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Abstract. In this paper we introduce and develop the circle embedding method.

We provide applications in the context of problems relating to deciding on the

feasibility of partitioning numbers into certain class of integers.
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1. Introduction and Preliminary Results

In this section we recall some well-known results that will partly be needed in
this paper. We find some results concerning the distribution of some sequences in
arithmetic progression useful in the current paper. First we state the celebrated
Szemeredi theorem concerning arithmetic progression. The theorem has both in-
finite and finite version, but we have considered appropriate to state the finite
version.

Theorem 1.1 (Szemeredi). ∀ ε > 0 and ∀k ∈ N there exists an n ∈ N such that if
A ⊂ Nn 1 satisfies |A| ≥ εn, then A contains an arithmetic progression of length k.

The well-known Green-Tao theorem [4] provides an extension in this direction
as
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1see the notation in section 3.
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Theorem 1.2 (Green-Tao). Let π(n) denotes the number of primes no more than
n. If A ⊂ P the set of all prime numbers such that

lim sup
n−→∞

|A ∩ Nn|
π(n)

> 0

then A contains infinitely many arithmetic progressions of length k for any k > 0.

In this paper, motivated in part by the binary Goldbach conjecture, we develop
a method which we feel might be a valuable resource and a recipe for studying
problems concerning partition of numbers in specified subsets of N. The method
is very elementary in nature and has parallels with configurations of points on the
geometric circle.
Let us suppose that for any n ∈ N we can write n = u + v where u, v ∈ M ⊂ N
then the circle embedding method associate each of this summands to points on
the circle generated in a certain manner by n > 2 and a line joining any such
associated points on the circle. This geometric correspondence turns out to useful
in our development, as the results obtained in this setting are then transformed
back to results concerning the partition of integers. By exploiting this landscape
we obtain the following class of results

Theorem 6.2. There are infinitely many n ∈Ma,d
2 with fixed a, d ∈ N such that

the representation

n = z1 + z2

where µ(z1) = µ(z2) 6= 0, z1, z2 ∈ N and µ is the Möbius function defined as

µ(m) =


1 if m = 1

0 if pk|m, k ∈ N \ {1}
(−1)r if m = p1p2 · · · pr

is valid.
The proof follows in section 6.

Conjecture 6.1. (Erdős-Turán) Let B ⊂ N and consider

rB(n) := #
{

(a, b) ∈ B2| a+ b = n
}
.

If rB(n) > 0 for all sufficiently large values of n, then

lim sup
n−→∞

rB(n) =∞.

The proof of a weaker version follows in section 6.

2see (2.5)
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2. The Circle of Partition

In this section we introduce the notion of the circle of partition. We study this
notion in-depth and explore some potential applications in the following sequel.

Definition 2.1. Let n ∈ N and M ⊂ N. We denote with

C(n,M) = {[x] | x, y ∈M, n = x+ y} .
The Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
C(n).

Definition 2.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then it is their only point which
is not an axis point. The line joining any two arbitrary point which are not axes
partners on the CoP will be referred to as a chord of the CoP. The length of the
chord joining the points [x], [y] ∈ C(n,M), denoted as D([x], [y]) is given by

D([x], [y]) = |x− y|.

It is important to point out that the median of the weights of each co-axis point
coincides with the center of the underlying CoP if it exists. That is to say, given
all the axes of the CoP C(n,M) as

L[u1],[v1],L[u2],[v2], . . . ,L[uk],[vk]

then the following relations hold

u1 + v1
2

=
u2 + v2

2
= · · · = uk + vk

2
=
n

2
which is equivalent to the conditions for any of the pair of axes L[ui],[vi],L[uj ],[vj ]

for 1 ≤ i, j ≤ k
D([ui], [uj ]) = D([vi], [vj ])

and

D([vj ], [ui]) = D([uj ], [vi]).

Definition 2.3. Let M ⊆ N and C(n,M) and C(m,M) be two distinct CoPs for
which holds

C(n,M) ⊂ C(m,M) (2.1)

or

C(n,M) ⊃ C(m,M). (2.2)

Then we say the CoPs admit embedding. We say the CoPs admit aligned embedding
if and only if with (2.1) holds n < m and with (2.2) n > m and C(n,M) = C(m,M)
holds if and only if n = m.
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Notations. Let be

Nn = {m ∈ N | m ≤ n} .

the sequence of the first n natural numbers. Further we will denote

‖[x]‖ := x

as the weight of the point [x] and correspondingly the weight set of points in the
CoP C(n,M) as ||C(n,M)||.

The above language in many ways could be seen as a criterion determining the
plausibility of carrying out a partition in a specified set. Indeed this feasibility is
trivial if we take the set M to be the set of natural numbers N. The situation
becomes harder if we take the set M to be a special subset of natural numbers N,
as the corresponding CoP C(n,M) may not always be non-empty for all n ∈ N.
One archetype of problems of this flavour is the binary Goldbach conjecture, when
we take the base set M to be the set of all prime numbers P. One could imagine
the same sort of difficulty if we extend our base set to other special subsets of the
natural numbers. As such we start by developing the theory assuming the base
set of natural numbers N and latter extend it to other base sets N equipped with
certain important and subtle properties.

Remark 2.1. It is important to notice that a typical CoP need not have a center.
In the case of an absence of a center then we say the circle has a deleted center.
However all CoPs with even generators have a center. It is easy to see that the
CoP C(n) contains all points whose weights are positive integers from 1 to n − 1
inclusive:

C(n) = {[x] | x ∈ N, x < n} .

