒

𝑐
𝑨) = 𝛾

𝑒

𝑐
(𝒗∇). 𝑨 + 𝛾

𝑒

𝑐
. 𝒗 × 𝑟𝑜𝑡𝑨 − 𝛾𝑒. 𝑔𝑟𝑎𝑑(𝜑)      (167) 

Or the total differential  
𝑑𝑨

𝑑𝑡
. 𝑑𝑡 include two terms the local variation 

𝜕𝑨

𝜕𝑡
. 𝑑𝑡 of the potential 

vector as a function of time in a given point of space and its variation when we translate of a 

distance 𝑑𝑋 to another point. This second term is equal to (𝑑𝑿∇)𝑨 . So we have: 

𝑑𝑨

𝑑𝑡
=
𝜕𝑨

𝜕𝑡
+ (𝒗∇)𝑨                                                  (168) 

Introduce equation (168) in equation (167) we get: 

𝑑𝒑

𝑑𝑡
= −𝛾

𝑒

𝑐
.
𝜕𝑨

𝜕𝑡
− 𝛾𝑒. 𝑔𝑟𝑎𝑑(𝜑) + 𝛾

𝑒

𝑐
. 𝒗 × 𝑟𝑜𝑡𝑨         (169) 
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Equation (169) is the locally equation of motion of a charged corpuscle in an electromagnetic 

field. In the first member of this equation we found the derivative of the momentum of the 

corpuscle to time so the second member of this equation represent the force  exerted by the 

electromagnetic field on the electric charge. This force is composed of two terms. The first 

term is independent from the speed of the corpuscle  but the second term it depends and it is 

proportional to the module of the speed  and perpendicular to it. 

The first term is called the intensity of electric field , it is noted E and is equal for one unit 

charge: 

𝑬 = −
𝛾

𝑐
.
𝜕𝑨

𝜕𝑡
− 𝛾. 𝑔𝑟𝑎𝑑(𝜑)                        (170) 

The factor after the speed 𝒗  is the second term of the force applied on a unit charge and it is 

called magnetic field vector which is noted  𝑩 and so we have: 

𝑩 =
𝛾

𝑐
. 𝑟𝑜𝑡𝑨                                                 (171) 

So the locally equation of motion of an electric charge in an electromagnetic field is: 

𝑑𝒑

𝑑𝑡
= 𝑒.𝑬 + 𝑒. 𝒗 × 𝑩                                     (172) 

Let’s establish the variation of the total energy of the corpuscle locally: 

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑡
= 𝒗.

𝑑𝒑

𝑑𝑡
= 𝑒𝑬. 𝒗                                  (173) 

We remark that the work furnished to the corpuscle is only due to electric field, the magnetic 

field doesn’t do any work for electric charges in motion. 

Mechanical motion are locally invariants to the change of the direction of time which we can 

deduce it from 
𝑑𝒑

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑚.
𝑑𝑿

𝑑𝑡

√
1−

(
𝑑𝑿
𝑑𝑡
)
2

𝑐2

)   in other terms the motion in inverse direction of  a 

mechanical system is possible  and product the same affects as in the first direction. 

For electromagnetic field let’s remark that when we do the following substitutions  𝑡 → −𝑡 ,

𝑬 → 𝑬,   𝑩 → −𝑩   the equation (172)   doesn’t change  but regarding to equations  (170) & 

(171) the scalar potential doesn’t change and the potential vector change its sign: 𝜑 → 𝜑 ,
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𝑨 → −𝑨 . So when a certain local motion is possible in the electromagnetic field, the motion 

in the inverse direction is also possible with the condition to inverse the direction of magnetic 

field. 

2-2-3-3)Gauge invariance: 

Let’s remark that when we add a constant to potential vector and/or another constant to the 

scalar potential in the equations (171) and (170) than the electric field and the magnetic field 

doesn’t change: the question is that are the potentials of the field determined in  only one  

manner. 

The electromagnetic field is characterised by its action on the  charges in which they move 

and  in the equation  (172) there is only the electric field 𝑬  and the magnetic field 𝑩  so we 

can conclude that two fields are physically the same only if they are characterised by the same 

vectors 𝑬 & 𝑩  . 

For a given potentials 𝑨 & 𝜑 we can determine the field by equations (170) & (171) but as we 

had seen to a unique and the same field can correspond many different potentials . In the 

general case lets add to the components of the potential 𝐴𝑘 the quantity −
𝜕𝑓

𝜕𝑥𝑘
  where 𝑓 is an 

arbitrary function of coordinates and time. We get the new potential: 

𝐴′𝑘 = 𝐴𝑘 −
𝜕𝑓

𝜕𝑥𝑘
                                 (174) 

This substitution  engender in the integral of the action (152) a supplement term which is a 

total differential: 

𝛾
𝑒

𝑐
.
𝜕𝑓

𝜕𝑥𝑘
. 𝑑𝑥𝑘 = 𝑑(𝛾

𝑒

𝑐
. 𝑓)                 (175) 

Which doesn’t affect the equations of motion . 

If we introduce instead the quadric-dimensional potential another vector potential and another 

scalar potential  and instead the coordinates 𝑥𝑖 the coordinates 𝑐𝑡, 𝑥 , 𝑦, 𝑧 we can write the 

fourth equalities (174)  as: 

𝑨′ = 𝑨+ 𝑔𝑟𝑎𝑑(𝑓)       , 𝜑′ = 𝜑 −
1

𝑐
.
𝜕𝑓

𝜕𝑡
                             (176) 
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It is very easy to verify  that the electric field and the magnetic field given by equations (170) 

& (171) don’t vary if we replace 𝑨 & 𝜑 by the potentials 𝑨′& 𝜑′ given by equations (176). So 

the transformation of potentials (174) doesn’t affect the field. So   the potentials are not 

defined in a unique manner, the vector potential is defined with a gradient function nearly and 

the scalar potential is also defined to time derivative of the same function nearly. 

Only the values invariants referring to the transformations of potentials (176) have a physical 

signification. So all the equations should be invariants referring to this transformation: this 

invariance is called gauge invariance.  

2-2-2-4)Unification of fields: 

Let’s take the locally equation of motion (151). It can be written as: 

𝑑

𝑑𝑡
(𝒑 + 𝑎.𝑿) = 𝒇                            (177) 

Where: 

        𝒑:  the momentum of the corpuscle; 

        𝑿:  the position of the corpuscle. 

We can write the equation (177) as the following: 

𝑑𝑷

𝑑𝑡
= 𝒇                                           (178) 

With : 

          𝑷 = 𝒑 + 𝑎.𝑿                        (179)  

Equation (179) is like equation (158) but here the corpuscle is not charged. The only potential 

which can curve the motion of the corpuscle  is the field of gravitation. 

Let’s define the following generalised momentum as the following: 

𝑷 = 𝒑 + 𝜇. 𝑼                              (180) 

With:  

𝒑:  the momentum of the corpuscle; 
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𝜇 = 𝛾.
𝑒

𝑐
                           (181) :if we are dealing with a charged corpuscle  

𝜇 = 𝑎                             (182): if we are dealing with a non charged corpuscle 

𝑼 = 𝑨                              (183): if we are dealing with a charged corpuscle in motion in 

an electromagnetic field; 

𝑼 = 𝑿                               (184): if we are dealing with a non charged corpuscle in 

motion in a gravitational field. 

So we can write the Hamilton-Jacobi  equation of motion for any corpuscle charged or not 

charged in any field  by going back to the equation (162) as: 

(𝑔𝑟𝑎𝑑 𝑆 − 𝜇.𝑼)2 −
1

𝑐2
. (
𝜕𝑆

𝜕𝑡
+ 𝑐. 𝜇. 𝜑)2 +𝑚2. 𝑐2 = 0   (185)         

Let’s take a non charged corpuscle. The  force of first specie which is applied  on the 

corpuscle as referring to equation (170) is: 

𝑮 = −
𝛾

𝑐
.
𝜕𝑿

𝜕𝑡
− 𝛾. 𝑔𝑟𝑎𝑑(𝜑) = −𝑔𝑟𝑎𝑑(𝜑′)                    (186) 

With : 

     
𝜕𝑿

𝜕𝑡
= 𝟎   : we accept that this force vary slowly with time or independent from time. 

𝜑′ = 𝛾.𝜑   : is the gravitational field 

We choose the coefficient 𝛾 as  𝑮 becomes an acceleration. The corpuscle will be under a  

force of a first specie  as in classical mechanics: 

𝒇 = 𝑚.𝑮                          (187) 

The force of the second specie  is as referring to equation (171): 

𝑭 =
𝛾

𝑐
. 𝑟𝑜𝑡𝑿 = 𝟎                 (188) 

The  total energy of the corpuscle  as referring to  equation (159) is: 



35 
 

𝐸𝑡𝑜𝑡𝑎𝑙 =
𝑚.𝑐2

√1−
𝑣2

𝑐2

+
𝑎.𝑐

𝛾
. 𝜑′       (189) 

If we have  𝑣 ≪ 𝑐 than the total energy is : 

𝐸𝑡𝑜𝑡𝑎𝑙 ≈ 𝑚. 𝑐
2 +

1

2
. 𝑚. 𝑣2 + 𝜑′′   (190) 

With: 

        𝜑′′ =
𝑎.𝑐

𝛾
. 𝜑′                          (191) 

2-2-2-4-1)Newton gauge: 

Let’s take a corpuscle in rest. Which gravitational field it create?. 

From equation (186) we have: 

𝑑𝑖𝑣(𝑮) = −∇2𝜑′ = −∆𝜑′            (192) 

The Newton gauge  is when we have: 

𝑑𝑖𝑣(𝑮) = −4. 𝜋. 𝐺. 𝜌                      (193) 

With :  

  𝐺: gravitational constant (Newton constant) 

  𝜌: density of masses 

The general solution for the equation (193) is as: 

𝜑′ = −𝑘 ∫
𝜌𝑑𝑉

𝑅
                           (194) 

Where : 

          𝑑𝑉 = 𝑑𝑥. 𝑑𝑦. 𝑑𝑧  : volume element; 

            𝑅: the distance between the corpuscle in the center and the volume element. 

Of course we suppose that 𝑮 has a spherical symmetry. 
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For low speed corpuscles the equation (194) determine the gravitational field for any masses 

distribution. For one corpuscle we have: 

𝜑′ = −
𝐺.𝑚

𝑅
                                (195) 

The force which is exerted on a corpuscle of a mass 𝑚′ in this field is: 

𝑓 = −𝑚′.
𝜕𝜑′

𝜕𝑅
= −

𝐺.𝑚.𝑚′

𝑅2
          (196) 

We found the second law of Newton. 

2-2-2-4-2)Coulomb gauge : 

Let’s have a charge in rest .Which  electrical field create? 

From equation (170)& (171) we have in general: 

𝑟𝑜𝑡𝑬 = −
𝛾

𝑐
.
𝜕

𝜕𝑡
(𝑟𝑜𝑡𝑨) − 𝛾. 𝑟𝑜𝑡𝑔𝑟𝑎𝑑(𝜑) = −

𝜕𝑩

𝜕𝑡
    (197) 

𝑑𝑖𝑣𝑩 = 𝟎                                                                   (198) 

Equations (197)and (198) are called the first group of Maxwell equations without sources . 

In electrostatic the Coulomb gauge is as: 

𝑑𝑖𝑣𝑨 = ∇𝑨 = 𝟎                                                     (199) 

So we have  in electrostatic: 

𝑑𝑖𝑣𝑬 = ∇𝑬 = −
𝛾

𝑐
.
𝜕∇𝑨

𝜕𝑡
− 𝛾. ∇2𝜑 = −𝛾. ∇2𝜑 = −∇2𝜑′         (200) 

𝑟𝑜𝑡𝑩 =
𝛾

𝑐
∇(∇𝑨) − ∇2𝑨 = −∇2𝑨                            (201) 

With: 

   𝜑′ = 𝛾.𝜑 

Like the Newton gauge  we suppose that the field 𝑬 is spherical and radial and we impose 

that: 
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𝑑𝑖𝑣𝑬 = 4. 𝜋. 𝜎. 𝜌                                                     (202) 

With:  

   𝜎: electrical constant (Coulomb constant )  ; 

   𝜌: density of charges; 

Equation (202) is called First Maxwell equation with source. 

The general solution of equation (202) is as: 

𝜑′ = 𝜎. ∫
𝜌𝑑𝑉

𝑅
                                                      (203) 

Where : 

          𝑑𝑉 = 𝑑𝑥. 𝑑𝑦. 𝑑𝑧  : volume element; 

            𝑅: the distance between the charge in the center and the volume element. 

For low speed charges the equation (203) determine the scalar potential for any charges 

distribution. For one charge we have: 

𝜑′ =
𝜎.𝑒

𝑅
                                                            (204) 

The force which is exerted on a charge 𝑒′ by the charge 𝑒 is : 

𝐹 = −𝑒′.
𝜕𝜑′

𝜕𝑅
=
𝜎.𝑒.𝑒′

𝑅2
                                        (205) 

So we found the law of Coulomb. 

The electric field is as: 

𝑬 = −
𝛾

𝑐
.
𝜕𝑨

𝜕𝑡
− 𝑔𝑟𝑎𝑑(𝜑′) = −

𝛾

𝑐
.
𝜕𝑨

𝜕𝑡
+
𝜎.𝑒

𝑅3
. 𝑹    (206) 

If we add another condition which is that the electrical field vary slowly or constant in time , 

we get: 

𝜕𝑨

𝜕𝑡
= 𝟎                                                                (207) 
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𝑬 =
𝜎.𝑒

𝑅3
. 𝑹 =

𝑭

𝑒′
                                                   (208) 

2-2-2-4-3)Continuity equation for masses: 

The  variation of density of masses as a function of time is: 

𝜕

𝜕𝑡
∫ 𝜌. 𝑑𝑉                                                           (209) 

The variation of quantity of masses per unit time depends on the quantity of masses getting 

out or in the element volume. The quantity of masses going in this volume is equal to 𝜌𝒗. 𝑑𝒇  

where 𝒗  is the speed of a corpuscle in the point of space where exist the element  . The total 

mass going out the volume  is as: 

∮ 𝜌𝒗. 𝑑𝒇                                                              (210) 

Where the integral (210) is extended to the total closed surface bordering the volume. So we 

have: 

𝜕

𝜕𝑡
∫ 𝜌. 𝑑𝑉 = −∮𝜌𝒗. 𝑑𝒇 = −∮ 𝒋. 𝑑𝒇                                 (211) 

The negative sign forward the second member of equation (211) is that the first member 

should be positive when the total mass in the volume augment . The element of surface 𝑑𝒇 is 

oriented to the exterior of the volume. 

Apply Gauss theorem  to the second member of equation (211) we get: 

∮ 𝒋. 𝑑𝒇 = ∫𝑑𝑖𝑣𝒋 𝑑𝑉                                                          (212) 

Replace (212) in equation (211) we have: 

∫(𝑑𝑖𝑣𝒋 +
𝜕𝜌

𝜕𝑡
) 𝑑𝑉 = 0                                                        (213) 

The equation (213) is valid for any volume so we should have: 

𝑑𝑖𝑣𝒋 +
𝜕𝜌

𝜕𝑡
= 0                                                                    (214) 

Equation (214) is the continuity equation. 

