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Abstract 

The paper proves that General Relativity (GR) is not needed to explain the effects mentioned 
in the title. It will be shown that Newton’s laws are sufficient if the influence of the far distant 
masses of the universe is included into the calculation, i.e., if Mach’s principle is truly 
obeyed. The quantitative result with the perihelion shift of Mercury is very close to that of the 
GR, whereas there is a small, but possibly measurable, difference in the size of the event 
horizon of static black holes. 
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1. Introduction 

It is commonly accepted within the community of physicists that the correct figures for the 
event horizon of black holes and for the perihelion shift can only be found within the 
framework of General Relativity (GR). The calculation based solely on Newton’s laws yields 
the wrong values of the perihelion shift if compared to experimental figures. In the case of 
Mercury, the calculated shift deviates about 43’’ (arc seconds) from the experimental figure. 
It was one of Einstein’s first and amazing successes when he could calculate the correct 
value using his GR. This was and is one of the reasons that Einstein’s GR is considered 
powerful and as one of the fundamental theories of physics. 

But there is an important deficit if planetary or cosmic systems are calculated on the basis of 
Newton’s laws alone: the influence of (in cosmological scales) far distant masses has never 
been considered up to now. If, for instance, the perihelion shift of the planet mercury is 
calculated, only the influences of the other planets of the solar system have been and are 
taken into account. 

In an earlier paper1), we determined that including the far distant masses in the calculations 
with Newton’s laws leads to decisive and measurable changes compared to the results 
without this inclusion. For the behavior of a specimen mass positioned somewhere in the 
universe, one finds exactly the formulas of the Special Theory of Relativity (SR), provided 
that the mass distribution is homogeneous, i.e. there is no single mass in the close vicinity of 
the specimen mass. The contrary case that other masses are in the vicinity was mentioned 
within the paper1) but only briefly. 
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In the present paper we will go into details for two of these cases, namely for the problem of 
the perihelion shift and for a static black hole. We shall see that the result for the motion of 
planets leads to particle trajectories that are no longer closed, even if the influence of the 
other planets within the solar system are not taken into account. For the planet Mercury, the 
resulting perihelion shift is identical to the value found by the GR. For a static black hole, one 
finds similar qualitative properties as with GR, but there are small deviations in the size of the 
event horizon. 

 

2. Short description of the theory applied   

We hark back in this paper to a theory developed earlier (see 1),2),3)). Because this theory is 
not widely known, we will present the main elements here briefly. The consideration may 
appear trivial at first view, but its consequences are in no way trivial.  

If a meteorite impacts the surface of the earth, its kinetic energy is converted into heat. The 
meteorite has gained this kinetic energy on its part by the conversion of its potential energy, 
which it had initially at far distance from earth. We can see that the energy content of the 
earth after the impact has grown by exactly the same amount as the potential energy of the 
meteorite has been reduced. If the meteorite does not impinge the surface of the earth but 
first falls into a hole directed to the center of the earth where it is then stopped, then the total 
potential energy that the meteorite has lost is given by 4): 

                                                 ΔEpot tot = 2π G m0 ρ Ro
2.                                                 (2.1) 

With the abbreviation                            b0
2 = 2π G ρ Ro

2                                                     (2.2) 

this can be written in the form:              

                                                               E0 = m0 b0
2,                                                           (2.3)                      

where G is the gravitational constant, ρ the average mass density of the earth, and R0 its 
radius. The relation (2.1) is valid for a homogeneously distributed mass of the earth. In case 
of a non-homogeneous distribution, e.g. in case of a number of point masses mi, distributed 
randomly at the locations ri, one finds instead of (2.2) and (2.3) 1): 

                                                             b0
2 = G ∑

୫

୰
୧                                                           (2.2a) 

and                                                   E0 = m0 b0
2 = m0 G ∑

୫

୰
୧  .                                         (2.3a)                                                                           

The physical essence of these relations can be described as follows: The (gravitational) 
energy content of the earth with respect to a mass m0 at rest at its origin is given by the sum 
of the losses of the potential energies of the masses mi having moved from infinity to ri and 
being at rest there 1). 

Let us now leave the earth and consider the universe instead, and let us take the following 
model as a basis: The universe shall be finite in the three dimensional space and shall form a 
sphere with the radius R0. On very large scales, the masses shall be distributed 
homogeneously, i.e. the universe shall show (on this scale) a mean density ρ. In this case, 
the energy content of the universe, including the mass m0 at its center, is described by 
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exactly the same formula as described above for a meteorite that was fallen to the center of 
the earth. Of course, the values ρ and R0 of the universe have to be set now. 