Therefore the CoP C(n) has
⌊
n−1
2

⌋
different axes.

Proposition 2.1. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 2.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Corollary 2.1. Each point of a CoP C(n,M) has exactly one axis partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner. Then holds for every
point [y] 6= [x]

‖[x]‖+ ‖[y]‖ 6= n.

This contradiction to the Definition 2.1. Due to Proposition 2.1 the case of more
than one axis partners is impossible. This completes the proof. �

Corollary 2.2. The weights of the points of

C(n,M) = {[x1], [x2]. . . . , [xk]}

are strictly totally ordered.
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Proof. W.l.o.g. we assume that

x1 = min (x | [x] ∈ C(n,M)) and (2.3)

xk = max (x | [x] ∈ C(n,M)) . (2.4)

At first we assume that x1 + xk < n. Then there is a weight xi with

x1 < xi < xk and n = x1 + xi.

Because xi < xk we get

n = x1 + xi < x1 + xk.

This contradicts the assumtion. Now we assume that x1 + xk > n. Then there is a
weight xi with

x1 < xi < xk and n = xi + xk.

Because xi > x1 we get

n = xi + xk > x1 + xk.

This also contradicts the assumtion. Therefore remains x1 + xk = n. Because of
(2.3) and (2.4) holds

x1 < x2 < xk−1 < xk.

Now we remove x1 and xk out of the consideration and repeat the procedure above
with x2 and xk−1 and obtain x2 + xk−1 = n and

x1 < x2 < x3 < xk−2 < xk−1 < xk.

By repeating this procedure for xi and xk+1−i for 3 ≤ i ≤
⌊
k
2

⌋
we get finally

x1 < x2 < x3 < x4 < . . . < xk−3 < xk−2 < xk−1 < xk.

�

Proposition 2.2. Let C(n,M) and C(m,M) be two distinct CoPs admitting aligned
embedding. Then holds

C(n,M) ∪ C(m,M) ⊂ C(n+m,M).

Proof. W.l.o.g. we assume C(n,M) ⊂ C(m,M). Then holds

C(n,M) ∪ C(m,M) = C(m,M)

and because of admitting aligned embedding

⊂ C(n+m,M) due to m < n+m.

�

Theorem 2.1. Let n ∈ N and C(n) be a CoP generated by n. Then C(n) admits
aligned embedding.

Proof. W.l.o.g. we have to prove for two distinct CoPs

C(n) ⊂ C(m) if and only if n < m | n,m ∈ N.

First let n < m. Then follows that

C(n) = {[x] | x ∈ N, x < n}
⊂ {[x] | x ∈ N, x < m}
= C(m).
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Conversely we suppose C(n) ⊂ C(m). Then it follows that

{[x] | x ∈ N, x < n} ⊂ {[x] | x ∈ N, x < m}

and it holds n < m. �

Now we will see that Theorem 2.1 is always valid for some special subsets M
instead of N, the subsets containing arithmetic progressions. Let be Ma,d ⊂ N with

Ma,d := {x ∈ N | x ≡ a (mod d) , d ∈ N} (2.5)

and

C(n,Ma,d) = {[x] | x+ y = n ∧ x, y ∈Ma,d}, n ∈M2a,d

= {[x] | x ∈Ma,d ∧ x ≤ n− a}.

For x < y ∈ Ma,d holds y − x ≡ 0 (mod d). On the other hand holds x + y ≡
2a (mod d), so that C(n,Ma,d) = ∅ for n 6∈M2a,d.

Theorem 2.2. Let n ∈ M2a,d and C(n,Ma,d) be a CoP generated by n. Then the
CoP admits aligned embedding.

Proof. W.l.o.g. we have to prove

C(n,Ma,d) ⊂ C(m,Ma,d) if and only if n < m.

At first let be n < m. Then holds

‖C(n,Ma,d)‖ = {k ∈Ma,d | k ≤ n− a}
and because of n < m

⊂ {k ∈Ma,d | k ≤ m− a}
= ‖C(m,Ma,d)‖.

On the other hand let be C(n,Ma,d) ⊂ C(m,Ma,d). Then holds

‖C(n,Ma,d)‖ = {k ∈Ma,d | k ≤ n− a}
⊂ ‖C(m,Ma,d)‖
= {k ∈Ma,d | k ≤ m− a}
and therefore must be

n < m.

�

Corollary 2.3. Let C(n,M) and C(m,M) be two distinct CoPs admit align embed-
ding. Then holds

C(n,M) ⊃ C(m,M) if and only if n > m.

Corollary 2.4. Because of Proposition 2.2 and Theorem 2.2 holds for two distinct
CoPs C(n,Ma,d) and C(m,Ma,d)

3

C(n,Ma,d) ∪ C(m,Ma,d) ⊂ C(n+m− 2a,Ma,d).

3n+m− 2a on the right side in order to get n+m− 2a ∈ M2a,d by n,m ∈ M2a,d.
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Remark 2.2. CoPs C(n,P) with the set of all prime numbers as base set are impor-
tant examples for CoPs not admitting embedding. The following example demon-
strates this scenario.

C(20,P) = {[3], [7], [13], [17]} but

C(22,P) = {[3], [5], [11], [17], [19]}.

Proposition 2.3. Two distinct CoPs C(n,M) and C(m,M) admit aligned embed-
ding if they admit embedding and the first point of both CoPs equals to [xo].