2-2-2-4-4)Quadric-vector current of mass or flux of mass: 
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For a corpuscle  an element of its mass is as: 

𝑑𝑚 = 𝜌. 𝑑𝑉                                                                 (215) 

Multiplying  the two terms by 𝑑𝑥𝑖 we get: 

𝑑𝑚. 𝑑𝑥𝑖 = 𝜌. 𝑑𝑉. 𝑑𝑥𝑖 = 𝜌. 𝑑𝑉.
𝑑𝑥𝑖

𝑑𝑡
. 𝑑𝑡                        (216) 

In the left 𝑑𝑚 is a scalar and 𝑑𝑥𝑖 is a quadric-vector so the product is a quadric-vector. In the 

right 𝑑𝑉. 𝑑𝑡 is a scalar so 𝜌.
𝑑𝑥𝑖

𝑑𝑡
  is a quadric-vector noted as 𝑗𝑖 and called quadric-vector of 

density of current of mass or flux of mass. We have: 

𝑗𝑖 = 𝜌.
𝑑𝑥𝑖

𝑑𝑡
                                                                 (217) 

The three space components of this quadric-vector define the three dimensional flux of mass: 

𝒋 = 𝜌. 𝒗                                                                  (218) 

The time component of this quadric-vector  is 𝜌. 𝑐 so we have: 

𝑗𝑖 = (𝜌. 𝑐, 𝒋)                                                          (219) 

The total mass in a volume 𝑉 is the mass of the corpuscle so we have: 

𝑚 = ∫𝜌. 𝑑𝑉 =
1

𝑐
. ∫ 𝑗0𝑑𝑉                                      (220) 

From equation (214) we deduce that: 

𝑑𝑖𝑣𝒋 +
𝜕𝜌

𝜕𝑡
=
𝜕𝑗1

𝜕𝑥1
+
𝜕𝑗2

𝜕𝑥2
+
𝜕𝑗3

𝜕𝑥3
+
1

𝑐
.
𝜕(𝜌.𝑐)

𝜕𝑡
=
𝜕𝑗𝑖

𝜕𝑥𝑖
= 0      (221) 

For vacuum where absence of mass we have from (220): 

𝑚0 = 𝜌0 .
4

3
. 𝜋. 𝑅3                                              (222) 

With: 

       𝑚0  :the mass of vacuum contained in a sphere of radius 𝑅 

        𝜌0 : the density of vacuum 
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        𝒋𝟎 = 𝟎 :density of current of vacuum. 

Normally we should take in consideration the action of vacuum on the corpuscle when 

establishing the equation of motion of the corpuscle referring to the principle of least action . 

2-2-2-4-5)Applications in classic physics: 

Let’s have a classic corpuscle in motion nearly the border of the Universe. We draw a sphere 

tangent to its motion. The gravitational action on this corpuscle referring to (196)is: 

𝐹0 =
−𝐺.𝑚0.𝑚

𝑅2
         (223) 

Replace 𝑚0 by its expression in (222) so: 

𝐹0 = −𝐺.
4

3
. 𝜌0. 𝜋. 𝑚. 𝑅         (224) 

The corpuscle interact with every point of space-time as like an harmonic oscillator. 

The density of vacuum referring to equation (5) & (6)  is: 

𝜌0 =
𝑀

𝐿3
=
𝑎2

ℏ.𝑐
                        (225) 

So: 

𝐹0 = −
4

3
. 𝜋. 𝐺.

𝑎2

ℏ.𝑐
. 𝑚. 𝑅         (226) 

For fine structure the electromagnetic force is the most important. 

Let’s have two charges 𝑒 in interaction .From equation (205) we have: 

𝐹 =
𝜎.𝑒2

𝑅2
                                (227) 

To compare the generalized momentums of classic non charged corpuscle and a classic 

charged corpuscle , they differ by terms 𝑎. 𝑿  and 𝛾.
𝑒

𝑐
. 𝑨 . Let’s choose the coefficient 𝛾 as a 

two coefficients 𝛾𝜀 in order to get: 

𝑎 = 𝛾.
𝑒

𝑐
                                (228) 
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𝑿 = 𝜀.𝑨                               (229) 

If we replace (228) in (226) we get for fine structure: 

𝐹 = −
4

3
. 𝜋. 𝐺.

𝛾2.𝑒2

ℏ.𝑐3
. 𝑚. 𝑅    (230) 

The same conclusion, in fine structure charges interact with others like harmonic oscillator. 

In equation (228) , 𝑎 & 𝑐 are universal constants , 𝛾 is a conversion factor so we can deduce 

that there is an universal constant 𝑒0 which has a dimension of electric charge. This constant 

is called Maxwell constant . 

In fine structure the electrical force is so great compared to the gravitational force.  For two 

charged corpuscles with the same mass and the same charge in absolute value we have: 

𝜎.𝑒2

𝑅2
≫

𝐺.𝑚2

𝑅2
                          (231) 

So we get: 

𝑚 ≪ 𝑒.√
𝜎

𝐺
                          (234) 

The gravitational interaction  is negligible  if the mass of the corpuscles are under the 

following constant : 

𝑀0 = 𝑒0. √
𝜎

𝐺
=
𝑎.𝑐

𝛾
. √

𝜎

𝐺
       (235) 

The constant 𝑀0  is called Maxwell mass. 

The radius of interaction for microscopic sizes is as: 

𝑀0 =
4

3
. 𝜋. 𝑅0

3. 𝜌0              (236) 

So: 

𝑅0 = (
3

4.𝜋
.
ℏ.𝑐

𝑎2
.𝑀0)

1

3          (237) 

The constant 𝑅0  is called Maxwell radius. 
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We define also the Maxwell force: 

𝑓0 = 𝑎. 𝑐                            (238) 

Also the Maxwell pressure: 

𝑝0 =
𝑓0

4.𝜋.𝑅0
2                          (239) 

Maxwell period is as per definition: 

𝑇0 =
𝑅0

𝑐
                               (240) 

With 𝑀0, 𝑇0, 𝑅0 we can define a new system of unities which match well with the microscopic 

scale. For great scale we take the system of unities as defined by equations (5), (6) &(7). 

For microscopic scale the motion of the corpuscle is like nearly the center of the Universe. 

The vacuum around the corpuscle create an attractive/repulsive  force because of the 

dissymmetry of the position of the two half of the Universe referring to the position of the 

corpuscle: one half is always more near to the corpuscle than the other half referring to the 

center: this force maintain the orbital speed of  the corpuscle  as constant in module after a 

certain distance of the corpuscle from the center :we say that it is due to Dark Matter. 

For great scale the motion of the corpuscle is like nearly the border of the Universe . The 

vacuum in the sphere tangent to the motion of the corpuscle create a repulsive/attractive force 

in the direction of the center. The corpuscle becomes accelerated in the direction of the 

position of the corpuscle- center of the Universe: we say that it is due Dark Energy. 

This phenomenon in the Universe is called scale invariance gauge.[8] 

Of course equation of continuity is also valid for charges: instead we speak about flux of 

masses, we say flux of charges…etc. 

Negative charge correspond to negative pressure of vacuum in microscopic scale  and vice 

versa. 

2-2-2-4-7)Lorentz gauge: 

The second Maxwell equation with sources is as the following[9]: 
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𝑟𝑜𝑡𝑩 =
4.𝜋.𝜎

𝑐2
. 𝒋 +

1

𝑐2
.
𝜕𝑬

𝜕𝑡
                                                                   (241) 

It is possible to get  the scalar potential 𝜑 and the vector potential 𝑨 not coupled. 

From equation (170) &(171)we have: 

𝑑𝑖𝑣𝑬 = ∇. 𝑬 = −𝛾. ∇2𝜑 − 𝛾.
𝑒

𝑐
.
𝜕∇.𝑨

𝜕𝑡
= 4. 𝜋. 𝜎. 𝜌                                (242) 

∇ × 𝑩 =
𝛾

𝑐
∇ × (∇ × 𝑨) =

𝛾

𝑐
∇(∇. 𝑨) −

𝛾

𝑐
∇2𝑨 =

4.𝜋.𝜎

𝑐2
. 𝒋 +

1

𝑐2
.
𝜕𝑬

𝜕𝑡
         (243) 

With the condition (Lorentz gauge): 

𝛾

𝑐2
.
𝜕

𝜕𝑡
𝜑 + 𝛾.

𝑒

𝑐
. ∇. 𝑨 = 0                                                                       (244) 

We get: 

(242)
𝛾

𝑐2
.
𝜕2𝜑

𝜕𝑡2
− 𝛾. ∇2𝜑 −

𝜕

𝜕𝑡
(
𝛾

𝑐2
.
𝜕𝜑

𝜕𝑡
+ 𝛾.

𝑒

𝑐
∇𝑨) = 4. 𝜋. 𝜎. 𝜌                (245) 

(243)
𝛾𝑒

𝑐
. ∇2𝑨 = −

4.𝜋.𝜎𝑒

𝑐2
. 𝒋 −

𝑒

𝑐2
. (−

𝛾

𝑐
.
𝜕2𝑨

𝜕𝑡2
− 𝛾∇

𝜕𝜑

𝜕𝑡
) + ∇(

𝛾

𝑐2
.
𝜕

𝜕𝑡
𝜑)  =

−
4.𝜋.𝜎𝑒

𝑐2
. 𝒋 +

𝜸.𝒆

𝒄𝟑
.
𝜕2𝑨

𝜕𝑡2
+ ∇[(

𝛾

𝑐2
+
𝛾.𝑒

𝑐2
)
𝜕𝜑

𝜕𝑡
]                                               (246) 

Let’s add another condition: 

𝜕𝜑

𝜕𝑡
= 0                                                                                                (247) 

(246) becomes: 

𝛾. ∇2𝑨 = −
4.𝜋.𝜎

𝑐
. 𝒋 +

𝛾

𝑐2
.
𝜕2𝑨

𝜕𝑡2
                                                              (248) 

Finally we have: 

(245)
1

𝑐2
.
𝜕2𝜑

𝜕𝑡2
− ∇2𝜑 = −∇2𝜑 =

4.𝜋.𝜎.𝜌

𝛾
                                          (249)                    

(246)
𝟏

𝒄𝟐
.
𝜕2𝑨

𝜕𝑡2
− ∇2𝑨 =

𝟏

𝒄𝟐
.
𝜕2𝑨

𝜕𝑡2
=
4.𝜋.𝜎

𝑐.𝛾
. 𝒋                                          (250)               
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If vacuum, equations (249) and (250) had  solutions in microscopic scale & also in great 

scale. 

 

2-2-2-4-6)Equation of motion of a charged corpuscle: 

Equations (197) and (198) are the two first Maxwell equations without sources. Those  

equations don’t characterize completely the electromagnetic field because if we want to 

determine for example 
𝜕𝑩

𝜕𝑡
  we haven’t another  equation for 

𝜕𝑬

𝜕𝑡
. 

Equation (198) can be written as referring to Gauss theorem: 

∫𝑑𝑖𝑣𝑩 𝑑𝑉 = ∮𝑩. 𝑑𝒇 = 0 = 𝛷                       (251) 

The integral of the second term in (251) is for all the surface bordering the volume on which 

done the integral of the first term. 

The integral of a vector taken on a surface is called flux of this vector (𝛷) through the surface. 

So the flux of an electromagnetic field through a closed surface is equal to zero. 

Equation (197) can be written as referring to Stokes theorem: 

∫ 𝑟𝑜𝑡𝑬. 𝑑𝒇 = ∮𝑬. 𝑑𝒍 = −
𝜕

𝜕𝑡
∫𝑩. 𝑑𝒇 = −

𝜕𝛷

𝜕𝑡
= 𝑓. 𝑒.𝑚           (252)                

The integral of a vector along a closed contour is called circulation of this vector along this 

contour. The circulation of electric field is called force electromotive   (f.e.m) in the 

considered contour. 

Let’s write  the equation of motion of a charged corpuscle in motion in en electromagnetic 

field using quadric-coordinates. 

From equation (152) we have:  

𝛿𝑆 = 𝛿 ∫ (−𝑚. 𝑐. 𝑑𝑠 − 𝛾.
𝑒

𝑐
. 𝐴𝑖𝑑𝑥

𝑖) = 0                                     (253) 

Or 𝑑𝑠 = √𝑑𝑥𝑖𝑑𝑥𝑖  so we get: 
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𝛿𝑆 = −∫(𝑚. 𝑐.
𝑑𝑥𝑖𝑑𝛿𝑥

𝑖

𝑑𝑠
+ 𝛾.

𝑒

𝑐
. 𝐴𝑖𝑑𝛿𝑥

𝑖 + 𝛾.
𝑒

𝑐
. 𝛿𝐴𝑖𝑑𝑥

𝑖) 

                            = − ∫ (𝑚. 𝑐. 𝑢𝑖𝑑𝛿𝑥
𝑖 + 𝛾.

𝑒

𝑐
. 𝐴𝑖𝑑𝛿𝑥

𝑖 + 𝛾.
𝑒

𝑐
. 𝛿𝐴𝑖𝑑𝑥

𝑖) =0    (254) 

With: 

  𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑠
   : the quadric-vector speed. 

Integrate by party the first two terms in (254): 

∫(𝑚. 𝑐. 𝑢𝑖𝑑𝛿𝑥
𝑖 + 𝛾.

𝑒

𝑐
. 𝐴𝑖𝑑𝛿𝑥

𝑖) = ∫(𝑚. 𝑐. 𝑢𝑖 + 𝛾.
𝑒

𝑐
. 𝐴𝑖)𝑑𝛿𝑥

𝑖 − ∫(𝑚. 𝑐. 𝑑𝑢𝑖 +

𝛾.
𝑒

𝑐
. 𝑑𝐴𝑖)𝛿𝑥

𝑖 = 0 − ∫(𝑚. 𝑐. 𝑑𝑢𝑖 + 𝛾.
𝑒

𝑐
. 𝑑𝐴𝑖)𝛿𝑥

𝑖                            (255) 

Replace (255) in (254) we get: 

𝛿𝑆 = −∫{(𝑚. 𝑐. 𝑑𝑢𝑖 + 𝛾.
𝑒

𝑐
. 𝑑𝐴𝑖)𝛿𝑥

𝑖 − 𝛾.
𝑒

𝑐
. 𝛿𝐴𝑖𝑑𝑥

𝑖} 

                             = − ∫{(𝑚. 𝑐. 𝑑𝑢𝑖 + 𝛾.
𝑒

𝑐
.
𝜕𝐴𝑖

𝜕𝑥𝑘
𝑑𝑥𝑘)𝛿𝑥𝑖 − 𝛾.

𝑒

𝑐
.
𝜕𝐴𝑖

𝜕𝑥𝑘
𝛿𝑥𝑘𝑑𝑥𝑖}   (256) 

 

Equation (256) because we have: 

𝑑𝐴𝑖 =
𝜕𝐴𝑖

𝜕𝑥𝑘
𝑑𝑥𝑘                ,  𝛿𝐴𝑖 =

𝜕𝐴𝑖

𝜕𝑥𝑘
𝛿𝑥𝑘      

Replace in (256)  𝑑𝑢𝑖 =
𝑑𝑢𝑖

𝑑𝑠
. 𝑑𝑠   and   𝑑𝑥𝑖 = 𝑢𝑖𝑑𝑠  and permit indices 𝑖 & 𝑘 in the third term 

(which doesn’t change the result): 

𝛿𝑆 = −∫{(𝑚. 𝑐.
𝑑𝑢𝑖

𝑑𝑠
𝑑𝑠𝛿𝑥𝑖 + 𝛾.

𝑒

𝑐
.
𝜕𝐴𝑖

𝜕𝑥𝑘
𝑢𝑘𝑑𝑠𝛿𝑥𝑖 − 𝛾.

𝑒

𝑐
.
𝜕𝐴𝑘

𝜕𝑥𝑖
𝑢𝑘𝑑𝑠𝛿𝑥𝑖 =

−∫{𝑚. 𝑐.
𝑑𝑢𝑖

𝑑𝑠
−  𝛾.

𝑒

𝑐
. (
𝜕𝐴𝑘

𝜕𝑥𝑖
−
𝜕𝐴𝑖

𝜕𝑥𝑘
)𝑢𝑘}𝑑𝑠𝛿𝑥𝑖 = 0       (257) 

The variations 𝛿𝑥𝑖 are arbitrary so we should have: 

𝑚. 𝑐.
𝑑𝑢𝑖

𝑑𝑠
− 𝛾.

𝑒

𝑐
. (
𝜕𝐴𝑘

𝜕𝑥𝑖
−
𝜕𝐴𝑖

𝜕𝑥𝑘
) 𝑢𝑘 = 0                           (258) 
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Equation (248) is the equation of motion of the charge written in quadric coordinates. 

Let’s introduce the notation: 

𝐹𝑖𝑘 = (
𝜕𝐴𝑘

𝜕𝑥𝑖
−
𝜕𝐴𝑖

𝜕𝑥𝑘
)                                                        (259) 

This anti-symmetric tensor is called tensor of electromagnetic field. The equation of motion 

of the corpuscle becomes as: 

 𝑚. 𝑐.
𝑑𝑢𝑖

𝑑𝑠
= 𝛾.