It is important to stress that the energy (2.3) is not merely “assigned” to the mass m0, but that 
it is existentially united to it: It does not exist, if the mass m0 is lacking, and it must be 
imperatively present, if the mass m0 exists at the origin of the universe and is at rest there. 
Hence, we can describe this physical state also by saying: A mass at rest being located at 
the center of the universe “has” (or “possesses”) a “rest energy” E0.  

Let us now consider the circumstances with a moving mass. And let us assume the general 
validity of Newton’s law of inertia: 

                                               F =  p ̇ = m୧୬v̇ +  ṁ୧୬v .                                             (2.4) 

Here min represents the inert mass. F shall be an arbitrary external force, but not a 
gravitational one (for instance, the mass min can carry a charge and move under the 
influence of an electrical field). Other possibly existing masses mj shall be so small or at far 
distances that their gravitational forces are very small compared to F and can therefore be 
neglected in (2.4). If we multiply (2.4) on both sides with the infinitesimal shift ds produced by 
the force F 

                                                Fds =  p ̇ ds = (m୧୬v̇ + ṁ୧୬v)ds,                                (2.5) 

then we find the energy increase dE when the system “mass within the universe” changes 
(caused by F) from the status “mass at rest” to the status “mass in motion”. According to the 
consideration above (equations (2.1) to (2.3)), the rest energy of the mass m within the 
universe is given by E = m(v=0)b0

2 = m0 b0
2, where m is the gravitational mass m=mg. We 

know that the inert and the gravitational mass are proportional to each other (or equal if 
suitable units are chosen). Therefore, the essential relation is valid: 

                                                              m = mg = min .                                                        (2.6) 

This equivalence principle is experimentally very well confirmed for arbitrary speeds. 

Therefore, we can rewrite (2.5) into the form 

                                                             dE = (mv̇ +  ṁv) ds.                                               (2.7)                                            

For a mass m = m0 at rest the total energy E0 is given by (see (2.3)) 

                                                             E0 = m0 b0
2.                                                           (2.3a) 

The following ansatz comes to mind for the system “universe plus moving mass”: 

                                                              E = m b0
2.                                                              (2.8) 

Then, accordingly                                 

 dE = dm b0
2.                                                           (2.9) 

By inserting (2.9) into (2.7) and after some minor conversions we find eventually: 
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                                                        dm b0
2 = dm v2 + m v dv 

or                                          
ୢ୫

୫
 = 

୴ ୢ୴

ୠబ
మ – ୴మ

 .                                             (2.10) 

Of course, instead of (2.8) we can also try any other ansatz at will. But such another ansatz 
would then only represent a solution if it would fulfill the differential equation (2.7), and if the 
rest energy (2.3a) would result for the limit case v = 0. Obviously, the ansatz (2.8) fulfills 
these requirements. 

By integrating (2.10) one ends up with            

                                                             m = 
୫బ

ඨଵି
౬మ

ౘబ
మ 

 ,                                                  (2.11) 

and with (2.8)                                                  

                                                                E =  
୫బ

ඨଵି
౬మ

ౘబ
మ 

 b0
2 .                                               (2.12) 

Surprisingly, the same formulas for a moving mass and its energy result as in the Special 
Theory of Relativity (SR). In contrast to the SR, the constancy of the light velocity in inertial 
systems, uniformly moved against each other, does not have to be postulated here. Light 
and the light velocity play no role in the derivation. But we find also a maximum velocity b0 for 
moving masses. This is the consequence of the fact that we have taken the distant masses 
of the universe into consideration. The question as to whether this maximum velocity b0 and 
the light velocity c are identical is investigated in the papers 1), 2) and 3). Due to several 
reasons, this seems to be mandatory.  

The results above are remarkable and, of course, have a number of consequences that have 
already been investigated to some extent in the papers 1), 2) and 3). They are valid under the 
prerequisite of a homogeneous mass distribution of the universe. In the paper 1) we 
mentioned briefly that this mass distribution is generally, of course, not homogeneous and 
the theory has to be generalized for inhomogeneous distributions. In the following, we 
perform one step towards such a generalization. We will consider the special case of adding 
a single mass M, which causes an inhomogeneity in the vicinity of the mass m. As is known, 
this case of a spherical symmetric mass distribution can be solved exactly in the GR 
(Schwarzschild metric). 