Proof. W.l.o.g. we can assume that C(n,M) ⊂ C(m,M). We have to prove that
n < m.
By the assumption, we have |C(n,M)| < |C(m,M)|. Invoking the condition that
both CoPs have a common first point [xo], then between the last points of the CoPs
holds

‖[n− xo]‖ < ‖[m− xo]‖ and hence

n < m.

�

Proposition 2.4. Let

Ra,d(n) := #{(x, y) ∈M2
a,d| x+ y = n, x < y}

then Ra,d(n) is a non-decreasing function for all n ∈M2a,d.

Proof. Obviously Ra,d(n) counts the axes of the CoP C(n,Ma,d) and it holds

Ra,d(n) =

⌊
|C(n,Ma,d)|

2

⌋
.

By virtue of Theorem 2.2. the CoP C(n,Ma,d) admits aligned embedding. Therefore
hold

C(n,Ma,d) ⊂ C(m,Ma,d) for n < m ∈M2a,d

and hence

Ra,d(n) < Ra,d(m).

�

3. The Mass and Moments of Circles of Partition

In this section we introduce and study the notion of the mass of the circle of par-
tition. We then leverage this concept to study the notion of the moment of CoPs.
This notion provides the wriggle room to carry out some quantitative methods in
our analysis.

Notation. Let us denote the assignment of an axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M)

which means

[x], [y] ∈ C(n,M) and x+ y = n.
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Definition 3.1. Let M ⊆ N and C(n,M) be a CoP. By the mass of the CoP C(n,M)
we mean the quantity

M [C(n,M)] =

⌊
#
{
L[x],[y] ∈̂ C(n,M)

}⌊
n−1
2

⌋ × n

⌋
.

The definition above formalizes the notion for counting points on a typical CoP.
Indeed if we set M = N then the mass M [C(n,M)] = M [C(n)] = n. Again if we
take M = P, the set of all prime numbers then by the prime number theorem, we
have the upper bound for the mass of the CoP C(n,P)

M [C(n,P)] =

⌊
#
{
L[x],[y] ∈̂ C(n,P)

}⌊
n−1
2

⌋ × n

⌋

≤

⌊
π(n)
2

bn−12 c
× n

⌋
≤ π(n)� n

log n
.

For some CoPs knowing the mass is an easy counting argument. For instance the
mass of the CoP C(n,Ma,d) is given by as

M[C(n,Ma,d)] = 1 +
∑

k≤n−a
k−a≡0 (mod d)
n−2a≡0 (mod d)

1

= 1 +
n− 2a

d
.

To the contrary knowing the mass for certain CoPs could also be a terribly non-
trivial task. One archetype of this scenario is the mass of the CoP C(n,P) which
in many ways could be zero for some n ∈ 2N. The binary Goldbach conjecture can
be reformulated in this language as follows

Conjecture 3.1 (Goldbach). Let P be the set of all prime numbers and C(n,P) be
a CoP for n ∈ N. Then

M [C(n,P)] > 0

for every n ∈ 2N.

Definition 3.2. Let M ⊆ N and C(n,M) be a CoP with mass M[C(n,M)]. We
denote the moment V[C(n,M)] of the CoP C(n,M) as the quantity

V[C(n,M)] =

∫
C(n,M)

M[C(n,M)]dn

where ∫
C(n,M)

M[C(n,M)]dn :=
∑

L[a],[b] ∈̂ C(n,M)

||[a]||<||[b]||

b∫
a

M[C(n,M)]dn.
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Proposition 3.1. Let M ⊆ N and C(n,M) be a CoP with deleted center. Then
V[C(n,M)] > 0 if and only if there exist some constant K := K(n) > 0 such that

2K
v1∫
u1

M[C(n,M)]dn

≤ |C(n,M)| ≤ 2K
v2∫
u2

M[C(n,M)]dn

where L[u2],[v2],L[u1],[v1] ∈̂ C(n,M) with v1 = max{||C(n,M)||} and u1 = min{||C(n,M)||}
with (

||[u2]||, ||[v2]||
)
∩ C(n,M) = ∅.

Proof. The result follows by virtue of the inequality

K
v1∫
u1

M[C(n,M)]dn

≤ #
{
L[ui],[vi] ∈̂ C(n,M)

}
≤ K

v2∫
u2

M[C(n,M)]dn

where L[u2],[v2],L[u1],[v1] ∈̂ C(n,M) with v1 = max{||C(n,M)||} and u1 = min{||C(n,M)||}
with (

||[u2]||, ||[v2]||
)
∩ C(n,M) = ∅

and K := K(n) > 0. �

4. Rotation and Dilation of Circles of Partition

In this section we introduce the notion of the Rotation and Dilation of CoPs
produced by a given generator. We launch the following formal terminology.

Definition 4.1. Let M ⊆ N with n ∈ N and C(n,M) be the CoP generated by n.
The map

$r : C(n,M) −→ Cr(n,M)

will be the rth level rotation of the CoP C(n,M) with

Cr(n,M) :={[k] ∈ C(n,M) | [x] ∈ C(n,M), x+ r ≡ k (modn) , r ∈ Z,
if x+ r ≡ 0 (modn) then k := (n+ r) Modn}.

If the sign is positive then we say the rth level rotation is clockwise. Otherwise, it
is an anti-clockwise rth level rotation for r 6= 0. However, if we take r = 0, then
the rotation is trivial and the axes joining points on the CoP remains stable. It is
important to say that the result of a rotation must not be necessarily a CoP. Due
to the condition [k] ∈ C(n,M) it is even possible that the target set is empty. In
this case we say that the rth level rotation fails to exist.