𝑒

𝑐
. 𝐹𝑖𝑘𝑢𝑘                                                  (260) 

With the notation   𝐴𝑖 = (𝜑,−𝑨) we have from (259)&(170) &(171): 

𝑖 = 0, 𝑘 = 0 → 𝐹00 =
𝜕𝐴0

𝜕𝑥0
−
𝜕𝐴0

𝜕𝑥0
= 0  

𝑖 = 0, 𝑘 = 1 → 𝐹01 =
𝜕𝐴1

𝜕𝑥0
−
𝜕𝐴0

𝜕𝑥1
= −

𝜕𝐴𝑥

𝜕(𝑐.𝑡)
−
𝜕𝜑

𝜕𝑥
=
1

𝛾
. 𝐸𝑥  

𝑖 = 0, 𝑘 = 2 → 𝐹02 =
1

𝛾
. 𝐸𝑦  

𝑖 = 0, 𝑘 = 3 → 𝐹03 =
1

𝛾
. 𝐸𝑧  

𝑖 = 1, 𝑘 = 0 → 𝐹10 =
𝜕𝐴0

𝜕𝑥1
−
𝜕𝐴1

𝜕𝑥0
=
𝜕𝜑

𝜕𝑥
+

𝜕𝐴𝑥

𝜕(𝑐.𝑡)
=
−1

𝛾
. 𝐸𝑥   

𝑖 = 1, 𝑘 = 1 → 𝐹11 = 0  

𝑖 = 1, 𝑘 = 2 → 𝐹12 =
𝜕𝐴2

𝜕𝑥1
−
𝜕𝐴1

𝜕𝑥2
= −

𝜕𝐴𝑦

𝜕𝑥
+
𝜕𝐴𝑥

𝜕𝑦
= −

𝑐

𝛾
𝐵𝑧  

𝑖 = 1, 𝑘 = 3 → 𝐹13 =
𝜕𝐴3

𝜕𝑥1
−
𝜕𝐴1

𝜕𝑥3
= −

𝜕𝐴𝑧

𝜕𝑥
+
𝜕𝐴𝑥

𝜕𝑧
=
𝑐

𝛾
𝐵𝑦    

𝑖 = 2, 𝑘 = 3 → 𝐹23 =
𝜕𝐴3

𝜕𝑥2
−
𝜕𝐴2

𝜕𝑥3
= −

𝜕𝐴𝑧

𝜕𝑦
+
𝜕𝐴𝑦

𝜕𝑧
= −

𝑐

𝛾
𝐵𝑥  

……(etc) 

So: 
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𝐹𝑖𝑘 =
1

𝛾
.

(

 
 

0 𝐸𝑥
−𝐸𝑥 0

𝐸𝑦 𝐸𝑧
−𝑐. 𝐵𝑧 𝑐. 𝐵𝑦

−𝐸𝑦 𝑐. 𝐵𝑧
−𝐸𝑧 −𝑐. 𝐵𝑦

0 −𝑐. 𝐵𝑥
𝑐. 𝐵𝑥 0

)

 
 

                  (261) 

                                                        

 

𝐹𝑖𝑘 =
1

𝛾
.

(

 
 
0 −𝐸𝑥
𝐸𝑥 0

−𝐸𝑦 −𝐸𝑧
−𝑐. 𝐵𝑧 𝑐. 𝐵𝑦

𝐸𝑦 𝑐. 𝐵𝑧
𝐸𝑧 −𝑐.𝐵𝑦

0 −𝑐. 𝐵𝑥
𝑐. 𝐵𝑥 0

)

 
 

                     (262)             

For space components  (𝑖 = 1,2,3) the equation (260) is exactly the vector equation of motion 

(172). 

For time component (𝑖 = 0) the equation (260) is exactly the work equation (173) which 

becomes from the locally equation of motion. 

We can verify that only three equations from the four equations (260) are independents: we 

can multiply the two members of equation (260) by 𝑢𝑖 and as we know that 𝑢𝑖 and 
𝑑𝑢𝑖

𝑑𝑠
 are 

orthogonal  and the second member is : 

𝐹𝑖𝑘𝑢𝑘𝑢
𝑖 = 𝐹𝑖𝑘𝑢

𝑘𝑢𝑖 = 0                                             (263) 

From equation (255) we have: 

𝛿𝑆 = −(𝑚𝑐𝑢𝑖 + 𝛾
𝑒

𝑐
. 𝐴𝑖)𝛿𝑥

𝑖                                       (264) 

So we have: 

−
𝜕𝑆

𝜕𝑥𝑖
= 𝑚. 𝑐. 𝑢𝑖 + 𝛾

𝑒

𝑐
. 𝐴𝑖 = 𝑝𝑖 + 𝛾

𝑒

𝑐
𝐴𝑖 = 𝑃𝑖              (265) 

So: 
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𝑃𝑖 =

(

 
 

𝑚.𝑐2

√1−
𝑣2

𝑐2

+𝛾.𝑒.𝜑

𝑐
, 𝒑 + 𝛾

𝑒

𝑐
. 𝑨

)

 
 

                                     (266) 

2-2-2-4-7)Lorentz transformations of the field: 

2-2-2-4-7-1)Tensor algebra: 

a)four-vector position of a universe point :  

Let’s have an inertial reference 𝑅(𝑂, 𝑐𝑡, 𝑥, 𝑦, 𝑧) .A universe point 𝑿 have the coordinates in 

this spae-time (Minkovski vectorial space) as the following [10]: 

𝑿 = ∑ 𝑥𝑖 . 𝑒𝑖𝑖                         (a-1) 

Where: 

  𝒆𝑖 : base of the Minkovski vectorial space M. 

  𝑥0 = 𝑐. 𝑡, 𝑥1 = 𝑥  , 𝑥2 = 𝑦  , 𝑥3 = 𝑧  :the contra-variant coordinates of the Universe point. 

𝑖 = 0,1,2,3  :variable indices. 

With Einstein convention for repetitive indices we write (a-1) as the following: 

𝑿 = 𝑥𝑖 . 𝑒𝑖                            (a-2) 

We do implicitly summation if only the same indices is viewed one time in the top and 

another time in the down. For example 𝑇𝑖𝑖 represent a  diagonal element of a tensor (a 

matrices) and not a summation. The trace of the matrices is 𝑇𝑖
𝑖 so the convention summation 

is applied for repetitive indices.  

We call free indices an indices on which the summation rule is not applied and so it remains 

as it is in the final expression and we call mute indices  an indices which is the subject of an 

implicitly summation  and don’t appear as it is in the final expression. For free indices we 

respect the rule of “balance”. In an equation  the free indices which appears in the two 

members should corresponds one to one and appears in the same position (up or down). 
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We can associate for our space-time  a scalar product , which  is  of course commutative. 

Let’s have two four-vectors  𝑿 = 𝑥𝑖. 𝒆𝒊 & 𝒀 = 𝑦
𝑗 . 𝒆𝒋 , the scalar product is as follows: 

𝑿. 𝒀 = 𝑥𝑖𝑦𝑗𝒆𝒊. 𝒆𝒋            (a-3) 

 We pose a table  of numbers of two indices as: 

𝑔𝑖𝑗 = 𝒆𝒊. 𝒆𝒋                      (a-4) 

The scalar product is as: 

𝑿. 𝒀 = 𝑔𝑖𝑗𝑥
𝑖𝑦𝑗                 (a-5) 

We hope of course that the scalar product have an expression which compatible with the 

notion of interval in four dimension space-time. For this we should have   𝑿. 𝑿 = 𝑐2𝑡2 −

𝑥2 − 𝑦2 − 𝑧2 . We get a convenient scalar product is the 𝑔𝑖𝑗 which we call metric tensor is as 

follows: 

𝑔𝑖𝑗 = (

 1 0
  0 −1

 
0     0
0      0

0   0
0    0

−1   0
0 −1

)       (a-6) 

In this table 𝑖 is the line indices and 𝑗 is the column indices. 

b)Covariant coordinates: 

We pose: 

𝑦𝑖 = 𝑔𝑖𝑗𝑦
𝑗                                    (b-1) 

The repetitive indices (up and down) in the right member of (b-1) is 𝑗 .We should made 

summation on all values of this indices. The indices 𝑖 is a free indices which appears with the 

same name with the same position in the two members of the equation. We call covariant 

coordinates of the Universe point the components 𝑦𝑖. 

With this notation  we have 𝑦0 = 𝑦
0 & 𝑦𝑖 = −𝑦

𝑖 𝑓𝑜𝑟 𝑖 = 1,2,3. The metric tensor permit to 

download or to upload the indices as an escalator with a general rule : the downloading or the 

uploading of a space indices changes its sign  and the downloading and uploading of a time 

indices doesn’t change the sign. 
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With those notations the scalar product  of two four-vectors is as: 

𝑿. 𝒀 = 𝑥𝑖𝑦𝑖                                          (b-2) 

And also: 

𝑿. 𝒀 = 𝑥𝑖𝑦
𝑖       𝑤𝑖𝑡ℎ 𝑥𝑖 = 𝑔𝑖𝑗𝑥

𝑗            (b-3) 

And : 

𝑿. 𝒆𝒊 = 𝑥
𝑗𝒆𝒋. 𝒆𝒊 = 𝑔𝑗𝑖𝑥

𝑗 = 𝑥𝑖                (b-4) 

We can also write the inverse transformation  which gives us the contra-covariant coordinates 

as a function of covariant coordinates by defining a new table of numbers 𝑔𝑖𝑗  as : 

𝑦𝑖 = 𝑔𝑖𝑗𝑦𝑗                                            (b-5) 

We can write: 

𝑦𝑖 = 𝑔𝑖𝑗𝑦𝑗 = 𝑔
𝑖𝑗𝑔𝑗𝑘𝑦

𝑘 = 𝛿𝑘
𝑖𝑦𝑘          (b-6) 

With:  

 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖                                         (b-7) 

With : 

𝛿𝑘
𝑖 = 0 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 1 𝑖𝑓 𝑖 = 𝑗 :Kronecker symbols. 

As matrices the 𝑔𝑖𝑗 is the inverse of the matrices 𝑔𝑖𝑗. We have: 

𝑔𝑖𝑗 = (

 1 0
  0 −1

 
0     0
0      0

0   0
0    0

−1   0
0 −1

)               (b-8) 

c)Duality: 

For a space vector 𝑀 we can define a linear forms. A linear form associate for every vector a 

real number (or complex). We note  �̃� a linear form and �̃�(𝑿) the real number  associated to 
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the vector 𝑿 . A linear form is a linear function of its vector argument. So we have such 

relations as �̃�(𝑿 + 𝒀) = �̃�(𝑿) + �̃�(𝒀) etc… 

We can define on the ensemble of linear forms an addition and a multiplication with a real 

scalar. This two operations confer to the ensemble of linear forms a structure of space vector: 

it is called the dual of our initial space vector 𝑀 and noted as 𝑀∗. 

Also if 𝑀 have a finite dimension, its dual have the same dimension. Also if it is defined a 

scalar product in the space vector 𝑀 we can define a bijection between the space and its dual. 

We associate to every vector 𝒀  a linear form �̃�  defined as �̃�(𝑿) = 𝒀. 𝑿 .A Universe point in 

four dimensions space-time  can be  considered as a vector or a linear form. In fact the two 

representations are  the same one subject. 

In the dual space we choose the base: 

 𝜖̃𝑖(𝒆𝑗) = 𝛿𝑗
𝑖                                       (c-1) 

We have : 

𝒆𝑖. 𝒀 = 𝒆𝑖 . 𝑒𝑗𝑦
𝑗 = 𝑔𝑖𝑗𝑦

𝑗 = 𝑦𝑖          (c-2) 

𝜖̃𝑖(𝒀) = 𝜖̃𝑖(𝑦𝑗𝑒𝑗) = 𝑦
𝑗𝜖̃𝑖(𝒆𝒋) = 𝑦

𝑗𝛿𝑗
𝑖 = 𝑦𝑖 ≠ 𝑦𝑖   𝑓𝑜𝑟 𝑖 = 1,2,3.             (c-3) 

So we have in general: 

𝒆𝑖. 𝒀 = 𝑦𝑖          &         𝜖̃
𝑖(𝒀) =  𝑦𝑖                      (c-4) 

So we can form from a four-vector 𝒀 = 𝑦𝑗𝑒𝑗  a linear form 𝑦𝑗𝜖̃
𝑗. The action of this linear 

form on a vector 𝑿 = 𝑥𝑖𝑒𝑖  is as 𝑦𝑗𝜖̃
𝑗(𝑥𝑖𝑒𝑖) = 𝑦𝑗𝑥

𝑗 = 𝒀.𝑿 . The form constructed coincide 

with the linear form �̃� associated to the vector 𝒀. If the components contra-variants are the 

components of  the four-vector , the covariant components are the components of the linear 

form associated to this vector on the dual base. As we can confound vector and linear form in 

one physical subject , the writing of contra-variants components and covariant components 

are different writing of the same quantity.  

d)Change of referential, change of base:  

We can write the contra-variant  coordinates by Lorentz transformations as: 
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𝑥′𝑖 = ℒ   𝑗
𝑖 𝑥𝑗                                 (d-1) 

Where 𝑥𝑗 are the contra-variant components in the referential 𝑅 and 𝑥′𝑖 are the contra-variant 

components of the Universe point in the referential 𝑅′. We associated the line  indices 𝑖 for 

the new referential   and the column  indices 𝑗 for the old referential. In the Lorentz 

transformations the table ℒ   𝑗
𝑖  is the following matrices : 

ℒ   𝑗
𝑖 =

(

 
 
 
 
 

1

√1−
𝑉2

𝑐2

−
𝑉

𝑐

√1−
𝑉2

𝑐2

−
𝑉

𝑐

√1−
𝑉2

𝑐2

1

√1−
𝑉2

𝑐2

0 0
0 0

0 0
0 0

1 0
0 1)

 
 
 
 
 

        (d-2) 

The inverse transformation is  as follows: 

𝑥𝑖 = (ℒ−1)    𝑗
𝑖 𝑥′𝑗                                (d-3) 

The inverse matrices (ℒ−1)   𝑗
𝑖  is obtained by change in the matrices ℒ𝑗

𝑖 , 𝑉 𝑏𝑦 − 𝑉. 

The transformations of covariant coordinates in the dual space are defined as: 

𝑥′𝑖 = ℒ𝑖
    𝑗
𝑥𝑗                                    (d-4) 

Where  ℒ𝑖
    𝑗

 is a table of numbers. Note that ℒ𝑖
    𝑗

  is different from ℒ       𝑖
 𝑗

.We can deduce the 

link between ℒ𝑗
𝑖 𝑎𝑛𝑑   ℒ𝑖

𝑗
 by the invariance of the scalar product which is a consequence of the 

invariance of the interval. We have in this case: 

𝑥′𝑖𝑦′𝑖 = 𝑥
𝑖𝑦𝑖    𝑤𝑖𝑡ℎ   𝑥′

𝑖 = ℒ   𝑗
𝑖 𝑥𝑗   𝑎𝑛𝑑  𝑦′𝑖 = ℒ𝑖

    𝑘𝑦𝑘       (d-5) 

So: 

 ℒ  𝑗
𝑖 𝑥𝑗ℒ𝑖

   𝑘𝑦𝑘  = 𝑥
𝑖𝑦𝑖 = 𝑥

𝑗𝑦𝑗 = 𝑥
𝑗𝑦𝑘𝛿𝑗

𝑘                          (d-6) 

The relation (d-6) should be verified for every couple of vectors so: 

ℒ    𝑗
𝑖 ℒ𝑖

    𝑘 = 𝛿𝑗
𝑘                                                                     (d-7) 
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Let’s note that the left term in (d-7) is not a product of two matrices. It is a summation on two 

lines indices. In Lorentz transformations the matrices are symmetric and the matrices of 

transformations of covariant coordinates is the inverse matrices of transformations of contra-

variant coordinates and we get this matrices by changing the speed 𝑉  in contra-variant 

matrices by – 𝑉 . 