Though our studies 1), 2) and 3) suggest almost imperatively that b0 is identical with the light 
velocity c, in the following we will continue to use b0 in order to recall that our theory does not 
at all need Einstein’s postulate of the constancy of the light velocity. Rather, the maximum 
velocity vmax = b0 is already a consequence of Newton’s laws if the distant masses of the 
universe are taken into account appropriately. 
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3. Extension of the theory to an inhomogeneous mass distribution    

As before, we start with the consideration of the forces involved, but allow the existence of a 
mass M located at distance r on the positive x-axis to the right of the origin (M conceived to 
be at rest at the beginning). Now, the influence of this additional mass M shall not be 
negligeble compared to the other forces. 

a) Special case: central force 

The force F shall act into the positive x – axis, i.e. into the direction of M. Then, there will be 
no angular momentum caused by the beginning motion, and we find instead of (2.4): 

                                         −mv̇ −  ṁv + F +  m 
ୋ

୰మ
  = 0 .                                              (3.1) 

Also, in this case the validity of the equivalence principle (2.6) is implied, but again in its 
“weak form” m = mg = min (see (2.6)). 

Due to our choice of the direction of F we have ds = dr and we obtain the following by 
multiplying (3.1) with dr: 

                                         −dm vଶ −  m v dv + Fdr +  m 
ୋ

୰మ  dr = 0 .                                    (3.2) 

Corresponding to the relation (2.3a) we find for the rest energy of the mass m (being located 
at the origin)                    

                                       E0 = m0 G( ∑
୫

୰
୧ +  



୰
 )  =  m0 (b0

2 + 
ୋ

୰
).                                       (3.3) 

Again, it is self-evident to try the following ansatz for the total energy of the system, 
consisting of the masses m and M and the distant masses of the universe (completely 
analogous to (2.8)):  

                                        E = m (b0
2 + 

ୋ

୰
) = m b0

2 (1 +  
ୋ

୰ୠబ
మ).                                              (3.4) 

Every change of this total energy is then given by 

                                      dE = dm (b0
2 + 

ୋ

୰
) -  m 

ୋ

୰మ  dr.                                            (3.5) 

Such a change of the total energy is caused by the external force F, hence it is 

                                               Fdr = dE = dm (b0
2 + 

ୋ

୰
) -  m 

ୋ

୰మ  dr.                                     (3.6)        

Inserting (3.6) into (3.2) leads to 

                                                 dm (b0
2 – v2 +  

ୋ

୰
 ) =  m v dv                                              (3.7) 

or                                                   
ୢ୫

୫
=  

୴ ୢ୴ 

(ୠబ
మ – ୴మ ା  

ృ

౨
 )
 .                                      (3.8) 
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If we integrate again from m = m0 to m = m and from v = 0 to v = v we arrive at 

                                                      m = m0 
ඥ(ଵା୶)

ඨ(ଵି
౬మ

ౘబ
మ

 
ା ୶)

                                                          (3.9) 

and eventually we find for the total energy 

                                              Er =  m0 b0
2  

ඥ(ଵା୶)

ඨ(ଵି
౬మ

ౘబ
మ

 
ା ୶)

 (1 + x).                                            (3.10)  

There we have used the abbreviation x = 
ୋ

୰ୠబ
మ . In the GR it is common to use the 

Schwarzschild radius rs = 
ଶୋ

ୠబ
మ  . Therefore we can also write: 

                                                        x = 
ୋ

୰ୠబ
మ = 

ଵ

ଶ
 
୰౩

୰
 .                                                       (3.11) 

The result (3.10) describes the energy of the system “universe plus mass m”, whereas m is 
moving along the connecting line between m and the mass M at rest. This formula for the 
energy is therefore also applicable for a static black hole, where only the gravitational 
attraction between m and M is acting and no angular momentum has to be taken into 
account. In contrast to the classical Newton consideration, now, besides the influence of the 
mass M, the distant masses of the universe are also effective. 