Theorem 4.1. The CoP C(n) remains invariant under the rth level rotation $r.
That is

$r : C(n) −→ C(n).

Proof. The set of weights of the images of C(n) is 4

‖Cr(n)‖ = {r + 1, r + 2, . . . , r + n− 1}n.

4We denote by {a, b, . . . , z}n the set {aModn, bModn, . . . , zModn}.
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The missing value is (r + n− k)n if r + n− k ≡ 0 (modn). Therefore holds

k = (n+ r) Modn.

And this is the substituted value by virtue of the definition. �

If the inequality −n < r < n is valid then we get

k =

{
r if r > 0

n− |r| if r < 0.

Example 4.1. n = 8, r = +2
‖C(8)‖ = {1, 2, 3, 4, 5, 6, 7}.
The critical point is [6] because 6 + 2 ≡ 0 (mod 8). The set of the weights of the
images of all points except of [6] is {3, 4, 5, 6, 7,−, 1}. Absent is 2.
As image of [6] we set [(8 + 2) Mod 8] = [2] and we get as target set
‖$3 (C(8)) ‖ = {3, 4, 5, 6, 7, 2, 1} → {1, 2, 3, 4, 5, 6, 7} = ‖C(8)‖.

n = 8, r = −2
The critical point is [2] because 2 − 2 ≡ 0 (mod 8). The set of the weights of the
images of all points except of [2] is {7,−, 1, 2, 3, 4, 5}. Absent is 6.
As image of [2] we set [(8− 2) Mod 8] = [6] and we get as target set
‖$3 (C(8)) ‖ = {7, 6, 1, 2, 3, 4, 5} → {1, 2, 3, 4, 5, 6, 7} = ‖C(8)‖.

Proposition 4.1. Let C(n,Ma,d) be a CoP defined as in (2.5). Then there exists
not an rth level rotation for r ≡ c (mod d) with 0 < c < d and c 6≡ 2a (mod d).

Proof. W.l.o.g. we let c ≤ n.
We observe [n− a− kd] is a point of C(n,Ma,d) for k = 0(1)n−2ad

5 . By applying
the rotation $r its weight will be transformed to

(n− a− kd+ c) Modn = (c− a− kd) Modn and because of c ≤ n
= c− a− kd
≡ (c− a) (mod d) and because of c 6≡ 2a (mod d)

6≡ a (mod d) .

Hence all rotated points of C(n,Ma,d) are not points of C(n,Ma,d) and therefore
the target set of the rotation is an empty set. �

Proposition 4.2. Let C(n,Ma,d) be a CoP defined as in (2.5). Then C(n,Ma,d) re-
mains invariant under the rth level rotation $r provided d = 2a and r ≡ 0 (mod d).

Proof. First we recall that n ≡ 2a (mod d). Under the assumption d = 2a it cer-
tainly follows that n ≡ 0 (mod d). Now, let (x + r) Modn = c be the weight of a
rotated point [x]. Then it is easy to see that the following congruence condition is
valid

x+ r ≡ c (modn) and because n ≡ 0 (mod d)

≡ c (mod d) .

5Because of n ∈ M2a,d is it a positive integer.
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On the other hand the congruence conditions x ≡ a (mod d) and r ≡ 0 (mod d)
imply

x+ r ≡ a (mod d) .

Hence we have a = c and x+ r ≡ a (mod d). Therefore all image points C(n,Ma,d)
are members of Ma,d and less than n. In principle all image points of the rth level
rotation of the CoP C(n,Ma,d) are again points of the CoP C(n,Ma,d). This proves
the claim that CoPs of the form C(n,Ma,d) remains invariant under some rth level
rotation with special conditions. �

Example 4.2. n = 24, a = 2, d = 4, r = 4
‖C(24,M2,4)‖ = {2, 6, 10, 14, 18, 22}. Then is
‖$4 (C(24,M2,4)) ‖ = {6, 10, 14, 18, 22, 2} → {2, 6, 10, 14, 18, 22}.
Corollary 4.1. For conditions espoused in Proposition 4.1 and of Proposition 4.2
the rth level rotation of a CoP C(n,Ma,d) results in a set which is a real subset of
C(n,Ma,d).

Definition 4.2. Let M ⊆ N with n ∈ N and C(n,M) be the CoP generated by n.
The map

δr : C(n,M) −→ Cr(n,M)

will be the rth scale dilation of the CoP C(n,M) with

Cr(n,M) := {[x] ∈ C(n+ r,M) | r ∈ Z, n+ r > 1} .

If the sign is positive then we say the rth scale dilation is an expansion. Otherwise,
it is an rth scale compression for r 6= 0. However if we take r = 0, then the dilation
is a trivial dilation and the CoP remains invariant under the dilation.

Remark 4.1. It is important to note that if the base set is taken to be the set of
natural numbers N, then the image set of dilation collapses to the following

δr
(
C(n)

)
:= Cr(n)

= {[x] | x ∈ Nn+r−1, r ∈ Z, n+ r > 1}
= C(n+ r). (4.1)

Additionally, it is important to point out that in case r < 0 some points of C(n)
have the same image where as in the case r > 0 some points of C(n) have more
than one image.