The link between the two transformations is: 

𝑿. 𝒀 = 𝑥𝑖𝑔𝑖𝑗𝑦
𝑗 = 𝑥′𝑘𝑔𝑘𝑙𝑦′

𝑙                                         (d-8) 

The metric tensor which expressing an orthogonal  base is the same in all bases and so it is an 

invariant by Lorentz transformation. From (d-8)and (d-5) we get: 

𝑥𝑖𝑔𝑖𝑗𝑦
𝑗 = ℒ   𝑗

𝑘 𝑥𝑗𝑔𝑘𝑙ℒ    𝑚
𝑙 𝑦𝑚                                          (d-9) 

This relation (d-9) is always verified , so we deduce that: 

𝑔𝑗𝑚 = ℒ    𝑗
𝑘 𝑔𝑘𝑙ℒ    𝑚

𝑙                                                        (d-10) 

Multiply (d-10) by 𝑔𝑛𝑗 we get: 

𝑔𝑛𝑗𝑔𝑗𝑚 = 𝛿𝑚
𝑛 = 𝑔𝑛𝑗ℒ   𝑗

𝑘 𝑔𝑘𝑙ℒ   𝑚
𝑙                                   (d-11) 

So: 

(𝑔𝑛𝑗𝑔𝑘𝑙ℒ   𝑗
𝑘 )ℒ    𝑚

𝑙 = 𝛿𝑚
𝑛                                                (d-12) 

(d-7) (𝑔𝑛𝑗𝑔𝑘𝑙ℒ     𝑗
𝑘 )ℒ     𝑚

𝑙 = ℒ𝑚
𝑖 ℒ𝑖

𝑛 = ℒ𝑚
𝑙 ℒ𝑙

𝑛              (d-13) 

So: 

ℒ𝑙
   𝑛 = 𝑔𝑛𝑗𝑔𝑘𝑙ℒ    𝑗

𝑘                                                        (d-14) 

The inverse relation of (d-14) is: 

ℒ      𝑙
 𝑛 = 𝑔𝑖𝑙𝑔

𝑛𝑗ℒ𝑗
    𝑖                                                      (d-15) 

Let’s remark that for the coordinates the change of a space coordinate indices change the sign 

and the change of the time coordinate indices doesn’t change the sign . In the passage from a 
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transformation to another only changes in the sign the coefficients indexed space & time. The 

coefficients only space or only time are unchanged. This is what we observe in Lorentz 

transformation. 

We  can choose that acting on Lorentz transformations is only by the metric tensor and  define 

new quantities  as the following: 

ℒ 𝑖𝑗 = 𝑔𝑗𝑘ℒ    𝑘
𝑖                                                       (d-16) 

ℒ𝑖𝑗 = 𝑔𝑖𝑘ℒ     𝑗
𝑘                                                        (d-17) 

We have with those tensors: 

𝑥′𝑖 = ℒ    𝑗 
𝑖 𝑥𝑗 = ℒ    𝑗 

𝑖 𝑔𝑗𝑘𝑥𝑘 = ℒ
𝑖𝑘𝑥𝑘                   (d-18) 

Where the line indices is assigned to the new referential and the column indices is assigned to 

the old referential.  

Also we have: 

𝑥′𝑖 = ℒ𝑖𝑘𝑥
𝑘                                                         (d-19) 

For the inverse change of the referential we can use the relation (d-7) without using the 

transformation ℒ−1.We have: 

ℒ     𝑚 
𝑖 𝑥′𝑖 = ℒ     𝑚 

𝑖 ℒ𝑖
     𝑘𝑥𝑘 = 𝛿𝑚

𝑘 𝑥𝑘 = 𝑥𝑚              (d-20) 

So: 

𝑥𝑖 = ℒ     𝑖
𝑘 𝑥′𝑘                                                        (d-21) 

This transformation is of course different from the direct transformation: 

𝑥′𝑖 = ℒ𝑖
     𝑘𝑥𝑘                                                          (d-22) 

The indices relative to the new referential 𝑖 and the other relative to the old referential 𝑘 

change the position (up/down) between the two expressions. In terms of matrices in case of 

Lorentz transformation it correspond to a change of sign in the components space & time and 

so taking the inverse of the matrices. 
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We can do the same for the contra-variant components of coordinates or any combination of 

mixture  components  as the following: 

𝑥′𝑖 = ℒ𝑖
    𝑗
𝑥𝑗                                                 (d-23) 

𝑥′𝑖 = ℒ    𝑗
𝑖 𝑥𝑗                                                 (d-24) 

𝑥𝑖 = ℒ      𝑖
 𝑗
𝑥′𝑗                                                 (d-25) 

𝑥𝑖 = ℒ𝑗
    𝑖𝑥′𝑗                                                  (d-26) 

Those four combinations are obtained by respecting the balance rule by assigning the first 

indices to the new referential, assigning the second indices to the old referential and summing 

on the indices of the coordinate which to be transformed. 

We finish this paragraph by examining the transformations of the base vectors of our space-

time. We remark that: 

𝑦𝑖 = 𝒀. 𝑒𝑖 = �̃�(𝑒𝑖)  &  𝑦′𝑖 = 𝒀. 𝑒′𝑖 = �̃�(𝑒′𝑖)       (d-27) 

Where the 𝑒′𝑖 are the transformations of the base vectors. We can write: 

𝒀. 𝑒′𝑖 = ℒ 𝑖
       𝑗
𝒀. 𝑒𝑗                                              (d-28) 

In other terms the law of vector transformations is the same law of the transformations of 

covariant coordinates which the inverse of the one of contra-variant components 

transformations. 

For the dual base we have: 

𝑦′𝑖 = 𝑒′̃𝑖(𝒀) &  𝑦𝑖 = �̃�𝑖(𝒀)                             (d-29) 

So we deduce: 

𝑒′̃𝑖 = ℒ    𝑗
𝑖 �̃�𝑗                                                    (d-30) 

The vectors of the dual base are transformed like the contra-variant components . 

e)Tensors: 
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e-a)Contra-variant tensors : 

The operation  of tensors product permit to associate to a vector space 𝑀 a space 𝑀⨂𝑀 more 

great. For every couple of vectors 𝑿 & 𝒀 of 𝑀 we associate a vector 𝑿⊗𝒀 of 𝑀⊗𝑀.A base 

of 𝑀⊗𝑀 is formed of 16 tensor products obtained with the four-vectors base of 𝑀 , 𝑒𝑖⊗ 𝑒𝑗. 

The components of 𝑿⊗ 𝒀 in this base are the components of 𝑿 & 𝒀 as the following: 

𝑿⊗ 𝒀 = 𝑥𝑖𝑦𝑗𝑒𝑖⊗ 𝑒𝑗                        (e-a-1) 

The dimension of tensor product space is 16. We define a tensor of order 2 completely contra-

variant 𝑇𝑖𝑗 which components are defined on the base  𝑒𝑖⊗ 𝑒𝑗. In a base change with Lorentz 

transformation the new components of the tensor are as: 

𝑇′𝑖𝑗 = ℒ   𝑘
𝑖 ℒ   𝑚

𝑗
𝑇𝑘𝑚                            (e-a-2) 

The inverse transformation is as: 

𝑇𝑖𝑗 = ℒ𝑘
   𝑖ℒ𝑚

  𝑗
𝑇′𝑘𝑚                               (e-a-3) 

We can also consider that the tensor 𝑇𝑖𝑘 is the image of its dual 𝑀∗ in 𝑀. The image 𝑾 of  a 

vector 𝑽  is : 

𝑊𝑖 = 𝑇𝑖𝑗𝑉𝑗                                         (e-a-4) 

Its transformation as a four vector is: 

𝑊′𝑖 = ℒ   𝑘
𝑖  𝑊𝑘 = ℒ   𝑘

𝑖 𝑇𝑘𝑗𝑉𝑘                 (e-a-5) 

But: 

𝑉𝑘 = ℒ    𝑘
𝑚 𝑉′𝑚                                        (e-a-6) 

So: 

𝑊′𝑖 = ℒ   𝑘
𝑖 ℒ    𝑚

𝑗
 𝑇𝑘𝑚𝑉′𝑗 = 𝑇′

𝑖𝑗𝑉′𝑗         (e-a-7) 

The operation of tensor product can be generalised  for any number of terms. We can define 

the space 𝑀⊗𝑘  tensor product of 𝑀 , 𝑘 manner its self. The elements of this space have a 
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dimension 4𝑘 are the tensors completely contra-variant  of order 𝑘 and their elements are 

written as 𝑇𝑖𝑗𝑘𝑙….𝑝.Those components are transformed as 𝑘 Lorentz transformations. 

e-b)Covariant tensors , Mix tensors :  

Which was done for the space 𝑀 can be done for its dual 𝑀∗ .We can define tensors of an 

order 2 completely covariant where the components are written  on the dual base product 

tensor �̃�𝑖⊗ �̃�𝑗 as 𝑇𝑖𝑗 . The Lorentz transformation of those quantities  are: 

𝑇′𝑖𝑗 = ℒ𝑖
   𝑘ℒ𝑗

   𝑙𝑇𝑘𝑙                        (e-b-1) 

We can do the tensor product of any number of dual space. We can also define subjects as the 

tensor product of the space 𝑀 with its dual 𝑀∗.We obtain mix tensors of an order 2 (or more 

if we use many times 𝑀 & 𝑀 ∗) which the components are written as 𝑇     𝑗
𝑖  for 𝑀⊗𝑀∗ and 

𝑇𝑖
    𝑗

 for 𝑀∗⊗𝑀. The transformation rule of such mix tensor is : 

𝑇′    𝑗
𝑖 = ℒ   𝑙

𝑖 ℒ 𝑗
   𝑘𝑇     𝑘

𝑙                   (e-b-2) 

And it can be generalised for every mix tensor of any order. 

Covariant components and contra-variants components describe the same physical subject. 

The same thing is for tensors: a physical quantity represented as a tensor can be also written 

as a tensor completely contra-variant, completely covariant,  or mix in arbitrary manner. Like 

for four-vectors the metric tensor 𝑔𝑖𝑗 or 𝑔𝑖𝑗  can be  used to upload or download indices, so 

we can write: 

𝑇𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝑘𝑙                         (e-b-3) 

𝑇    𝑗
𝑖 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝑘

    𝑙                        (e-b-4) 

𝑇    𝑗
𝑖 = 𝑔𝑗𝑙𝑇

𝑖𝑙                               (e-b-5) 

In terms of linear applications, all those forms are different manners to write the image 𝒀 of a 

four-vector  : 

𝑌𝑖 = 𝑇𝑖𝑘𝑋𝑘 = 𝑇    𝑘
𝑖 𝑋𝑘                   (e-b-6) 

And: 
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𝑌𝑖 = 𝑇𝑖𝑘𝑋
𝑘 = 𝑇𝑖

   𝑘𝑋𝑘                       (e-b-6) 

e-c)Terminology:  

A tensor of an order 2 is symmetric if: 

𝑇𝑖𝑗 = 𝑇𝑗𝑖                                          (e-c-1) 

We deduce immediately 𝑇𝑖𝑗 = 𝑇𝑗𝑖   &  𝑇   𝑗
𝑖 = 𝑇𝑗

     𝑖. So for a symmetric mix tensor we can write 

it as 𝑇𝑗
𝑖 without order of indices. Note that in this case it doesn’t implies that 𝑇𝑗

𝑖 is the same 

𝑇𝑖
𝑗
. 

A tensor of an order2 is anti-symmetric  if: 

𝑇𝑖𝑗 = −𝑇𝑗𝑖                                        (e-c-2) 

A symmetric tensor can be written as: 

𝑇𝑖𝑗 =

(

 

0 𝑎𝑥
−𝑎𝑥 0

𝑎𝑦 𝑎𝑧
−𝑏𝑧 𝑏𝑦

−𝑎𝑦 𝑏𝑧
−𝑎𝑧 −𝑏𝑦

0 −𝑏𝑥
𝑏𝑥 0 )

 = (𝒂, 𝒃)        (e-c-3) 

Where 𝒂 is a vector and 𝒃 is a pseudo-vector (which is transformed to its symmetric opposite 

in a base change included a space reflexion). The couple electric field/magnetic field obey to 

those conditions. 

We call trace of a tensor of an order 2 the quantity 𝑇    𝑖
𝑖 = 𝑇𝑖

   𝑖. 

We call contraction of a tensor the expression like 𝑇     𝑖
𝑖    𝑗

. The contraction of a tensor order 𝑘 is  

a tensor order 𝑘 − 2. The contraction of a tensor order 3 for example gives a tensor order 1 

i.e. a four-vector. The trace is a contraction of a  tensor order 2 and it gives a tensor order 0 

i.e. a four-scalar. 

Example for contraction of a tensor order3: 

𝑇′     𝑖
𝑖      𝑗

= ℒ   𝑙
𝑖 ℒ𝑖

   𝑚ℒ   𝑛
𝑗
𝑇    𝑚
𝑙     𝑛 = 𝛿𝑙

𝑚ℒ   𝑛
𝑗
𝑇    𝑚
𝑙     𝑛 = ℒ   𝑛

𝑗
𝑇    𝑙
𝑙     𝑛   (e-c-4) 

So it is a four-vector. 
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As a tensor we have the metric tensor which is invariant by Lorentz transformation. It is a 

symmetric tensor. Its mix form 𝑔𝑗
𝑖 = 𝑔𝑖𝑘𝑔𝑘𝑗 = 𝛿𝑗

𝑖. The Kronecker symbol  is the mix form of 

the metric tensor. The relation between the contra-variant form and the covariant form  

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖   is only a simple downloading of indices. 

Finally we define a tensor order 4 completely anti-symmetric (Levi-Civita tensor) 𝜖𝑖𝑗𝑘𝑙 .By the 

256 elements of this tensor only are not equal to zero whose indices correspond to one 

permutation of (0,1,2,3). If the permutation is pair the correspondent element is equal to +1. It 

is equal to -1 if the permutation is impair. So there is 24 elements of the tensor not equal to 

zero, 12 equal to +1 and 12 equal to -1. We have 𝜖𝑖𝑗𝑘𝑙 = −𝜖𝑖𝑗𝑘𝑙 . Finally we have: 𝜖𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝑘𝑙 =

−24. 

f)Derivation & vector analysis: 

f-a)Derivation: 

We can define for a four-vector which is a Universe point , the derivation by the contra-

variant coordinate  as: 

𝜕𝑖 =
𝜕

𝜕𝑥𝑖
                              (f-a-1) 

For a scalar function its variation is : 

𝑑𝑓 = 𝜕𝑖𝑓(𝑥
𝑖). 𝑑𝑥𝑖 =

𝜕𝑓

𝜕𝑥𝑖
. 𝑑𝑥𝑖          (f-a-2) 

𝑑𝑓 is a scalar, and 𝑑𝑥𝑖 is a contra-variant vector, 𝜕𝑖 is a covariant vector. It is transformed as 

it is in a Lorentz transformation: 

𝜕′𝑖 = ℒ𝑖
    𝑗
𝜕𝑖                                    (f-a-3) 

Where 𝜕′ represents the derivatives according to the new contra-variant coordinates. 

The derivative according to the covariant coordinates is: 

𝜕𝑖 = 𝑔𝑖𝑗𝜕𝑗                                       (f-a-4) 

f-b)Vector analysis:  
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If 𝑓 is a scalar function, 𝜕𝑖𝑓  generalise the gradient and we have: 

𝜕𝑖𝑓 = (
𝜕𝑓

𝑐𝜕𝑡
 , ∇𝑓)                               (f-b-1) 

And: 

𝜕𝑖𝑓 = (
𝜕𝑓

𝑐𝜕𝑡
 , −∇𝑓)                            (f-b-2) 

If we have a four-vector 𝐴𝑖(𝑥𝑗) = (𝑎0, 𝒂) its divergence is defined as: 

𝜕𝑖𝐴𝑖 = 𝜕𝑖𝐴
𝑖 =

𝜕𝑎0

𝑐𝜕𝑡
+ ∇. 𝒂                  (f-b-3) 

The analogue of the rotational is a tensor of order 2 completely anti-symmetric : 

𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖                                       (f-b-4) 

In its covariant form the rotational is: 

𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖                                         (f-b-5) 

The Laplace operator of the space-time  is the norm of the vector 𝜕𝑖 : 

𝜕𝑖𝜕
𝑖 =

𝜕2

𝑐2𝜕𝑡2
− ∆= ⎕                     (f-b-6) 

Which is the dalembertian  ⎕. 

f-c)Integration: 

We define a volume integral of space-time for any types of quantity as : 

∫𝑑Ω                                               (f-c-1) 

Where  𝑑Ω = 𝑐𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧 the integral element in space-time. 