Before we start to apply the formula (3.10) to a black hole, we should briefly touch on some 
of the properties of this formula: 

a)   v  =    0:                          E(v=0)   = m0 b0
2  (1 + x) = E0   :     correct 

b)    r →  ∞ :                          E (x=0)  =  
୫బ

ඨଵି
౬మ

ౘబ
మ 

 b0
2            :     correct 

c)    r → rs                             E(r=rs) =  m0 b0
2  

ට(
య

మ
)

ඨ(
య

మ
ି

౬మ

ౘబ
మ

 
)

 (
ଷ

ଶ
).    :     no singularity ! 

d)     r → 0                             E(r→ 0) →  ∞                            :     correct 

The total energy shows a singularity for r→ 0. Of course, this is to be expected because of 
Newton’s law of gravity. But it does not show a singularity for r → rs. We recognize here a 
divergence from the solution of the vacuum field equations in GR. In fact, the spatial 
spherical symmetric solution of the field equations in the GR is also time-independent 
(Birkhoff-Theorem). However, there is the difficulty that the exact solution in the 
Schwarzschild-metric becomes singular at r = rs. As a so-called “co-ordinate”- singularity it is 
removable, e.g. by the Kruskal-transformation. But in the Kruskal form, the Schwarzschild 
metric then becomes time dependent. We will not go into a deeper discussion of this 
circumstance here, but will only point to it at the moment. At first glance, it might be an 
advantage of the theory presented and applied here. 
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Let us now determine the size of the event horizon of a static black hole on the basis of 
formula (3.10), and yet follow the thought already formulated by John Mitchell in 1783 5). A 
mass m, which tries to escape the gravitational attraction of a mass M, can obtain at most 
the velocity b0. The kinetic energy is then given by 

                                              Ekin = E (v= b0) – E(v = 0).                                           (3.12) 

The mass m can only escape when the amount of Ekin exceeds the difference of the potential 
energy 

                             ∆Epot = m(r, v= b0) 
ୋ

୰
 – m(r→ ∞, v=0) 

ୋ

୰→ஶ 
 = m(r, v= b0) 

ୋ

୰
 .                     (3.13) 

Therefore, the following has to be fulfilled: 

                                               E(v= b0) – E(v = 0) ≥  ∆Epot .                                              (3.14) 

The mass m(r, v=b0) is given by (3.9)      

                                                   m(r, v= b0) = m0  
 ඥ(ଵା୶)

ඥ( ୶)
 ,                                                 (3.15)                                 

and one finds (for the equal sign in (3.14), i.e. for the maximum value of x) 

                           m0 b0
2  

ඥ(ଵା୶)

ඥ( ୶)
 (1 + x) -  m0 b0

2  (1 + x) = m0  
 ඥ(ଵା୶)

ඥ( ୶)
 
ୋ

୰
                             (3.16) 

or                                                            
ඥ(ଵା୶)

ඥ( ୶)
 (1+x) -  (1+x) =  

 ඥ(ଵା୶)

ඥ( ୶)
 x                                        (3.17)      

and eventually                        

                                                           x3 + 2x – 1 = 0 .                                                      (3.18) 

The solution of (3.18) is x = 0,4534 and with (3.11): 

                                                      rୌ = 
ଵ

ଶ
 
୰౩

୶
 = 1,10 rs.                                                (3.19) 

One can see that we find a solution without using the GR solely based on Newton’s laws and 
Mach’s principle. It qualitatively describes the essential property of a black hole, namely the 
existence of an event horizon. The quantitative value for the size of this event horizon is 
close to that resulting from GR (r = rs). The difference amounts to about 10%. But we have 
not yet taken account of one of the basic results of the theory applied here, namely that the 
maximum velocity of a mass m depends on its position in the universe (see 1)). If we take this 
into account, we find smaller values for rEH if the black hole is not near the center of the 
universe. If, for instance, it is located near the edge of the universe, one finds a value of    
rୌ = 0,775 rs. The GR does not show this deviation since the GR is founded, inter alia, on 
the postulate that the light velocity is a natural constant, the value of which is the same 
throughout the whole universe (with the exception of local deviations in local coordinate 
systems due to local masses). 
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We are not going to investigate this deviation from the result of the GR in more detail within 
this paper or to place a value on it. But the size of the event horizon should be measurable in 
principle, thus opening the possibility of falsifying the GR or the theory presented here. 

If the dependency from the position of a black hole in the universe is correct, then the size of 
rEH could possibly be used for the determination of cosmological distances, too, provided 
there are other properties of black holes like periodic alterations, which make them suitable 
as “standard candles”. In any event, it is questionable whether static black holes (without 
angular momentum) can be found in reality. In general, they will show angular momentum, 
and the above consideration has to be generalized, respectively, in order to allow the 
comparison between theory and experiment. But in any case, recent experiments have 
shown that black holes are much more complex than a simple static black hole and possess 
other components like magnetic fields, dust clouds or accretion disks, which will possibly 
impede the determination of the size of an event horizon to a higher accuracy than 20%. 
Therefore, let’s leave the theoretical consideration at that for the moment. 

b) Special case: Force perpendicular to the connecting line 

Now, we will investigate the case that the force F = F𝜑, which acts onto the mass m, is 
oriented perpendicular to the connecting line between m and M. In this case, the force F𝜑 
effects a change of the location of m into the azimuthal direction ds = r d𝜑. We allow an 
additional force Fr to act on m, which shall always be oriented into the direction of M. 