As it happens, dilation at any scale between CoPs have the natural tendency of
translating the generator of the source CoP by the size of the scale of the dilation.
However it is somewhat difficult to define dilation on individual points in a given
CoP. Any perceived dilation map could manifestly work on a typical CoP but it
may proved handicapped for some other CoPs. In the sense that some points may
poke outside the target CoP under this fixed dilation. In light of this anomaly, we
ask the following questions

Question 4.1. Let M ⊆ N. Does there exists a well-defined dilation

δr : C(n,M) −→ C(m,M)

on each [x] ∈ C(n,M) for all CoPs?
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Put it differently, Question 4.1 asks if there exists a fixed map that assigns each
points in a typical CoP to its target CoP in a sufficiently uniform way. That
is to say, the map we seek should avoid the subtleties as espoused in our earlier
discussion.

Theorem 4.2. Let n,m ∈ N, M ⊆ N and C(n,M) be a CoP admitting aligned
embedding. Then there exists some dilation δr such that

δr : C(n,M) −→ C(m,M).

Proof. It is evident that for m = n the trivial dilation δ0 meets the claim. For the
case m 6= n we break the proof into several cases. The case r is positive and the
case it is negative. Let δr be any dilation for r > 0 and suppose for any two CoP
C(n,M) and C(m,M) with C(m,M) ⊂ C(n,M) there exists no dilation associating
them. By virtue of the property that the CoPs admitting embedding exactly one
of the following embedding holds

δr
(
C(m,M)

)
⊂ C(n,M) or C(n,M) ⊂ δr

(
C(m,M)

)
.

We analyze each of these sub-cases. First let us assume that δr
(
C(m,M)

)
⊂

C(n,M). It follows that there exists some CoP C(s,M) with δr(C(m,M)) ⊆ C(s,M)
such that C(s,M) ⊂ C(n,M). Since there exists no dilation between CoPs the
following proper embedding must necessarily hold

δr
(
C(m,M)

)
⊂ C(s,M) ⊂ C(n,M).

Again there exists some CoP C(t,M) with δr(C(m,M)) ⊆ C(t,M) such that C(t,M) ⊂
C(s,M). Then under the underlying assumption that there exists no dilation be-
tween CoPs, we obtain the following proper embedding

δr(C(m,M)) ⊂ C(t,M) ⊂ C(s,M) ⊂ C(n,M).

By repeating the argument in this manner, we obtain the following infinite descend-
ing chains of covers of the smallest CoP

C(m+ r,M) := δr
(
C(m,M)

)
⊂ · · · ⊂ C(t,M) ⊂ C(s,M) ⊂ C(n,M).

Because the CoPs admit aligned embedding we obtain the infinite descending se-
quence of positive integers towards the generator m+ r of the last CoP

n > s > t > · · · > · · · > m+ r.

This is absurd, thereby ending the proof of the first sub-case. We now turn to
the case C(n,M) ⊂ δr(C(m,M)). Then in a similar fashion there must exist some
CoP C(t,M) with C(t,M) ⊆ δr(C(m,M)) such that C(n,M) ⊂ C(t,M). Then under
the assumption that there exists no dilation between CoP, we have the following
embedding

C(n,M) ⊂ C(t,M) ⊂ δr(C(m,M)).

Again there exists some CoP C(s,M) with C(s,M) ⊆ δr(C(m,M)) such that C(t,M) ⊂
C(s,M). Under the assumption that there exists no dilation between CoP, we have
the following embedding

C(n,M) ⊂ C(t,M) ⊂ C(s,M) ⊂ δr(C(m,M)).
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By repeating this argument indefinitely we obtain the following infinite sequence of
embedding

C(n,M) ⊂ C(t,M) ⊂ C(s,M) · · · ⊂ δr(C(m,M)) := C(m+ r,M).

By virtue of the CoPs admitting aligned embedding, we obtain an infinite ascending
sequence of positive integers towards the generator of the last CoP in the chain

n < t < s < · · · < m+ r.

This is absurdity, since we cannot have positive integers approaching a fixed positive
integer for infinite amount of time. This completes the proof for the case r > 0.
We now turn to the case r < 0 for any two CoP C(m,M), C(n,M) with C(n,M) ⊂
C(m,M). Under the main assumption exactly one of the following embedding must
hold

δr
(
C(m,M)

)
⊂ C(n,M) or C(n,M) ⊂ δr

(
C(m,M)

)
.

A similar analysis could be carried out for each of the above cases. �

Corollary 4.2. Because of Theorem 2.1 the CoP C(n) admits aligned embedding
and there is the dilation δ1 : C(n) −→ C(n+ 1) with

δ1([x]) :=

{
[x] for 1 ≤ x ≤ n− 1

[n] additional for x = 1
(4.2)

that can produce an infinite ascending chain of CoPs

C(n) ⊂ C(n+ 1) ⊂ C(n+ 2) ⊂ · · · .

It is easy to see that the assignment of [n] as also an image of [1] is not the only
possibility. Also possible would be [n] as the image of [2] . . . [n − 1]. In all cases
we would have a correct point-to-point mapping. Hence a subset of the cross set
C(n)× C(n+ 1) for which holds:

• for each point of C(n) there is at least one image point of C(n+ 1) and
• for each image point of C(n+ 1) there is only one preimage point of C(n)

is not a well-defined pointwise definition of the map C(n) −→ C(n + 1) because
there are several such subsets.