A surface in space in three dimensions is a variety in three dimensions. We can define an 

integral on those surfaces ( a flux) with  the condition to define a four-vector element surface  

𝑑𝑆𝑖  . A surface element is a little subject of three dimensions. It is defined by three four-

vector 𝑑𝑥𝑖 , 𝑑𝑦𝑖 , 𝑑𝑧𝑖 . 𝑑𝑆𝑖 should be orthogonal to any vector of the element and its length 
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should be a measure of the volume of the surface element. To define 𝑑𝑆𝑖 we form at first a 

tensor of an order 3, 𝑑𝑆𝑖𝑗𝑘    as: 

𝑑𝑆𝑖𝑗𝑘 = |
𝑑𝑥𝑖

𝑑𝑥𝑗

𝑑𝑥𝑘

𝑑𝑦𝑖

𝑑𝑦𝑗

𝑑𝑦𝑘

𝑑𝑧𝑖

𝑑𝑧𝑗

𝑑𝑧𝑘
|                (f-c-2) 

The surface element is obtained by contracting this tensor  with the tensor of order 4 

completely anti-symmetric: 

𝑑𝑆𝑖 = −
1

6
𝜖𝑖𝑗𝑘𝑙 𝑑𝑆𝑗𝑘𝑙                             (f-c-3) 

We establish for surface integrals a theorem which generalise the Gauss theorem as: 

∫ 𝐴𝑖𝑑𝑆𝑖𝑆
= ∫ 𝜕𝑖𝐴

𝑖𝑑Ω
𝑉

                         (f-c-4) 

Where 𝑉 is a volume in space-time and 𝑆 is its surface border. 

So the integral of the divergence extended to all the space is equal to the flux on the sphere at 

infinite. This is in general equal to zero for physical fields. 

We can also define an integral on two dimensions varieties . The element of the integral is a 

tensor anti-symmetric of an order 2 madden  on the vectors 𝑑𝑥𝑖& 𝑑𝑦𝑗 delimitate the integral 

element: 

𝑑𝑓𝑖𝑗 = 𝑑𝑥𝑖𝑑𝑦𝑗 − 𝑑𝑥𝑗𝑑𝑦𝑖                   (f-c-5) 

Finally we can define a curvilinear integral on a universe line. The theorem of Stokes link the 

integral on a variety in two dimensions to the integral on its contour: 

∫𝐴𝑖𝑑𝑥
𝑖 = ∫𝑑𝑓𝑖𝑗(𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖)           (f-c-6) 

2-2-2-5)Generalised equation of motion: 

2-2-2-5-1) A corpuscle in a field: 

Let’s have a system of many corpuscles in a  free field. The total action of this system is as: 

𝑆 = 𝑆𝑓𝑟𝑒𝑒 𝑐𝑜𝑟𝑝𝑢𝑠𝑐𝑙𝑒𝑠 + 𝑆𝑓𝑟𝑒𝑒  𝑓𝑖𝑒𝑙𝑑𝑠 + 𝑆𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛      (267) 
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We consider here charged corpuscles to facilitate writing the equation of motion. For non 

charged corpuscles do the conversion factors in unified field as defined in (181), (182), (183) 

& (184). 

In a first step we consider only one charged corpuscle in interaction with a free field. In a 

second step we consider many charged corpuscles in interaction between each other and the 

free field. 

The action of a free corpuscle is as: 

𝑆𝑓𝑟𝑒𝑒 𝑐𝑜𝑟𝑝𝑢𝑠𝑐𝑙𝑒𝑠 = −𝑚𝑐 ∫𝑑𝑠                                      (268) 

The field can be represented by a unique potential four-vector  as 𝐴𝑖 = (𝜑,𝑨) and its action is 

as: 

𝑆𝐼𝑛𝑡𝑒𝑟𝑐𝑎𝑡𝑖𝑜𝑛 = −∫𝛾.
𝑒

𝑐
𝐴𝑖𝑑𝑥

𝑖 = −𝑞 ∫𝐴𝑖𝑑𝑥
𝑖           (269) 

With: 

 𝑞 = 𝛾.
𝑒

𝑐
  is a constant which we call charge of the corpuscle. 

2-2-2-5-2)Electromagnetic field tensor : 

𝐹𝑖𝑘 is per definition an anti-symmetric tensor of an order 2, the four-rotational of the potential 

(𝜑,𝑨) . It depends only of six independent coordinates. The three space-time coordinates are 

the components of  a space vector, and the three only space coordinates are the components of 

a pseudo-vector. 

We can write the space-time components as the following: 

𝐹0𝑖 = 𝜕0𝐴𝑖 − 𝜕𝑖𝐴0 = −
𝜕𝐴𝑖

𝑐𝜕𝑡
−
𝜕𝜑

𝜕𝑥𝑖
=
𝐸𝑖

𝛾
    for 𝑖 = 1,2,3        (270) 

We pose : 

𝑬 = −
𝛾

𝑐
.
𝜕𝑨

𝜕𝑡
− 𝛾. 𝑔𝑟𝑎𝑑(𝜑)                                                    (271) 

Which is called electric field the real space vector defined. 

The space coordinates of the field tensor are: 
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𝐹12 = −
𝑐.𝐵𝑧

𝛾
= −

𝜕𝐴𝑦

𝜕𝑥
+
𝜕𝐴𝑥

𝜕𝑦
                                 (272) 

𝐹13 =
𝑐.𝐵𝑦

𝛾
= −

𝜕𝐴𝑧

𝜕𝑥
+
𝜕𝐴𝑥

𝜕𝑧
                                    (273) 

𝐹23 = −
𝑐.𝐵𝑥

𝛾
= −

𝜕𝐴𝑧

𝜕𝑦
+
𝜕𝐴𝑦

𝜕𝑧
                                  (274) 

 If we introduce the pseudo-vector called magnetic field: 

𝑩 =
𝛾

𝑐
. 𝑟𝑜𝑡𝑨                                     (275) 

The electromagnetic tensor describe well the Maxwell equations of electromagnetism.  

We have: 

𝐹𝑖𝑘 = (𝑬, 𝑩)    &   𝐹
𝑖𝑘 = (−𝑬,𝑩)       (276) 

2-2-2-5-3) Change of referential for the field: 

We have in an inertial referential: 

𝐹′
𝑖𝑘
(𝑥′

𝑖
= ℒ    𝑗

𝑖 𝑥𝑗) = ℒ   𝑙
𝑖 ℒ   𝑚

𝑘 𝐹𝑙𝑚(𝑥𝑗)       (277) 

Where the quantities 𝐹′𝑖𝑘 are relative to the new referential ′ . 

The transformations of fields are as the following: 

𝐸′𝑥 = 𝐸𝑥                                    (288) 

𝐸′𝑦 =
𝐸𝑦−𝑉.𝐵𝑧

√1−
𝑉2

𝑐2

                             (289) 

𝐸′𝑧 =
𝐸𝑧+𝑉.𝐵𝑦

√1−
𝑉2

𝑐2

                               (290) 

𝐵′𝑥 = 𝐵𝑥                                      (291) 

𝐵′𝑦 =
𝐵𝑦+

𝑉

𝑐2
.𝐸𝑧

√1−
𝑉2

𝑐2

                               (292) 
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𝐵′𝑧 =
𝐵𝑧−

𝑉

𝑐2
.𝐸𝑦

√1−
𝑉2

𝑐2

                                (293) 

For the inverse transformations change 𝑉 𝑏𝑦 − 𝑉. 

The transformations of potentials are as the following [11]: 

𝐴0 =
𝐴′0+

𝑉

𝑐
.𝐴′1

√1−
𝑉2

𝑐2

                             (294) 

𝐴1 =
𝐴′1+

𝑉

𝑐
𝐴′0

√1−
𝑉2

𝑐2

                              (295) 

𝐴2 = 𝐴′2                                     (296) 

𝐴3 = 𝐴′3                                     (297) 

For covariant components of the potentials we have: 

𝐴0 =
𝐴′0−

𝑉

𝑐
.𝐴′1

√1−
𝑉2

𝑐2

       ,       𝐴1 =
𝐴′1−

𝑉

𝑐
.𝐴′0

√1−
𝑉2

𝑐2

      ,     𝐴2 = 𝐴′2    ,     𝐴3 = 𝐴′3        (298) 

With the four-vector  𝐴𝑖 = (𝜑,𝑨) we have: 

𝜑 =
𝜑′+

𝑉

𝑐
.𝐴′𝑥

√1−
𝑉2

𝑐2

     ,     𝐴𝑥 =
𝐴′𝑥+

𝑉

𝑐
.𝜑′

√1−
𝑉2

𝑐2

      ,        𝐴𝑦 = 𝐴′𝑦        ,         𝐴𝑧 = 𝐴′𝑧     (298)                      

2-2-2-5-4) Invariants of the field: 

 

There is two invariants which have physical interest. They are: 

𝐹𝑖𝑘𝐹
𝑖𝑘 = 𝑖𝑛𝑣.                                   (299) 

𝜖𝑖𝑘𝑙𝑚𝐹𝑖𝑘𝐹𝑙𝑚 = 𝑖𝑛𝑣.                           (300) 

This is due to the power of mathematics.  
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It comes that: 

𝑐2𝐵2 − 𝐸2 = 𝑖𝑛𝑣.                          (301) 

𝑬. 𝑩 = 𝑖𝑛𝑣                                      (302) 

Another approach be described for the invariants of the field represented by anti-symmetric  

four-tensor . 

Let’s consider the complex vector: 

𝑭 = 𝑬 + 𝑖𝑐𝑩                                   (303) 

The Lorentz transformation of this vector along the axle (𝑂, 𝑥)  according to (288)...(293) is 

as: 

𝐹𝑥 = 𝐹′𝑥    ,    𝐹𝑦 = 𝐹′𝑦𝑐ℎ𝜃 − 𝑖𝐹′𝑧𝑠ℎ𝜃 = 𝐹′𝑦 cos(𝑖𝜃) − 𝐹′𝑧sin (𝑖𝜃)        (304) 

𝐹𝑧 = 𝐹′𝑧 cos(𝑖𝜃) + 𝐹′𝑦 sin(𝑖𝜃)         ,                𝑡ℎ(𝜃) =
𝑉

𝑐
                          (305) 

The rotation of the vector 𝑭 in the plan (𝑂, 𝑥, 𝑡) of the four-dimensional space ( it is the 

Lorentz transformation which we search here) is equivalent of a rotation of an imaginary 

angle  in the plan  (𝑂, 𝑦, 𝑧) of the three dimensional space. The ensemble of all possible 

rotations in the four-dimensional space  (included the simples rotations of axles 𝑥, 𝑦 & 𝑧) is 

equivalent to the ensemble of all possible rotations of complexes angles in the three 

dimensional space ( for the six rotation angles in the four-dimensional space correspond three 

complexes rotation angles of the three dimensional referential). 

The unique invariant of the vector according to those rotations is its square 𝐹2 = 𝐸2 −

𝑐2𝐵2 + 2𝑖𝑐𝑬.𝑩 .So the real quantities 𝐸2 − 𝑐2𝐵2  and 𝑬. 𝑩  are the unique invariants of the 

tensor 𝐹𝑖𝑘. 

2-2-2-5-5)First group of Maxwell equations: 

Equation (259) signify the electromagnetic tensor is the rotational of the potential. In three 

dimension this propriety implies the nullity of its divergence. Let’s establish this propriety in 

four dimensions. We have: 

𝐹𝑖𝑘 = 𝜕𝑖𝐴𝑘 − 𝜕𝑘𝐴𝑖                       (306) 
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We deduce that: 

𝜕𝑗𝐹𝑖𝑘 = 𝜕𝑗𝜕𝑖𝐴𝑘 − 𝜕𝑗𝜕𝑘𝐴𝑖             (307) 

𝜕𝑘𝐹𝑗𝑖 = 𝜕𝑘𝜕𝑗𝐴𝑖 − 𝜕𝑘𝜕𝑖𝐴𝑗              (308) 

𝜕𝑖𝐹𝑘𝑗 = 𝜕𝑖𝜕𝑘𝐴𝑗 − 𝜕𝑖𝜕𝑗𝐴𝑘               (309) 

The sum of (307), (308) & (309) gives us: 

𝜕𝑗𝐹𝑖𝑘 + 𝜕𝑘𝐹𝑗𝑖 + 𝜕𝑖𝐹𝑘𝑗 = 0             (310) 

There is only four independents equations of (310) where 𝑖 ≠ 𝑗 ≠ 𝑘. Otherwise  the 

components of (310) are equal to zero. 

The first one is for indices 1,2,3: 

𝜕1𝐹23 + 𝜕3𝐹12 + 𝜕2𝐹31 = 0         (311) 

i.e.: 

∇.𝑩 = 0                                         (312) 

For the other three equations we have also that: 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
                                 (313) 

So we found the first pair of Maxwell equations (homogeny Maxwell equations)which are the 

existence of a scalar potential and a vector potential. 

2-2-2-6)Fields as a function of sources: 

We will establish the equations which links the field to its sources i.e. to the motion of  

charged corpuscles. In the following we suppose that is imposed the dynamics of corpuscles  

and we are interested only to the dynamics of the field. The dynamic variables are the values 

of potentials or fields in every space-time point. 

2-2-2-6-1)Interaction field-current: 
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We consider an ensemble of punctual charged corpuscles whom motion is imposed and they 

are indexed with indices (𝛼) . 

Instead to pose that the charges are punctual we consider that the charge is repatriated in a 

continuous form . This allows as to define the density of charge 𝜌 and to pose that 𝜌𝑑𝑉 is the 

charge contained in the volume 𝑑𝑉.The density of charge is a function of coordinates and 

time. The integral of 𝜌 represents for a given volume the charge contained in this volume. We 

shouldn’t forget that the charges are punctual and that the density 𝜌  is equal to zero 

everywhere except in the points where localised punctual charges; the integral ∫𝜌𝑑𝑉 should 

be equal to the sum of the charges contained in this volume. This permit us to represent the 

density 𝜌 as : 

𝜌 = ∑ 𝑒(𝛼)𝛿(𝒓 − 𝒓(𝛼))𝛼               (314) 

Where : 

𝑒(𝛼), 𝒓(𝛼)  are respectively the charge and  the position  of the corpuscle 𝛼. 

𝛿(𝑥)  is the function defined as 𝛿(𝑥) = 0 for every 𝑥 ≠ 0, for 𝑥 = 0, 𝛿(0) = ∞ but 

 ∫ 𝛿(𝑥)𝑑𝑥 = 1.
+∞

−∞
  

If 𝑓(𝑥) is an arbitrary continuous function than: 

 ∫ 𝑓(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)
+∞

−∞
    

In consequence we have     ∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(0).
+∞

−∞
 

The limit of integration can be different than ±∞ and the domain of integration can be anyone 

but should contain the point where 𝛿 exist. 

The signification of those equalities is that their members furnish the same result when used 

as a factors under the sign of integration:  

 𝛿(−𝑥) = 𝛿(𝑥) , 𝛿(𝑎𝑥) =
1

|𝑎|
𝛿(𝑥)  . 

And in general we have: 

 𝛿[𝜑(𝑥)] = ∑
1

|𝜑′(𝑎𝑖)|
𝑖 𝛿(𝑥 − 𝑎𝑖)    
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Where the 𝑎𝑖 are solution of 𝜑(𝑥) = 0  and 𝜑′(𝑎𝑖) the derivative of 𝜑(𝑥) at the point 𝑎𝑖. 