Newton’s laws of motion have then to be written in the form: 

for the motion in φ – direction                                  

                                                 - ṁvఝ -  m v̇ 𝜑   +  F𝜑   =  0                                           (3.20)  

and in the r – direction     

                               - ṁv୰ - m v̇r  +  F୰ −  Z(vఝ ) +  m 
ୋ

୰మ   = 0.                                           (3.21) 

Here Z൫vఝ ൯ is the centrifugal force at the velocity vఝ . Let us now choose the amount of Fr in 

such a way, that it compensates for the difference between the forces Z൫vఝ ൯ and m 
ୋ

୰మ   for 

each φ. This could be effectuated e.g. by charging the mass m electrically and letting it move 
within a magnetic field of suitable strength, which is also oriented perpendicular to the r – φ – 
plane. In this case, a motion into the radial direction is not possible (dr, vr and v̇r = 0). 
Therefore, an energy alteration through forces into that direction is not possible. The radial 
forces are also always directed perpendicular to the direction of ds and cannot cause an 
energy change into this direction, too. F୰ becomes zero when the system has reached the 
stationary state. Then, the centrifugal force completely compensates the attraction of M onto 
m. 

If we again multiply (3.20) with ds, we find: 

                                                              −dm vఝ
ଶ −  mvఝ dvఝ  + F𝜑 dr = 0 .                                   (3.22) 

The only one of the forces appearing in (3.21) and (3.22) which is able to add energy to the 
system is F𝜑 . It causes the energy alteration F𝜑 dr = dE. And we can, analogous to (3.4), try 
again the ansatz 
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                                               F𝜑 dr = dE =  m (b0
2 + 

ୋ

୰
),                                                 (3.23) 

since we have to set again the following, of course, for the rest energy: 

                                   E0 = m0 G( ∑
୫

୰
୧ +  



୰
 )  =  m0 (b0

2 + 
ୋ

୰
).                                           (3.3) 

(3.23) in (3.22) yields:        

  dm (b0
2 – vఝ 2 +  

ୋ

୰
 ) =  m vఝ dvఝ                                          (3.24) 

or, if we replace for simplicity vఝ by v: 

                                                  
ୢ୫

୫
=  

୴ ୢ୴ 

(ୠబ
మ – ୴మ ା  

ృ

౨
 )
 .                                        (3.25) 

This is identical to (3.8), and for m and E there are again the relations (3.9) and (3.10). The 
only difference consists of the direction of v, which is now perpendicular to the connecting 
line between m and M. We denote the respective energy by E𝜑. 

c) General Case: Force and motion in arbitrary direction 

Until now we have treated the two cases of a pure radial and a pure azimuthal motion 
completely separately. The total energy of a mixed radial and azimuthal motion is not the 
plain addition of Er and E𝜑, because the rest energy is contained in both energy forms and 
may not be counted twice. Hence, we have to subtract the rest energy once, when adding Er 
and E𝜑, to compose the total energy: 

                      Eg = m0 b0
2 (1+x)  ( 

ඥ(ଵା୶)

ඨ(ଵି
౬౨

మ

ౘబ
మ

 
ା ୶)

 + ඥ(ଵା୶)

ඨ(ଵି
౬ക

మ

ౘబ
మ

 
ା ୶)

 ) -  m0 b0
2(1+x).                             (3.10a) 

For the total velocity v the following relation is valid: 

                                                          v2 = v୰
ଶ + vఝ

ଶ.                                                        (3.10b) 

The energy Eg described by (3.10a) fulfills the requirements 

                                   Eg (vఝ=0) = Er    und     Eg (v୰=0) = E𝜑.                                          (3.26) 

For a differential alteration of the total energy, the following requirement has to also be 
satisfied: 

                                               dEg = 
డౝ

ப୴౨
 dv୰  + 

డౝ

ப୴ക
 dvఝ,                                                (3.27) 

or respectively                           ∫ dEg = ∫
డ

ப୴౨
 dv୰   + ∫

డ

ப୴ക
 dvఝ ,                                       (3.28) 

which is also met by Eg defined by (3.10a). 
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Since Fr is a central force, it has no influence on the amount of the angular momentum J, 
defined by 

                                                              m r2 �̇� = J.                                                          (3.29) 

J can only be changed by F𝜑 and is determined by vఝ or �̇� respectively (see (3.22). 