Corollary 4.3. In light of Theorem 2.2 the CoP C(n,Ma,d) admits aligned embed-
ding and there is the dilation δd : C(n,Ma,d) −→ C(n+ d,Ma,d) with

δd([x]) :=

{
[x] for a ≤ x ≤ n− a
[n− a+ d] additional for x = a

that can generate an infinite ascending chain of CoPs

C(n,Ma,d) ⊂ C(n+ d,Ma,d) ⊂ C(n+ 2d,Ma,d) ⊂ · · · .

5. Stable and Unstable Points on the Circle of Partition

In this section we launch the notion of stability of a sequence under a given
dilation.
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Definition 5.1. Let Θ(n) be a subsequence of Nn and suppose the CoP C(n,M) 6=
∅. Let L[x],[y] be an axis of the CoP C(n,M) with x, y ∈ Θ(n). Then we say the

point [x] ∈ C(n,M) is stable relative to the subsequence Θ(n) under the rth level
rotation $r : C(n,M) −→ C(n,M) if ||$r([x])|| ∈ Θ(n) and ∃z ∈ Θ(n) such that
L[$r([x])],[z] is also an axis of the CoP C(n,M). We say the subsequence Θ(n) is

stable under the rth level rotation $r if all points in [x] ∈ C(n,M) with x ∈ Θ(n)
are stable.

Definition 5.2. Let Θ(n) be a subsequence of Nn and suppose the CoP C(n,M) 6=
∅. Let L[x],[y] be an axis of the CoP C(n,M) with x, y ∈ Θ(n). Then we say the

point [x] ∈ C(n,M) is stable relative to the subsequence Θ(n) under the rth scale
dilation δr : C(n,M) −→ C(s,M) if ||δr([x])|| ∈ Θ(n) and ∃z ∈ Θ(n) such that
L[δr([x])],[z] is also an axis of the CoP C(s,M). We say the subsequence Θ(n) is

stable under the rth scale dilation δr if all points in [x] ∈ C(n,M) with x ∈ Θ(n)
are stable.

Next we establish an important result in the special case where the base set is
the set N of natural numbers.

Proposition 5.1. Let Θ(n) = Nn−1 and let δr : C(n) −→ C(m) be a dilation. Then
the subsequence Θ(n) is stable if and only if n ≥ m.

Proof. In the case m = n then the dilation is trivial and the claim is trivially true.
Suppose the sequence Θ(n) is stable under the dilation

δr : C(n) −→ C(m)

and assume to the contrary that n < m. Then the dilation is an expansion. It
follows that for all [x] ∈ C(n) with x ∈ Θ(n) there exists z ∈ Θ(n) such that
z + ||δr([x])|| = m. Under the assumption n < m and by virtue of Theorem 2.1
we have the embedding C(n) ⊂ C(m) and for all x ∈ Θ(n) holds [x] ∈ C(n) and
1 + x ≤ n < m. There exist some [y] ∈ C(n) such that δr([y]) = [1] but there exists
no z ∈ Θ(n) such that 1 + z = m. It follows that the point [y] is not a stable
point under δr. This contradicts the claim that Θ(n) is stable and so n < m is
impossible. Conversely let us suppose that m < n and consider the dilation

δr : C(n) −→ C(m).

We note that for any point [x] ∈ C(n) there exist some k < m < n such that
||δr([x])||+ k = m. Because k ∈ Nn−1 = Θ(n) it follows that the subsequence Θ(n)
is stable under any dilation δr. �

Next we show that any consecutive subsequence of Nn containing none of its
degenerate terms must be stable under the simple dilation. We formalize this
assertion in the following results.

Proposition 5.2. Let Θ(n) := {x, x+ 1, . . . , n− x, n− x+ 1} be a subsequence of
Nn for any 1 < x < n

2 and δr : C(n) −→ C(n + 1) be an expansion. Then Θ(n) is
stable under the expansion δr.
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Proof. For any point [x] ∈ C(n) we see that L[x],[n−x] is an axis of the CoP. By
enforcing 1 < x < n

2 , then we observe that the dilation δ1 : C(n) −→ C(n+ 1) with

δ1([x]) :=

{
[x] for 1 ≤ x ≤ n− 1

[n] additional for x = 1
(5.1)

is achievable. It follows that for each 1 < x < n
2 the line L[x],[n−x+1] is also an axis

of the CoP C(n+ 1). This proves that Θ(n) is stable under the dilation δr. �

6. The Density of Points on the Circle of Partition

In this section we introduce the notion of density of points on CoP C(n,M) for
M ⊆ N. We launch the following language in that regard.

Definition 6.1. Let be H ⊂ N. Then the quantity

D (H) = lim
n→∞

|H ∩ Nn|
n

denotes the density of H.

Definition 6.2. Let C(n,M) be CoP with M ⊂ N and n ∈ N. Suppose H ⊂ M
then by the density of points [x] ∈ C(n,M) such that x ∈ H, denoted D(HC(∞,M)),
we mean the quantity

D
(
HC(∞,M)

)
= lim
n−→∞

#{L[x],[y] ∈̂ C(n,M)| {x, y} ∩H 6= ∅}
#
{
L[x],[y] ∈̂ C(n,M)

} .

Proposition 6.1. Let H ⊂ M with M ⊆ N and suppose D(HC(∞,M)) exists. Then
the following properties hold:

(i) D(MC(∞,M)) = 1 and D(HC(∞,M)) ≤ 1.
(ii)

1− lim
n−→∞

#{L[x],[y] ∈̂ C(n,M \H)}
#
{
L[x],[y] ∈̂ C(n,M)

} = D(HC(∞,M))

.
(iii) If the |H| <∞ then D(HC(∞,M)) = 0.