For three dimensional space we can define a function 𝛿(𝒓) which equal to zero everywhere 

except in the origin the three-dimensional coordinates system and also its integral  extended to 

the total space is equal to one. This function can be represented in the form of a product of 

(𝑥)𝛿(𝑦)𝛿(𝑧) . 

Per definition the charge of a corpuscle is an invariant i.e. it is independent from the choice of 

the referential. The density 𝜌 is not an invariant but the product 𝜌𝑑𝑉 is an invariant.  

Let’s multiply by 𝑑𝑥𝑖 the two terms of the equality = 𝜌𝑑𝑉 : 

𝑑𝑒𝑑𝑥𝑖 = 𝜌𝑑𝑉𝑑𝑥𝑖 = 𝜌𝑑𝑉𝑑𝑡
𝑑𝑥𝑖

𝑑𝑡
    (315) 

In the left we found a four-vector ( because 𝑑𝑒 is a scalar and 𝑑𝑥𝑖 is a four-vector).In 

consequence we should found in the right a four-vector. As 𝑑𝑉𝑑𝑡 is a scalar ,so  𝜌
𝑑𝑥𝑖

𝑑𝑡
  is a 

four-vector. This one noted 𝑗𝑖 is called four-vector of current density: 

𝑗𝑖 = 𝜌
𝑑𝑥𝑖

𝑑𝑡
                                     (316) 

The three space components of this four-vector define the three-dimensional density of 

current: 

𝒋 = 𝜌𝒗                                         (317) 

Where 𝒗 is the speed of the considered charge. The time component of this four-vector is 𝜌𝑐  . 

So we have: 

𝑗𝑖 = (𝜌𝑐, 𝒋)                                  (318) 

The total charge contained in all space is equal to the integral ∫ 𝜌𝑑𝑉 extended for all space. 

We can represent this integral in a four-dimensional  form: 

∫ 𝜌𝑑𝑉 =
1

𝑐
∫ 𝑗0𝑑𝑉 =

1

𝑐
∫ 𝑗𝑖 𝑑𝑆𝑖      (319) 
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Where the integral is extended to a four-dimensional hyper-plan  orthogonal to the axle 𝑥0 .In 

a general manner the integral 
1

𝑐
∫ 𝑗𝑖𝑑𝑆𝑖 extended to an arbitrary hyper-plan represents the sum 

of charges whom the universe lines cut this hyper-surface. 

Instead of punctual charges 𝑒 we introduce a continuous repartition of density 𝜌 and so the 

action due to interaction charge-charge and charge-current is: 

𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −
1

𝑐
∫ 𝜌𝐴𝑖𝑑𝑥

𝑖𝑑𝑉       (320) 

If we write it in this form: 

𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −
1

𝑐
∫ 𝜌

𝑑𝑥𝑖

𝑑𝑡
𝐴𝑖𝑑𝑉𝑑𝑡 = −

1

𝑐2
∫𝐴𝑖𝑗

𝑖 𝑑Ω       (321) 

Where : 

𝑑Ω = 𝑑𝑉𝑐𝑑𝑡 = 𝑐𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧                    (322) (four-volume) 

2-2-2-6-2)Interaction charge-field: 

To find the form of the action 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  we refer to an important propriety of electromagnetic 

fields which is that the experience shows that the electromagnetic fields satisfy the principle 

of superposition: the field generated by a system of charges result only in a simple addition of 

fields due to every charge taken separately. In other terms the field vector resultant is equal to 

the sum of all vectors values  in the point of every fields considered separately. Every solution 

of field equations is a field which can be realised in the Nature. According to the principle of 

superposition the sum of two fields should be a field which can exist in the Nature and should 

verify the equations of  field. 

It is known that the linear differentials equations had the propriety that the sum of their 

solutions is also a solution. In consequence the equations of the electromagnetic field should 

be linear differentials equations. 

So in the action 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  we should have a quadratic expression under the integral referring 

to the field. 

The potentials of the field can’t be used in the expression of the action 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  because they 

are not defined in one manner (univocal manner and this univocal manner have no importance 
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in the definition of 𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛). We conclude that 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  is an integral of the tensor 𝐹𝑖𝑘 of 

the electromagnetic field. But because the action should be a scalar , it should be the integral 

of a scalar. The unique scalar existent in this case is the product 𝐹𝑖𝑘𝐹
𝑖𝑘. The function under 

the sign of the integral in the expression of the action 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  shouldn’t contain any 

derivative of 𝐹𝑖𝑘  because that the Lagrange function can’t contain except the coordinates of 

the system ,only the firsts derivatives according to time. The role of  coordinates (i.e. the 

variables according to them we execute the variations of principle of least action) is assumed 

here by the potentials 𝐴𝑘 of the field. Reminder that in classical mechanics the Lagrange 

function of a mechanical system contain only the coordinates of corpuscles and their firsts 

derivatives according to time.  

Concerning the quantity 𝜖𝑖𝑘𝑙𝑚𝐹𝑖𝑘𝐹𝑙𝑚 it represents the total four-dimensional divergence and 

its insertion in the expression of the 𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑  doesn’t affect the equations of motion. This 

quantity is excluded from the expression of the action independently of the fact that is a 

pseudo-scalar. This pseudo scalar can be represented as a form of four-divergence 

𝜖𝑖𝑘𝑙𝑚𝐹𝑖𝑘𝐹𝑙𝑚 = 4
𝜕

𝜕𝑥𝑖
(𝜖𝑖𝑘𝑙𝑚𝐴𝑘

𝜕

𝜕𝑥𝑙
𝐴𝑚) which can be easily verified because 𝜖𝑖𝑘𝑙𝑚 is anti-

symmetric. 

So the action of  fields is as: 

𝑆𝑓𝑟𝑒𝑒 𝑓𝑖𝑒𝑙𝑑 = −√
𝜅

2048.𝜋3.𝐺
∫𝐹𝑖𝑘𝐹

𝑖𝑘𝑑Ω         (323) 

Where 𝜅 & 𝐺 are positive constants to choose one and determine the other. 

The total action is: 

𝑆 = −{∫𝑚𝑐𝑑𝑠 +
1

𝑐2
∫𝐴𝑖𝑗

𝑖 𝑑Ω + √
𝜅

2048.𝜋3.𝐺
∫𝐹𝑖𝑘𝐹

𝑖𝑘𝑑Ω}    (324) 

For many charges the action is the sum of equation (324). 

2-2-2-6-3)The second  pair of Maxwell equations: 

When we search to establish the equation of  the field from the principle of least action , we 

are obligated to pose that the motion of the charges are given and to vary only the potentials 

of the field (which play in this case the role of coordinates of the system ).In the inverse sense 
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to establish the equations of motion, we had pose that the field is given and we vary only the 

trajectory of the corpuscle. 

In consequence  the variation of the first term of equation (324) is maintained equal to zero 

but in the second term we should only vary the current 𝑗𝑖.So: 

𝛿𝑆 = −
1

𝑐
 ∫[

1

𝑐
𝑗𝑖𝛿𝐴𝑖 +√

𝜅.𝑐2

512.𝜋3.𝐺
∫𝐹𝑖𝑘𝛿𝐹

𝑖𝑘]𝑑Ω    (325) 

For equation (325) take in consideration that 𝐹𝑖𝑘𝛿𝐹
𝑖𝑘 ≡ 𝐹𝑖𝑘𝛿𝐹𝑖𝑘 . 

Substitute in (325) 𝐹𝑖𝑘 =
𝜕𝐴𝑘

𝜕𝑥𝑖
−
𝜕𝐴𝑖

𝜕𝑥𝑘
   we get: 

𝛿𝑆 = −
1

𝑐
∫{

1

𝑐
𝑗𝑖𝛿𝐴𝑖 + √

𝜅.𝑐2

512.𝜋3.𝐺
𝐹𝑖𝑘

𝜕

𝜕𝑥𝑖
𝛿𝐴𝑘 − √

𝜅.𝑐2

512.𝜋3.𝐺
𝐹𝑖𝑘

𝜕

𝜕𝑥𝑘
𝛿𝐴𝑖}𝑑Ω (326) 

Permute in the second term of (326) the indices 𝑖 & 𝑘 on which we do the summation and 

replace 𝐹𝑘𝑖 by −𝐹𝑖𝑘 : 

𝛿𝑆 = −
1

𝑐
∫{
1

𝑐
𝑗𝑖𝛿𝐴𝑖 − √

𝜅.𝑐2

128.𝜋3.𝐺
𝐹𝑖𝑘

𝜕

𝜕𝑥𝑘
𝛿𝐴𝑖}𝑑Ω            (327) 

Integrate by party the second integral which means apply the theorem of Gauss: 

𝛿𝑆 = −
1

𝑐
∫{
1

𝑐
𝑗𝑖 + √

𝜅.𝑐2

128.𝜋3.𝐺

𝜕𝐹𝑖𝑘

𝜕𝑥𝑘
}𝛿𝐴𝑖𝑑Ω − √

𝜅.𝑐2

128.𝜋3.𝐺
∫𝐹𝑖𝑘𝛿𝐴𝑖𝑑𝑆𝑘      (328) 

In the second term we should take its value in the limits of integration. The limits of 

integration on the coordinates are extended to the infinite because the field disappear in the 

infinite. In the limits of integration on time i.e. in the initial and final instants  given the 

variation of the potentials is equal to zero because according to the principle of least action 

those potentials are known in those instants. In consequence the second term of (328) is equal 

to zero and thus we get: 

∫{
1

𝑐
𝑗𝑖 +√

𝜅.𝑐2

128.𝜋3.𝐺

𝜕𝐹𝑖𝑘

𝜕𝑥𝑘
}𝛿𝐴𝑖𝑑Ω = 0           (329) 

As the principle of least action implies that the variations 𝛿𝐴𝑖 are arbitrary, the coefficient of 

𝛿𝐴𝑖 in (329) should be equal to zero: 
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𝜕𝐹𝑖𝑘

𝜕𝑥𝑘
= −

1

𝑐2
√
128.𝜋3.𝐺

𝜅
𝑗𝑖                             (330) 

Rewrite those equations (𝑖 = 0,1,2,3) in three-dimensional form . 

For 𝑖 = 1 we have: 

1

𝑐

𝜕𝐹10

𝜕𝑡
+
𝜕𝐹11

𝜕𝑥
+
𝜕𝐹12

𝜕𝑦
+
𝜕𝐹13

𝜕𝑧
= −

1

𝑐2
√
128.𝜋3.𝐺

𝜅
𝑗1   (331) 

By substituting the values of the components of the tensor 𝐹𝑖𝑘 we get: 

1

𝑐

𝜕𝐸𝑥

𝜕𝑡
− 𝑐.

𝜕𝐵𝑧

𝜕𝑦
+ 𝑐.

𝜕𝐵𝑦

𝜕𝑧
= −

𝛾

𝑐2
√
128.𝜋3.𝐺

𝜅
𝑗𝑥            (332) 

The equation (332) and the succeeded equations for (𝑖 = 2,3) can be written as a unique 

vector form: 

𝑟𝑜𝑡𝑩 =
1

𝑐2
𝜕𝑬

𝜕𝑡
+

𝛾

𝑐3
√
128.𝜋3.𝐺

𝜅
𝒋                              (333) 

Finally for 𝑖 = 0 we have: 

𝜕𝐹00

𝜕𝑥0
+
𝜕𝐹01

𝜕𝑥1
+
𝜕𝐹02

𝜕𝑥2
+
𝜕𝐹03

𝜕𝑥3
= −

1

𝑐2
√
128.𝜋3.𝐺

𝜅
𝑗0   (334) 

By substituting the values of the tensor 𝐹𝑖𝑘 and the current 𝑗0 we get: 

𝑑𝑖𝑣𝑬 = 𝛾
𝜌

𝑐
√
128.𝜋3.𝐺

𝜅
                                        (335) 

The equations (333) and (335) are the second pair of Maxwell equations as formulated by 

H.A.Lorentz for the electromagnetic field in vacuum contained punctual charges. 

We can write equation (335) as: 

𝑑𝑖𝑣𝑬 = 4𝜋𝜎𝜌                                    (336) 

With   𝜎  constant. So we have: 
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𝛾 = 𝜎𝑐√
𝜅

8.𝜋.𝐺
                                     (337) 

In fact don’t forget that conversion coefficient 𝛾 is a product of two conversion coefficients 

 & 𝜀 . If we resolve the problem for one coefficient, it remains unsolved for the other so the 

second group of Maxwell equations remains inhomogeneous equations . 

To resolve the problem for one coefficient we had build a theory so there is experiences to do 

& so there is new technologies to rise. 

Resolving the problem for the second conversion coefficient needs a new theory to build, new 

experiences to do and new technologies will rise but we will notice that this coefficient is in 

fact a product of two coefficients....etc. So the science will be never had an end: welcome to 

the city of science. 

2-2-2-6-4)Continuity equation for charges: 

The variation of  the charge contained in a given volume is represented by the  derivative  

𝜕

𝜕𝑡
∫𝜌𝑑𝑉 . 

In other hand the variation per unit of time depends on the quantity of charge going out or in 

this volume. The quantity of charges going in this volume per unit time among the element 𝑑𝒇 

of the surface bordering this volume is equal to 𝜌𝒗𝑑𝒇  where 𝒗 is the speed of displacement 

of the charge in the point of space where exist the element 𝑑𝒇 . As it  is useful in usage , the 

vector 𝑑𝒇 is directed in the same sense of the extern vector orthogonal to this surface i.e. in 

the same sense of the orthogonal vector  directed out the considered volume. So the quantity  

𝜌𝒗𝑑𝒇 is positive if the charge go out the volume and negative if the charge go in the volume. 

The total charge going out per unit time of a given volume is equal to ∮𝜌𝒗𝑑𝒇 where the 

integral is extended for all the closed surface bordering this volume. So we have: 

𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉 = −∮𝜌𝒗𝑑𝒇                        (338) 

The minus sign before the second member of (338) is introduced to consider the first member 

positive when the total charge in the volume is augmenting. The equation (338) is the 

conservation law of  continuous charge called also continuity equation written in an integral 

form.  
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We remark that 𝜌𝒗 is the density of current ,we can write the equation (338) as: 
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉 =

−∮ 𝒋𝑑𝒇                           (339) 

In a differential form we apply Gauss theorem for the second member of (339) : 

∮ 𝒋𝑑𝒇 = ∫𝑑𝑖𝑣𝒋𝑑𝑉                              (340) 

We get: 

∫ (𝑑𝑖𝑣𝒋 +
𝜕𝜌

𝜕𝑡
)𝑑𝑉 = 0                        (341) 

Equation (341) should be verified by integrate in any volume , so we should have: 

𝑑𝑖𝑣𝒋 +
𝜕𝜌

𝜕𝑡
= 0                                     (342) 

(342) is the differential form of the continuity equation. 

We can insure that the expression (314) which give 𝜌 as a function of 𝛿 verify automatically 

the equation (342). 

Let’s suppose that it exist only on charge as 𝜌 = 𝑒𝛿(𝒓 − 𝒓𝟎) ,the current is  𝒋 = 𝑒𝒗𝛿(𝒓 − 𝒓𝟎)  

where 𝒗  is the speed of the charge. Calculate the derivative 
𝜕𝜌

𝜕𝑡
 . When the charge move its 

coordinates varies so 𝒓𝟎 vary. We have: 

𝜕𝜌

𝜕𝑡
=

𝜕𝜌

𝜕𝒓𝟎

𝜕𝒓𝟎

𝜕𝑡
  

Or 
𝜕𝒓𝟎

𝜕𝑡
 is the speed 𝒗 of the charge . In the other hand as 𝜌 is a function of 𝒓 − 𝒓𝟎 we have  

𝜕𝜌

𝜕𝒓𝟎
= −

𝜕𝜌

𝜕𝒓
  and so in consequence : 

𝜕𝜌

𝜕𝑡
= −𝒗𝑔𝑟𝑎𝑑𝜌 = −𝑑𝑖𝑣(𝜌𝒗) = −𝑑𝑖𝑣𝒋   considering that 𝒗 as independent from 𝒓 . So we get 

the equation (342). 