As usual we define J = mh, then (3.29) assumes the shape 

                                                                  r2 �̇� = h.                                                           (3.30) 

This can also be written in the form              dt = 
୰మ

୦
 d𝜑.                                                    (3.31) 

We would like now to gain the path curvature of the mass m around the central mass M. For 
this purpose, we transform (3.10a): 

                       (
g

୫బୠబ
మ + 1 + x) (1 + x)ିଷ

ଶൗ  - 
ଵ

ඨ(ଵି
౬ക

మ

ౘబ
మ

 
ା ୶)

  = 
ଵ

ඨ(ଵି
౬౨

మ

ౘబ
మ

 
ା ୶)

 .                                 (3.32) 

To carry out the calculation clearly arranged, we introduce the abbreviations Γଵ and Γଶ: 

                                           Γଵ = (
g

୫బୠబ
మ + 1 + x) (1 + x)ିଷ

ଶൗ  - 
ଵ

ඨ(ଵି
౬ക

మ

ౘబ
మ

 
ା ୶)

 ,                           (3.33) 

                                           Γଶ = 
ଵ

ඨ(ଵି
౬౨

మ

ౘబ
మ

 
ା ୶)

 .                                                                      (3.34) 

Then (3.32) turns into the simple form 

                                                           Γଵ = Γଶ.                                                                   (3.32a) 

With the definition                              
୴౨

మ

ୠబ
మ 
 = y2                                                                    (3.35) 

we find                                               
ଵ

మ మ
 = 1 – y2 + x,                                                       (3.36) 

or with (3.32a):                                     y2 = 
(ଵା୶) భ

మିଵ

 భ
మ  ,                                                     (3.37) 

or in other form                                      
ଵ

୷
 = 

 భ 

ට(ଵା୶) భ
మିଵ

 .                                                   (3.38) 

Using (3.31) and (3.35) we arrive at 

                                                      
ୢఝ

dr
 = 

୦

୰మୠబ
 

 భ 

ට(ଵା୶) భ
మିଵ

 .                                                   (3.39) 



 

11 
 

This relation is still fully exact. In order to identify the quantitative amount of the perihelion 
shift of the planet Mercury, we start now to carry out a series expansion. During this 
procedure we have to evaluate which terms may be neglected. Therefore, we first compile 
the order of magnitude for the relevant terms related to the conditions of the planet Mercury 
(to be found in 6)). 

v୰ഥ  ≈ 6,2 
୩୫

ୱ
  ,         �̇� ≈ 8,3 10-7 

ଵ

ୱ
  ,           

୴౨
మ

ୠబ
మ 
 = y2 ≈ 4,3 10-10 ,         

୴ക
మ

ୠబ
మ 
 = z2 ≈ 2,5 10-8 , 

hത = r̅ vఝതതതത ≈ 2,8 109 
୩୫మ

ୱ
 ,          

୦ഥ మ

୰ത మୠబ
మ  ≈ 2,5 10-8 ,        rs ≈ 2,9 103 m ,       

୰౩

୰ത 
 ≈ 5,1 10-8 ,     

 x ≈ 2,5 10-8 ,        v2 ≈ 2,3 103 
୩୫మ

ୱమ  .                                                                                  (3.40) 

Using, additionally, the abbreviation E‘ = 
g

୫బୠబ
మ , we find the series expansion for Γଵ: 

                                              Γଵ ≈ E’ - 
ଷ

ଶ
 E’x - 

ଵ

ଶ
 z2 + 

ଷ

ସ
 z2x .                                                 (3.41) 

In this relation, we have neglected terms of higher order than z2 and x, because, due to 
(3.40), we find as a very good approximation: z4 ≪ z2 und x2 ≪ x. 