Proof. It is easy to see that Property (i) and Property (iii) are both easy con-
sequences of the definition of density of points on the CoP C(n,M). We establish
Property (ii), which is the less obvious case. We observe by the uniqueness of the
axes of CoPs that we can write

1 = lim
n−→∞

#{L[x],[y] ∈̂ C(n,M)}
#
{
L[x],[y] ∈̂ C(n,M)

}
= lim
n−→∞

#{L[x],[y] ∈̂ C(n,M)| x ∈ H , y ∈M \H}
#
{
L[x],[y] ∈̂ C(n,M)

}
+ lim
n−→∞

#{L[x],[y] ∈̂ C(n,H)}
#
{
L[x],[y] ∈̂ C(n,M)

} + lim
n−→∞

#{L[x],[y] ∈̂ C(n,M \H)}
#
{
L[x],[y] ∈̂ C(n,M)

}
= D(HC(∞,M)) + lim

n−→∞

#{L[x],[y] ∈̂ C(n,M \H)}
#
{
L[x],[y] ∈̂ C(n,M)

}
and (ii) follows immediately. �
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Lemma 6.1. Let C(n,P) be a CoP, where P is the set of all prime numbers. If
A ⊂ P then the inequality holds

D(AC(∞,P)) ≥ lim
n−→∞

⌊
|A∩Nn|

2

⌋
⌊
π(n)−1

2

⌋
where π(n) counts the number of primes no more than n.

Proof. The inequality is easily obtained from the upper bound of the cardinality of
the axes of the CoP C(n,P)

#
{
L[x],[y] ∈̂ C(n,P)

}
≤
⌊
π(n)− 1

2

⌋
and the lower bound of the cardinality of the axes of the CoP

#
{
L[x],[y] ∈̂ C(n,P)| {x, y} ∩ A 6= ∅

}
≥
⌊
|A ∩ Nn|

2

⌋
by virtue of the configuration of CoPs. �

Proposition 6.2. Let C(n) with n ∈ N be a CoP and H ⊂ N. Then the following
inequality holds

lim
n−→∞

⌊
|H∩Nn|

2

⌋
⌊
n−1
2

⌋ ≤ D(HC(∞)) ≤ lim
n−→∞

|H ∩ Nn|⌊
n−1
2

⌋ .

Proof. The upper is obtained from a configuration where no two points [x], [y] ∈
C(n) such that x, y ∈ H lie on the same axis of the CoP. The lower bound however
follows from a configuration where any two points [x], [y] ∈ C(n) with x, y ∈ H are
joined by an axis of the CoP. �

It is important to notice that the same result also hold if we replace the set of
natural numbers N with any special subset M. Next we transfer the notion of the
density of a sequence to the density of corresponding points on the CoP C(n). This
notion will play a crucial role in our latter developments.

Proposition 6.3. Let ε ∈ (0, 1] and H be a sequence with H ⊂ N and C(n) be a
CoP. Then D (H) ≥ ε if and only if D

(
HC(∞)

)
≥ ε.

Proof. The result follows by exploiting the inequality in Proposition 6.2 �

Proposition 6.4. Let H be a sequence with H ⊂ N. For ε ∈ (0, 1] and any k ∈ N
if

|H ∩ Nn| ≥ nε

and the common difference of arithmetic progressions in

(
N\H

)
∩Nn are different

from those in H ∩ Nn, then there exists some rotation $r such that the CoP C(n)
contains at least (k − 1) stable points [x] for x ∈ H ∩ Nn.
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Proof. Suppose H ⊂ N with the underlying conditions, then by Theorem 1.1 the
sequence H contains fairly long arithmetic progressions of length k. We enumerate
them as follows

x, x+ s, x+ 2s, . . . , x+ (k − 1)s

for s ∈ N. It follows that the corresponding points on the CoP C(n), namely

[x], [x+ s], [x+ 2s], . . . , [x+ (k − 1)s] ∈ C(n)

are equally spaced and the chord joining two of these adjacent points are of equal
distance. Similarly points on the other end of the axis are equally spaced and the
chords joining any of these two adjacent points are of equal distance s. Let us
enumerate them as follows

[n− x], [n− x− s], [n− x− 2s], . . . , [n− x− (k − 1)s] ∈ C(n).

Apply the rotation $r by choosing r = s then we have

$s([x]), $s([x+ s]), . . . , $s([x+ (k − 1)s]).

The image of these points under the rotation is given by

[x+ s], [x+ 2s], . . . , [x+ (k − 1)s], [x+ ks].

Since the point [x + ks] a priori was not on any of the axes considered at least
(k − 1) points on these axes will be transferred to their immediate next point on
an axis containing all points [x] with x ∈ H ∩Nn. Similarly under the rotation the
corresponding images of the points on the other half of the CoP lying on the same
axis with these points have the images

$s([n− x]), $s([n− x− s]), . . . , $s([n− x− (k − 1)s])

which we can recast as

[n− x− s], [n− x− 2s], . . . , [n− x− (k − 1)s], [n− x− ks].
At least (k − 1) of these points are points on the previous axis and they lying on
the same axis with the points on the other half of the CoP. Since the sequence

n− x− s, n− x− 2s, . . . , n− x− ks
are in arithmetic progression, it follows by the assumption

n− x− s, n− x− 2s, . . . , n− x− ks ∈ H ∩ Nn.
This completes the proof. �

In the accompanying proof we will make use of degenerate and non-degenerate
points of a given set of points on a CoP. However intricate the proof might seem to
be, it can be pinned down to just a simple principle. The highly dense nature of
the sequence allows us to break their components into several boxes. The closest
components in each of these boxes are equidistant from each other. The residue
which are not dense will be thrown away into another box whose components are
very sparse. We then translate a component by their gap if it ever happens to be in
some dense box at the same time live on the same axis with other component. This
forces the second component to also belong to some dense box. If the component
on the same axis with another component does not belong to the dense box, then
the components and the associated components must live in the sparse box. We
can then move them into the dense box and repeat the arguments. We make
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these terminologies more precise in the following definitions and then present our
argument.