In a four-dimensional form  the equation (342) is obtained by putting equal to zero the four-

divergence of the four-current : 

𝜕𝑗𝑖

𝜕𝑥𝑖
= 0                                     (343) 
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In equation (319) we had established that the total charge  can represented as 
1

𝑐
∫ 𝑗𝑖 𝑑𝑆𝑖   where 

the integration is extended to the hyper-plan 𝑥0 = 𝑐𝑜𝑛𝑠𝑡. In another instant the total charge 

can be represented by a similar integral extended to another hyper-plan orthogonal to the axle 

𝑥0 . We can easily  verify that the law of charge conservation  is coming from the equation 

(343) i.e. the integral ∫ 𝑗𝑖 𝑑𝑆𝑖 is the same for any hyper-plan of integration 𝑥0 = 𝑐𝑜𝑛𝑠𝑡. 

The difference between the integrals ∫ 𝑗𝑖 𝑑𝑆𝑖 taken on two hyper-surfaces 𝑥0 = 𝑐𝑜𝑛𝑠𝑡 can be 

written as ∮ 𝑗𝑖𝑑𝑆𝑖 where the integral is extended to the closed hyper-surface bordering the 

four-volume existing between the considered hyper-plans (this integral is different from the 

difference  obtained by an integral extended to the lateral hyper-surface  localised at the 

infinite which is eliminated because there is no charge in the infinite). With Gauss theorem 

we can transform this one  on an integral in the four-volume existing between the two hyper-

plans and  be insured that : 

∮ 𝑗𝑖𝑑𝑆𝑖 = ∫
𝜕𝑗𝑖

𝜕𝑥𝑖
𝑑Ω = 0                        (344). 

CQFD. 

This demonstration remains available for two integrals ∫ 𝑗𝑖𝑑𝑆𝑖  extended to two hyper-surfaces 

infinites chosen arbitrary  (and not only for hyper-plans           𝑥0 = 𝑐𝑜𝑛𝑠𝑡 ) which bordering 

all the three-dimensional space. Those considerations shows that the integral 
1

𝑐
∫ 𝑗𝑖 𝑑𝑆𝑖  only a 

unique value (equal to the total charge contained in the space) for any integration hyper-

surface . 

We had seen in equation  (247) that the gauge invariance of equations  implies the 

conservation of  charge . In the equation of motion (324) let’s replace 𝐴𝑖 by 𝐴𝑖
𝜕𝑓

𝜕𝑥𝑖
 , the 

integral 
1

𝑐2
∫ 𝑗𝑖

𝜕𝑓

𝜕𝑥𝑖
𝑑Ω will be added to the second term of (324): this is the conservation of 

charge given by the continuity equation (343) which allow us to write the expression under 

the symbol of integration as a four-divergence  
𝜕

𝜕𝑥𝑖
(𝑓𝑗𝑖) and with Gauss theorem this integral 

will be transformed as an integral on the hyper-surfaces bordering the four-volume .Those 

integrals will be eliminated when we vary the action and thus will not affect the equations of 

motion. 

2-2-3)The meaning of the constant ′′𝒂′′: 
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From equation (43) we have in Cartesian coordinates: 

𝜏2. (1 −
�̇�2+�̇�2+�̇�2

𝑐2
) = 𝜏0

2    (345) 

Differentiate (345) we will get : 

2. 𝜏. (1 −
�̇�2+�̇�2+�̇�2

𝑐2
) + 𝜏2. (

−2

𝑐2
. [�̇�. �̈� + �̇�. �̈� + �̇�. �̈�]) = 0  (346) 

Let’s consider one dimension the abscissa coordinate: 

(1 −
�̇�2

𝑐2
) −

𝜏0

𝑐2.√1−
�̇�2

𝑐2

(�̇�. �̈�) = 0    (347) 

So we get : 

(1 −
�̇�2

𝑐2
)

3

2
−
𝜏0

𝑐2
. �̇�. �̈� = 0        (348) 

Let’s suppose that the speed of the corpuscle tends to ′′𝑐′′ so from equation (348) we deduce 

that the acceleration tends to zero : we can’t apply on the corpuscle any force , there is a 

maximum force to apply . Also the power to transmit to the corpuscle had a superior limit: we 

can’t exchange any amount of energy with the corpuscle instantaneously, there is always a 

delay time to exchange energy and that’s which translate this new constant. 

2-2-4)Wave-corpuscle duality: 

For 𝑚 = 0 it correspond to light which have a peed equal to ′′𝑐′′. It is possible that we can 

treat corpuscles and waves as the same thing. 

If we can treat a corpuscle as a wave , we can represent it by a plane wave as the following: 

𝜓(𝒙, 𝑡) = 𝐴. exp (𝑖𝒌. 𝒙 − 𝑖𝜔. 𝑡)    (349) 

Where : 

𝐴: the amplitude of the wave function; 

𝒌 : the wave-vector; 

𝜔: the frequency of the wave. 
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The principle of relativity implies the invariance of phase of the wave i.e. we have: 

𝑥. 𝑘 − 𝜔. 𝑡 = 𝑥′. 𝑘′ − 𝜔′. 𝑡′            (350) 

Let’s suppose that the corpuscle is in rest in the referential 𝑅′, so we consider that it’s wave-

vector in this referential is equal to zero (nothing is in propagation): 

𝑘′ = 0                                    (351) 

And so we deduce that:  

𝒌 =
𝜔′.𝑽/𝑐2

√1−
𝑉2

𝑐2

                            (352) 

𝜔 =
𝜔′

√1−
𝑉2

𝑐2

                              (353) 

So: 

𝒌 =
𝜔′

𝑚.𝑐2
. 𝒑                             (354) 

𝜔 =
𝜔′

𝑚.𝑐2
. 𝐸                             (355) 

𝒌 =
𝜔

𝑐2
. 𝑽                                (356) 

We generalise those equations for every speed of the corpuscle. 

 

But in this conception there is a major contradiction: how do we accept that a corpuscle which 

limited in space-time extension can be represented by a plane wave which is present 

everywhere. In 1927 deBroglie had found the solution by applying the principle of non-

contradiction: the corpuscle is a packet of waves which reinforce each other in a limited 

region of space-time and annihilate each other above. The group speed of waves is identified 

to the corpuscle speed. 

2-2-5) Unity-multiplicity duality: 
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As a consequence of de Broglie conception the corpuscle is considered as a unique object and 

also multiple of superposing waves. The wave function associated to the corpuscle has a 

quasi-monochromatic frequency 𝜔 and a wave vector 𝑘  verifying the principle of uncertainty  

as follows: 

Δ𝑘. Δ𝑥 ≥ 1                                      (357) 

∆𝜔. Δ𝑡 ≥ 1                                      (358) 

The group speed  𝑣𝑔 of the packet of waves is the speed with which the energy is transmitted 

.Its definition is as follows: 

1

𝑣𝑔
=

𝑑𝑘

𝑑𝜔
                                            (359) 

From (354) and (355) the uncertainties  are as the following: 

∆𝑘 =
𝜔′

𝑚.𝑐2
. ∆𝑝                                (360) 

∆𝜔 =
𝜔′

𝑚.𝑐2
. ∆𝐸                               (367) 

We have: 

∆𝑘. ∆𝑥 =
𝜔′

𝑚.𝑐2
. ∆𝑝. ∆𝑥                   (368) 

∆𝜔. ∆𝑡 =
𝜔′

𝑚.𝑐2
. ∆𝐸. ∆𝑡                   (369) 

From equations (357) & (358) we deduce that:  

∆𝑝. ∆𝑥 ≥
𝑚.𝑐2

𝜔′
                 (370) 

∆𝐸. ∆𝑡 ≥
𝑚.𝑐2

𝜔′
                (371) 

The constant 
𝑚.𝑐2

𝜔′
  should be independent from any corpuscle. We declare it an universal 

constant.  

We put: 



79 
 

𝑚.𝑐2

𝜔′
= ℏ                          (372) 

The constant ℏ should have a very low value in the MKS system. 

Equations (355) & (356) becomes: 

ℏ. 𝒌 = 𝒑                             (373) 

ℏ. 𝜔 = 𝐸                           (374) 

It is very easy to verify that:  

1

𝑣𝑔
=

𝑑𝑘

𝑑𝜔
=
1

𝑣
                     (375) 

 And that what is   CQFD. 

2-2-6)Viscosity-dispersion duality: 

The equation of propagation of the wave function (Klein-Gordon equation) is: 

1

𝑐2
.
𝜕2

𝜕𝑡2
𝜓(𝒙, 𝑡) − 𝛻2𝜓(𝒙, 𝑡) = −

𝑚2 𝑐2

ℏ2
𝜓(𝒙, 𝑡)     (376) 

We define the following operator called also d’Alembertian: 

⎕ ≡
1

𝑐2
.
𝜕2

𝜕𝑡2
− 𝛻2                          (377) 

Equation (93) can be written also as the following: 

⎕𝜓(𝒙, 𝑡) = −
𝑚2 𝑐2

ℏ2
𝜓(𝒙, 𝑡)        (378) 

The d’Alembertian of the wave function is not equal to zero so there is dispersion of the wave 

function. The medium in which the packet of waves is in propagation is a dispersive medium: 

there is attenuation of the packet of waves with absorption of energy. 

A dispersive medium for waves correspond for corpuscles to a viscous medium. The equation 

of motion of the corpuscle is: 

𝑑𝒑

𝑑𝑡
= 𝒇 − 𝑎. 𝒗                               (379) 
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Where:  

𝒇: all unknown forces which act on the corpuscle; 

−𝑎. 𝒗: an universal friction force which act on the opposite side of motion of the corpuscle; 

𝑎 : friction coefficient of the space-time (or mechanical impedance of vacuum). 

So we can conclude that for wave-corpuscle duality there is another duality which is 

viscosity-dispersion duality of space-time . 

Equation (379) is the same equation (4). 

We define the moment of the corpuscle as: 

𝒑 = 𝜉. 𝒗                                  (380) 

Where : 

𝜉 : the inertia of the corpuscle; 

𝒗 : the speed of the corpuscle. 

From equation (379) we deduce that: 

𝜉̇. 𝒗 + 𝜉.
𝑑𝒗

𝑑𝑡
= 𝒇 − 𝑎. 𝒗               (381) 

We put that: 

𝜉̇ = 𝑎                 (382): if the energy of the corpuscle is varying; 

𝜉̇ = 0                  (383): if the energy of the corpuscle is constant. 

So we deduce from (382) &(383) that : 

𝜉 = 𝑎. 𝜏                                (384) 

 Where: 

𝜏: is the inertial time of the corpuscle; 

With:                                        
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𝑑𝜏 = 𝑑𝑡             (385): if the energy of the corpuscle is varying; 

𝑑𝜏 = 0               (386): if the energy of the corpuscle is constant.  

If the corpuscle is in rest that we associate to it an inertial time in rest as: 

𝑚 = 𝑎. 𝜏0                                                                    (387) 

So we get from (381): 

𝑙𝑖𝑚 (
𝑑𝒗

𝑑𝑡
)𝑡→+∞ = 𝑙𝑖𝑚 (

𝒇−2.𝑎.𝒗

𝑎.𝜏
)𝜏→+∞ = 𝒐                    (388) 

So the speed of the corpuscle tends to a constant ′′𝑐′′ and this constant is declared as an 

universal constant: we know that it is the speed of light in vacuum. 

We get the transformations of space and time (8) & (9). Also we have the transformations of 

momentum and inertia as the following: 

𝜉′ =
𝜉−𝒑.𝑽/𝑐2

√1−
𝑉2

𝑐2

                       (389) 

𝒑′ =
𝒑−𝜉.𝑽

√1−
𝑉2

𝑐2

                          (390) 

𝒑′and 𝜉′ are respectively the momentum and the inertia of the corpuscle according to the 

reference 𝑅′. There is always invariants in inertial references to conserve the same speed of 

light. We have here an invariant which is: 

𝜉2 − (
𝑝

𝑐
)2 = 𝑚2                (391) 

Now we can write equation (379) as: 

𝒇 =
𝑑2(𝜉.𝑿)

𝑑𝑡2
                         (392) 

Where : 

𝑿: the position of the corpuscle. 



82 
 

We can take this formulae as a beginning for the equation of motion of a corpuscle and we get 

the same results. Let’s develop equation (392): 

𝒇 = 𝜉̈. 𝑿 + 2. 𝜉̇. 𝒗 + 𝜉. �̈�      (393) 

In a referential inertia equation (393) should be independent from the choice of its origin so 

we get from (393): 

𝜉̈ = 0                              (394) 

So: 

𝜉̇ = 𝑎                             (394) 

And so on. 

2-2) Black body radiation: 

This experiment is the black body radiation [12] .Let’s have a cavity in a temperature 𝑇 with a 

little hole from which we measure  the energy and power of the emergent radiation. 

2-2-1)Black body thermal equilibrium: 

The number of photons of the frequency 𝜈 at the thermal equilibrium is : 

𝑛 =
1

exp(
ℎ.𝜈

𝑘.𝑇
)−1

              (395): Boltzmann formulae 

Where       ℎ = 6.626  10−34 𝑗. 𝑠: the constant of Planck 

𝑘 = 1.380 10−23𝑗. °𝐾−1: the constant of Boltzmann 

𝑇: the temperature of the black body  

The energy of photons at the frequency 𝜈 is : 

𝐸𝜈 = 𝑛. ℎ. 𝜈 =
ℎ.𝜈

exp(
ℎ.𝜈

𝑘.𝑇
)−1

     (396) 

The power of photons at the frequency 𝜈 is : 
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𝑃𝜈 = 𝑛. 𝑎. 𝑐
2 =

𝑎.𝑐2

exp(
ℎ.𝜈

𝑘.𝑇
)−1

   (397) 

2-2-2)Number of modes contained in the interval of frequency 𝜹𝝂 : 

For a length 𝐿 there is a stationary polarized wave  if  we have: 

𝐿 = 𝑗.
𝜆

2
= 𝑗.

𝜋

𝑘𝑗
                  (398) 

So: 

𝑘𝑗 = 𝑗.
𝜋

𝐿
                          (399) 

𝑗: integer    ,    𝜆: wave length            , 𝑘𝑗: wave vector. 

The interval between two successive waves numbers is : 

𝛿𝑘 =
𝜋

𝐿
                              (400) 

The number of values of 𝑘 included in an interval 𝛿𝑘 is very high than 𝛿𝑘. This number is : 

𝛿𝑘

(
𝜋

𝐿
)
= 𝛿𝑘.

𝐿

𝜋
                            (401)               

A stationary wave contains two waves . The number of modes 𝛿𝑀 is the half of the number of 

values of 𝑘 so: 

𝛿𝑀 =
𝛿𝑘.𝐿

2.𝜋
                        (402) 

In three dimensions we get: 

𝛿𝑀 = 𝛿𝑀𝑥 . 𝛿𝑀𝑦. 𝛿𝑀𝑧 =
𝐿𝑥.𝐿𝑦.𝐿𝑧.𝛿𝑘𝑥.𝛿𝑘𝑦.𝛿𝑘𝑧

(2𝜋)3
   (403) 

i.e.: 

𝛿𝑀 =
𝑉.𝛿𝑘3

(2𝜋)3
                     (404) 

                     With                      𝑉 = 𝐿𝑥. 𝐿𝑦. 𝐿𝑧 
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The photon had two states of possible polarisation so: 

𝛿𝑀 =
2.𝑉.𝛿𝑘3

(2𝜋)3
                   (405) 

𝛿𝑘3 is the spherical volume interval in the space of 𝑘 and it is equal to : 

4𝜋. 𝑘2. 𝛿𝑘 = 𝛿𝑘3            (406) 

So: 

𝛿𝑀 =
8𝜋.𝑉.𝑘2.𝛿𝑘

(2𝜋)3
=

𝑉

𝜋2
. 𝑘2. 𝛿𝑘    (407) 

With  𝑘 =
2𝜋𝜈

𝑐
 : the wave vector. 

So we get: 

𝛿𝑀 = 8𝜋. 𝑉.
𝜈2

𝑐3
. 𝛿𝜈              (408) 

2-2-3)Black body volume power density: 

The cavity of the black body englobe  𝛿𝑀 modes  which everyone contains the power given 

in (397).  