If we neglect higher order terms in the same way, we get: 

                                             Γଵ
ଶ ≈ E‘ (E’ – 3 E’x -  z2 + 3 z2x)                                           (3.42) 

and                               Γଵ
ଶ(1+x) ≈ E‘ (E’ – 2 E’x -  z2 + 2 z2x).                                          (3.43) 

Inserting this into (3.39) yields eventually:                                            

                          
ୢఝ

ୢ୰
 = ± 

୦

୰మୠబ
 

’ ି 
య

మ
 ’୶ ି 

భ

మ
 మ ା 

య

ర
 మ୶ 

√‘ට(’ – ଶ ’୶ ି  మ ା ଶ మ୶)ି
భ

ు’

 .                                 (3.44) 

We would like to further simplify this relation. For this purpose we divide Eg into the 
constituent parts “rest energy” and “kinetic energy”: 

                                             Eg = m0 b0
2 (1+x) + Ekin .                                                       (3.45) 

Then we can write                E‘ = 1+x + 
ౡ

୫బୠబ
మ = 1+x+E‘‘.                                                   (3.46) 

With this definition, we continue the series expansion in (3.44):                   

                    
ୢఝ

ୢ୰
 = ± 

୦

୰మ
 
ቀଵି

భ

మ
୶ି 

భ

మ
ᇲᇲቁ (ଵା୶ାᇲᇲ) (ଵ ି 

య

మ
 ୶ ି 

భ

మ
 
మ

ు’
 ା 

య

ర
 
మ

ు’
 ୶) 

ටଶᇲᇲୠమ – ଶ ᇲᇲୠమ୶ ି  ୠబ
మమ ା ଶୠబ

మమ ୶

 .                    (3.47) 

With (3.10a), (3.45), (3.46) and the quantities (3.40) for the circumstances of Mercury, we 
can see that E‘ is of the order of 1, whereas x and E‘‘ are smaller by a factor of 10-8. If we 
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substitute now r by 1/u and x by 
ଵ

ଶ
 

୰౩

୰
 (see (3.11)), we can write in a very good 

approximation: 

                   d𝜑 = ± 
୦ ୢ୳ 

ටଶᇲᇲୠబ
మ –  ᇲᇲୠబ

మ୰౩୳ ି  ୦మ୳మ ା ୦మ୰౩୳య 

.                                     (3.48) 

We would like to compare this result with the path curvature of a planet, which is calculated 
solely on the basis of Newton’s laws without consideration of the other planets and the 
distant masses. It is given by 

                                        d𝜑 = ± 
୦ ୢ୳ 

ට 
ముొ
ౣబ

 ା ୠబ
మ୰౩୳ ି  ୦మ୳మ 

.                                    (3.49) 

Here EN is Newton’s total energy   

                          EN = 
ଵ

ଶ
 m0 (v୰

ଶ + vఝ
ଶ) - ୫బୋ

୰
 = 

ଵ

ଶ
 m0 v

2 - 
୫బୋ

୰
 , 

or written in another form 

                                                      
ଵ

ଶ
 m0 v

2 = EN + 
୫బୋ

୰
 .                                                    (3.50) 

To compare (3.49) with (3.48) we remember, how we defined E‘‘ in (3.46): 

                                                              E‘‘ = 
ౡ

୫బୠబ
మ .                                                      (3.46a) 

Here Ekin has to be determined according to (3.45) referring to the total energy Eg (3.10a). If 

we again neglect terms of higher order then  
୴౨

మ

ୠబ
మ 
 , 

୴ക
మ

ୠబ
మ 
 and x (which due to (3.40) is again a 

good approximation), we find: 

                           Eg - m0 b0
2 (1+x) =   Ekin = 

ଵ

ଶ
 m0v

2 + 
ଷ

ସ
 m0v

2x ≈ 
ଵ

ଶ
 m0v

2.                             (3.51) 

Hence, the kinetic energy calculated on the basis of the theory used here is, in case of 
Mercury, in very good accord with the classical theory of Newton. Because of (3.50) and 
(3.51) we, therefore, can write: 

                                             E‘‘ = 
ొ

୫బୠబ
మ + 

ୋ

୰ୠబ
మ = 

ొ

୫బୠబ
మ + x.                                                (3.52) 

If we insert this in (3.48) we find: 

                         d𝜑 = ± 
୦ ୢ୳ 

ටଶ(
ుొ

ౣబౘబ
మ ା ୶)ୠబ

మ –  (
ుొ

ౣబౘబ
మ ା ୶ )ୠబ

మ୰౩୳ ି  ୦మ୳మ ା ୦మ୰౩୳య 
, 

or                       d𝜑 = ± 
୦ ୢ୳ 

ට ଶ
ుొ 

ౣబ
ା ୠబ

మ୰౩୳ – (୶ୠబ
మା 

ుొ
ౣబ

) ୰౩୳ ି  ୦మ୳మ ା ୦మ୰౩୳య 
 .                  (3.53) 
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We assess again the order of magnitude for the circumstances of Mercury, here concerning 

the term (xb
ଶ+ 

ొ

୫బ
): 

                                (xb0
2+

ొ

୫బ
) = 

ଵ

ଶ 
୰౩

୰  b0
2 + 

ଵ

ଶ v
2 - 

ଵ

ଶ
 
ଶୋ

୰ୠబ
మ b0

2 =  
ଵ

ଶ
 b0

2 (
୴మ

ୠబ
మ 
) .                             (3.54) 

It is to be seen that the third term under the root (3.53) is to a factor of 10-8 smaller than the 
second one and we can neglect it. It would additionally take account of a small influence, 
which can be attributed to the influence of the SR alone 8), which is as well incorporated in 
the theory presented here (see section 2 above and 1)). 

With this final approximation, we find eventually:  

                                 d𝜑 = ± 
୦ ୢ୳ 

ට ଶ
ుొ
ౣబ

 ା ୠబ
మ୰౩୳ ି  ୦మ୳మ ା ୦మ୰౩୳య 

 .                                   (3.55) 

It can be seen that this relation migrates for small u (i.e. large r) into the classical Newtonian 
case, and it is also in very good accordance with the respective relation of the GR 7), 8). It 
contains the important fourth term, which brings in a dependency of u3 and, therefore, a 
closed path is no longer possible. Such a closed path is allowed if Newton’s theory is applied 
without considering the influence of the other planets and also neglecting the influence of the 
distant masses. For Mercury, the term with u3 is responsible for the famous additional 
perihelion shift of 43.03’’ per century (3.8” for the earth and 8.6” for Venus) 7), 8). These are 
exactly the same figures that result from the theory presented here. 

 

4. Summary and conclusion  

It is shown that General Relativity is not needed for the explanation and quantitative 
description of the perihelion shift of the planet Mercury as well as of the event horizon of 
black holes. This explanation succeeds on the basis of Newton’s laws alone if the distant 
masses of the universe are included into the consideration, i.e. if Mach’s principle is duly 
respected. Quantitative calculations partly show deviations to the respective results of the 
GR. In the case of black holes, there is a small, but probably measurable, difference with the 
size of the event horizon. The result for the perihelion shift of Mercury obtained here is nearly 
identical with that of the GR. 

The connections revealed here, together with the results found in 1), 2) and 3), lead to the 
conclusion that the theory applied here digs deeper than the Theory of Relativity, and that 
means both the Special as well as the General Theory. Compared to the SR and the GR, the 
theory applied here exhibits the advantage that the constancy of the light velocity does not 
have to be postulated. Rather, this constancy is one of the results of the theory, and it turns 
out to be not generally valid but only valid within spatial volumes that are small compared to 
the extent of the universe. 

A further and fundamental difference to the SR and GR appears in the fact that the long-
range-order (or action-at-a-distance principle) of Newton’s force of gravity constitutes an 
essential part of the theory here, though it leads to a maximum velocity for moving masses. 
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Hence, the theory is, with respect to the fundamental law of gravitation and the distant 
masses, non-local, but it describes some essential properties of the nature as local, 
becoming manifest with the maximum velocity of moving masses and light. Thus, it seems 
not to be in contrast to the non-local character of nature, which has been demonstrated in a 
huge number of experiments with entangled quantum states (recently even on cosmic 
dimensions 9)). Yet, the principle of causality is preserved in the theory, due to the maximum 
velocity for masses and light (see 8), p. 29). 

The theory applied in the present paper introduces, together with the preceding papers 1), 2) 

and 3), the basic principles of a fundamental theory which, apparently, forges ahead to a 
deeper cognizance than the Theory of Relativity. Still, the geometrical description of the 
nature by the GR is, of course, mathematically elegant as well as aesthetic. However, it 
seems that the GR is not exactly valid, but it will prove as an approximation of an even 
better-grounded theory. The instantaneous influence of the distant masses of the universe, 
i.e. the observance of Mach’s principle, seems to be fundamental in this respect. 

It has to be investigated whether and how the theory demonstrated and applied here for 
some (but important) examples could be better formalized and generalized (e.g. as a field 
theory as in 2)). And of course, it has to be further discussed whether it represents a deeper 
insight compared to the Theory of Relativity. 
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