So the power which is contained in the interval of frequency 𝛿𝜈 is : 

𝛿𝑃 = 𝑃𝜈 . 𝛿𝑀 = 8𝜋. 𝑉.
𝜈2

𝑐3
.

𝑎.𝑐2

exp(
ℎ.𝜈

𝑘.𝑇
)−1
. 𝛿𝜈   (409) 

Here 𝑘 is the Boltzmann constant.  

The volume power per frequency interval 𝛿𝜈 is: 

𝑑𝑃 =
𝛿𝑃

𝑉
= 8𝜋.

𝜈2

𝑐3
.

𝑎.𝑐2

exp(
ℎ.𝜈

𝑘.𝑇
)−1
. 𝑑𝜈            (410) 

Integrate (409) for all frequencies: 

𝑃 = ∫ 8𝜋.
𝜈2

𝑐3
.

𝑎.𝑐2

exp(
ℎ.𝜈

𝑘.𝑇
)−1
. 𝑑𝜈

∞

0
                (411) 
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Replace 𝑥 =
ℎ.𝜈

𝑘.𝑇
  in (411) we get: 

𝑃 = ∫ 8𝜋.
1

𝑐3
.
𝑘2.𝑇2

ℎ2
. 𝑥2

𝑎.𝑐2

exp(𝑥)−1
.
𝑘.𝑇

ℎ
𝑑𝑥

∞

0
   (412) 

So: 

𝑃 = ∫
8𝜋.𝑎.𝑘3.𝑇3

𝑐.ℎ3
.

𝑥2

exp(𝑥)−1
. 𝑑𝑥 =

30.𝜁(3).𝜎.𝑎.𝑐2

𝜋4.𝑘
. 𝑇3

∞

0
    (413) 

With:          𝜁(3) = 1.202056…. ,   𝜁(𝑥) = ∑
1

𝑛𝑥
        (𝑥 > 1)∞

𝑛=1    : Riemann 

function (or Zeta function). 

𝜎 =
8. 𝜋5. 𝑘4

15. ℎ3. 𝑐3
= 7.56 10−16 𝑗.𝑚−3. °𝐾−4 

𝑃 ℎ𝑎𝑣𝑒 𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓[𝑊.𝑚−3] 

Than 𝑃 is a linear function of 𝑇3 where the linearity coefficient contains ′′𝑎′′ so we can 

determinate it. 

2-2-4)Volume energy of the black body: 

The energy contained in the interval of frequency 𝛿𝜈 is: 

𝛿𝑈 = 𝐸𝜈 . 𝛿𝑀 =
8𝜋.𝑉.𝜈2

𝑐3
.

ℎ.𝜈

exp(
ℎ.𝜈

𝑘.𝑇
)−1
. 𝛿𝜈       (414) 

The volume energy per interval of frequency 𝑑𝜈 is: 

𝑑𝑈 =
𝛿𝐸

𝑉
=
8𝜋.ℎ.𝜈3

𝑐3
.

1

exp(
ℎ.𝜈

𝑘.𝑇
)−1
. 𝑑𝜈               (415) 

By integrate (415) we found: 

𝑈 =
8𝜋.𝑘4

𝑐3ℎ3
. 𝑇4. ∫

(
ℎ𝜈

𝑘𝑇
)
3

exp(
ℎ𝜈

𝑘𝑇
)−1
. 𝑑(

ℎ𝜈

𝑘𝑇
) =

∞

0
𝜎. 𝑇4     (416) 

Because we have: 
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∫
𝑥3

exp(𝑥)−1
. 𝑑𝑥 =  

𝜋4

15

∞

0
                          (417) 

𝑈 ℎ𝑎𝑣𝑒 𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 [𝑗.𝑚−3] 

The power of radiation per surface unit is: 

𝑅 =
𝑐

4
. 𝑈 =

2.𝜋5.𝑘4

15.𝑐2ℎ3
. 𝑇4                              (418) 

𝑅 ℎ𝑎𝑣𝑒 𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 [𝑊.𝑚−2] 

2-3)Limits of the constant ′′𝒂′′: 

If the Universe is dominated by an isotropic radiation than we have its state equation as [13]: 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑅

3
                            (419) 

The total power is : 

 

𝑃𝑡𝑜𝑡 = 𝑃. 𝑉 =
𝑅

3
. (𝐿𝑧. 𝐿𝑦 + 𝐿𝑧. 𝐿𝑥 + 𝐿𝑥. 𝐿𝑦)    (420) 

So we have: 

30.𝜁(3).𝜎.𝑎.𝑐2

𝜋4.𝑘
. 𝑇3. 𝐿𝑥. 𝐿𝑦. 𝐿𝑧 =

2.𝜋5.𝑘4

45.𝑐2ℎ3
. 𝑇4. (𝐿𝑧. 𝐿𝑦 + 𝐿𝑧. 𝐿𝑥 + 𝐿𝑥. 𝐿𝑦)   (421) 

Than: 

30.𝜁(3).𝑎.𝑐2

𝜋4.𝑘
.
8.𝜋5.𝑘4

15.ℎ3.𝑐3
=

2.𝜋5.𝑘4

45.𝑐2ℎ3
. 𝑇. (

1

𝐿𝑥
+

1

𝐿𝑦
+

1

𝐿𝑧
)                                  (422) 

So: 

360. 𝜁(3). 𝑎. 𝑐2 = 𝑘. 𝑐. 𝑇. 𝜋4 . (
1

𝐿𝑥
+

1

𝐿𝑦
+

1

𝐿𝑧
)                                     (423) 

Let’s design by 𝐷 a characteristic dimension of the Universe, we have: 

360. 𝜁(3). 𝑎. 𝑐2 = 𝑘. 𝑐. 𝑇. 𝜋4 .
3

𝐷
                                                        (424) 
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Than we will have that:  

𝑎 =
𝑘.𝑇.𝜋4

120.𝜁(3).𝑐.𝐷
                                                                                 (425) 

If we take for 𝐷 = 1000 𝑀𝑝𝑐 = 3.1 1025 𝑚 a distance to study the properties of homogenous 

Universe expanding slowly  [14] and a temperature 𝑇 = 2.725 °𝐾 [15] than we get: 

𝑎 =
1.38 10−23.2,725.𝜋4

120.𝜁(3).3 108.3,1 1025
≈  2.8 10−57 𝑘𝑔. 𝑠−1                                     (426) 

In the other hand with the meshing done for space-time by equations (5), (6) & (7) the density 

of vacuum is  a mass 𝑀 in a volume of 𝐿3  than we have: 

𝜌0 =
𝑎2

𝑐.ℏ
                                                             (427) 

The energy density of vacuum is : 

𝐸0 = 𝜌0. 𝑐
2 =

𝑎2.𝑐

ℏ
                                             (428) 

Cosmologists find by observations that the vacuum density is approximately as [16]: 

𝜚0 ≈ 10
−29 𝑔. 𝑐𝑚−3                                         (429) 

So we deduce that : 

𝑎 ≈ 2  10−26 𝑘𝑔. 𝑠−1                                       (430) 

We can say that constant ′′𝑎′′ is: 

2.8 10−57𝑘𝑔. 𝑠−1 ≤ 𝑎 ≤ 2 10−26 𝑘𝑔. 𝑠−1              (431) 

We need another experience to slice about the value of constant ′′𝑎′′ such as the photoelectric 

experience or the black body radiation experience otherwise we will have the same history of 

the lamda constant in General Relativity Theory. 

We can get a more accurate interval for the constant "𝑎". A mole of perfect gas occupy a 

volume of 22.4 𝑙𝑖𝑡𝑒𝑟𝑠  at the normal conditions of pressure and temperature (20°𝐶@1 𝑏𝑎𝑟). 

So the distance 𝐷 = (22.4 𝑙𝑖𝑡𝑒𝑟𝑠)
1

3 = 0.282 𝑚 and we have  𝑘𝑇 = 404.34  10−23𝑗𝑜𝑢𝑙𝑒 than: 
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𝑎 ≈ 323.3  10−31 𝑘𝑔. 𝑠−1                                       (432) 

So: 

323.3  10−31 𝑘𝑔. 𝑠−1 ≤ 𝑎 ≪ 2 10−26 𝑘𝑔. 𝑠−1        (433) 

We should expect that the number of corpuscles in this volume should be near the Avogadro 

number (𝑁𝐴 = 6.02 10
23)  if of course Boltzman statistics  still valid for photons (but it is 

wrong because photons are relativist corpuscle and there is another statistics which is  Bose-

Einstein statistics or Fermi-Dirac statistics). 

From equation (413) we deduce the  density of photons: 

𝑛 =
𝑃

𝑎.𝑐2
=
30.𝜁(3).𝜎

𝜋4.𝑘
. 𝑇3                                        (434) 

So for  𝑇 = 20 °𝐶 & 𝑉 = 22.4 𝑙𝑖𝑡𝑒𝑟𝑠  the number of photons is: 

𝑁 = 𝑛.𝑉 = 1.14  1013 ≠ 6.02 1023                    (435) 

The most important in equation (425) is the ratio 
𝑘𝑇

𝐷
 which we should search the meaning. The 

reader is invited to do this. 

3)Vacuum energy levels: 

3-1)The energy of the corpuscle as an exchange energy with vacuum: 

The work of the friction force  between two points 𝐴 & 𝐵 of the trajectory of the corpuscle is 

as follows: 

𝜀𝐴𝐵 = ∫ −𝑎. 𝒗. 𝑑𝒙
𝐵

𝐴

= ∫ −𝑎. 𝑣2. 𝑑𝜏
𝐵

𝐴

=

= −𝑎. 𝑐2. (𝜏𝐵 − 𝜏𝐴) − 𝑎. 𝑐
2. 𝜏0

2. (
1

𝜏𝐵
−
1

𝜏𝐴
) 

                            = −𝑎. 𝑐2. (𝜏𝐵 − 𝜏𝐴). (1 −
𝜏0
2

𝜏𝐴.𝜏𝐵
)           (436) 

We take the origin of the energy as the rest state of the corpuscle so: 

𝜀𝐴𝐵 = 𝜀𝐵 − 𝜀𝐴                                 (437) 
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With:  

𝜀𝐵 = −𝑎. 𝑐
2. (𝜏𝐵 − 𝜏0). (1 −

𝜏0

𝜏𝐵
) = −𝑎. 𝑐2. 𝜏𝐵. (1 −

𝜏0

𝜏𝐵
)
2
 (438) 

Idem for  𝜀𝐴. 

We define the energy exchanged by the corpuscle  with vacuum as: 

𝜀 = 𝑎. 𝑐2. 𝜏. (1 −
𝜏0

𝜏
)2 = 𝜉. 𝑐2. (1 −

𝑚

𝜉
)2                               (439) 

In general this energy can be positive of negative. 

If the speed of the corpuscle tends to the celerity of light than we have from (440): 

𝜀 ≈ 𝜉. 𝑐2                                                                                 (441) 

The energy exchanged with vacuum (436) corresponds exactly to the energy exchanged with 

vacuum by light i.e. by a corpuscle which has a mass equal to zero. We can deduce that the 

energy of a  corpuscle of a mass 𝑚 is approximately as follows: 

𝐸 ≈
𝑚.𝑐2

√1−
𝑣2

𝑐2

                                                                              (442) 

Its moment is as follows : 

𝒑 =
𝐸

𝑐2
. 𝒗 ≈

𝑚.𝒗

√1−
𝑣2

𝑐2

                                                                 (443) 

Its Lagrangian is as follows : 

𝐿 = 𝒑. 𝒗 − 𝐸 ≈ −𝑚. 𝑐2. √1 −
𝑣2

𝑐2
                                          (444) 

3-2)Vacuum energy levels : 

In the interval (𝑥 ± ∆𝑥, 𝑡 ± ∆𝑡)the corpuscle is a superposition of many monochromatic 

waves at every point of this interval and also above. If we  choose a certain discernible 

number of positions in this interval we can accept that the exchanging energy with vacuum is 

approximately: 
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𝜀𝑛 = 𝑛. 𝜀 = 𝑛. 𝜉. 𝑐
2. (1 −

𝑚

𝜉
)2                   (445) 

Where  : is an integer which can be positive or negative (the corpuscle can take energy from 

vacuum or loose energy for vacuum). 

With the condition that 𝜀𝑛 → 0 when 𝑛 → ±∞: the total energy of the corpuscle should be 

finite. 

The total energy of the corpuscle is: 

𝐸 = 𝜉. 𝑐2 + 𝜀𝑛 = 𝜉. 𝑐
2 + 𝑛. 𝜉. 𝑐2. (1 −

𝑚

𝜉
)2     (446) 

With the condition that 𝜉 → 𝑚 when 𝑛 → ±∞  (the momentum is very well defined and it 

tends to zero but the position is bad defined). 

This image is that the corpuscle is like an harmonic oscillator maintained in oscillation by a 

force 𝒇 = 𝑎. 𝒗  where ′′𝑎′′ is a coefficient of a mechanical impedance. 

The ‘’stability’’ for  any mechanical system is in general defined as when its energy is an 

extremum i.e. in our case that : 

𝑑𝐸

𝑑𝜉
= 0                                                                (447) 

So we get: 

𝜉 = ±𝑚.√
𝑛

𝑛+1
                                                    (448) 

Replace (448) in (446) we get: 

𝐸(+) = 2.𝑚. 𝑐
2. √𝑛. (√𝑛 + 1 − √𝑛)                 (449)  

𝐸(−) = −2.𝑚. 𝑐
2. √𝑛. (√𝑛 + 1 − √𝑛)               (450) 

With :𝑛  positive integer 
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We can draw the curve 𝐸 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜉) and we find that it had a minimum given by 

equation (444) for positive 𝜉 and that there is no inflexion point because 
𝑑2𝐸

𝑑𝜉2
 doesn’t change in 

sign. 

If we consider the rest state as the origin of energy, the exchanged energy is: 

Δ𝐸 = 𝐸 − 𝑚. 𝑐2                                   (451) 

For vacuum we take the mass 𝑚 as equal in equation (5) and by equations (449) , (450) & 

(451) we get many levels of vacuum energy and exchanged energy with vacuum.  

For every level of vacuum energy we can define a certain mass as for example 
𝐸(+)

𝑐2
 and from 

this origin we get infinite other levels and so on. 

4)Conclusion: 

In equation (133) we had concluded that the energy of corpuscle is as: 

𝐸 = 𝛽.𝜔                                               (452) 

If we take two electric charge separated by a distance 𝑅 the Coulomb force is: 

𝑓 = 𝜎.
𝑒2

𝑅2
                                                 (453) 

The question is what is the value of constant 𝛽. We can take the way of Planck which is that: 

𝛽 = ℏ                                                              (454) 

Where the Planck constant ℏ is determined by thermodynamics experiment (black body 

radiation). 

There is another way which to have a force 𝑓 = 𝑎𝑐 acting between charges separated with 

the distance 𝑅 = √
𝛽

𝑎
  so we have : 

𝛽 = 𝜎.
𝑒2

𝑐
                                                 (455) 
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The two constants should be equal to avoid any contradiction, so there is an universal constant 

𝑒 as : 

𝑒 = √
ℏ.𝑐

𝜎
                                                 (456) 

Which is equivalent to: 

𝜎.
𝑒2

ℏ𝑐
= 1                                                (457) 

From equation (228) & (445) we have: 

𝛾 = 𝑎. √
𝜎.𝑐

ℏ
                                             (458) 

Don’t forget that conversion factor 𝛾 is a product of two conversion factors. 

It is clear that conversion factors open us for more theories so more experiments & so more 

technologies. The same problem will be found in thermodynamics because we have the 

conversion relationship ℏ𝜔 ≪ 𝑘𝑇 or ℏ𝜔 ≫ 𝑘𝑇 and we see the relationship (458). 

The most important thing done here is the unification of fields in a Minkowski space-time i.e. 

in inertial referenctials where Lorentz transformations are available. But physics experiments 

should be independent from the choice of the referential. The reader is invited to rewrite this 

paper in a Riemann space-time (any transformations of space & time between referentials). 

The reader can take the document 49089264 of Pierre Paillere [17]available on the internet 

and rewrite the 115 pages available with the same spirit of this paper. Join to this document 

the paper of C.LANZANOS [18]. 
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