Definition 6.3. Let P ⊆ C(n,M) with M ⊆ N. Then a point [x] ∈ P is a
degenerate point if the line joining the point [x] to the centre (resp. deleted centre)
of the CoP C(n,M) is a boundary of the largest sector induced by the points in P.
Otherwise, we say it is a non-degenerate point in P.

Theorem 6.1. Let H ⊂ N and suppose that C(n,H) 6= ∅. If for any ε ∈ (0, 1] holds

|H ∩ Nn| ≥ nε
with

lim
n−→∞

|(N \H) ∩ Nn|
n

< D(H)

then there exists a dilation δr : C(n,H) −→ C(n+ r,H) such that

C(n+ r,H) 6= ∅.

Proof. Under the assumption |H ∩ Nn| ≥ nε for any ε ∈ (0, 1], then H contains
fairly long arithmetic progressions. Let us enumerate them as follows

G1 = {x1 + kd1 ∈ H}s1;s1≥1k=0 .

Let us consider the residual set

G2 = H \ {x1 + kd1 ∈ H}s1;s1≥1k=0 .

Then we can partition the sequence H in the following way

H = G1 ∪G2.

If G2 is still dense then we can repeat this process and obtain further a partition
of H into three subsequence

H = G1 ∪G2 ∪G3.

By induction, we can partition the sequence H in the following way

H =

m⋃
i=1

Gi ∪ T

where

lim
n−→∞

|T ∩ Nn|
n

= 0

and Gi = {xi + kdi ∈ H}si;si≥1k=0 . Now it suffices to work with the corresponding
points on the CoP C(n,H). Since by assumption C(n,H) 6= ∅, It follows that there
exist some axes L[a],[b] ∈̂ C(n,H). Now let us suppose that

[b] /∈
m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

for b ∈ H, then it follows that no two adjacent chords of equal length joining points
in

m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0



THE CIRCLE EMBEDDING METHOD AND APPLICATIONS 19

contains the point [b]. Let us suppose on the contrary that

[a] ∈
m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

then it follows that [a] ∈ {[xi + kdi] ∈ C(n,H)}si;si≥1k=0 for some 1 ≤ i ≤ m. We
consider two cases. The case [a] is a degenerate point in the set and the case it is non-

degenerate point in the set. If [a] is a degenerate point in the set {[xi + kdi] ∈ C(n,H)}si;si≥1k=0 ,
in particular, [a] is the first point in the set. Then it follows that the following points

[a], [xi + di], [xi + 2di], . . . [xi + sdi]

are equally spaced with b = n− xi. It follows that b is contained in the arithmetic
progression

n− xi, n− xi − di, . . . , n− xi − sdi
which contradicts the assumption that [b] cannot lie on at least one of any two
adjacent chords of equal length. Otherwise

n− xi, n− xi − di, . . . , n− xi − sdi ∈
(
N \K

)
∩ Nn

and it follows that each point in the set K∗ =
⋃m
i=1 {[xi + kdi] ∈ C(n,H)}si;si≥1k=0

uniquely generates an element in the set

(
N \K

)
∩ Nn. It follows that

D(KC(∞)) = D
(
HC(∞)

)
≤ D

(
(N \K)C(∞)

)
= D

(
(N \H)C(∞)

)
,

where K is the corresponding weight set of K∗. This contradicts the minimality of
the density D

(
N \HC(∞)

)
by virtue of the scale of the density of the set N \ H.

For the case [a] = [xi + sdi], then we obtain the a priori arithmetic progression
with b = n − xi − sdi. The corresponding point [b] also violates the required

specification. If the point [a] ∈ {[xi + kdi] ∈ C(n,H)}si;si≥1k=0 is a a non-degenerate
point, then a = xi + jdi for some 0 < j < s. The same analysis can be carried out
to yield a contradiction. Now for the case

[a] ∈
m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

then we choose the dilation δr with r = dj such that [b] ∈ {[xj + kdj ] ∈ C(n,H)}si;si≥1k=0
for r < 0 if [b] is the last degenerate point in the set and r > 0 if [b] is the first
degenerate point or a non-degenerate point in the set, so that we have

L[a],[b+dj ] ∈̂ C(n+ dj ,H).

This completes the first part of the proof. For the second part let us assume that
for the axis L[a],[b] of C(n,H), then

[a] /∈
m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

then it must necessarily be that

[a] ∈ T∗
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where T∗ is the corresponding point set of elements in T. Since

|T∗| <
∣∣∣∣ m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

∣∣∣∣,
there exists some rotation$t such that the point$t([a]) ∈

⋃m
i=1 {[xi + kdi] ∈ C(n,H)}si;si≥1k=0 .

In particular

$t([a]) ∈ {[xj + kdj ] ∈ C(n,H)}si;si≥1k=0

for some 1 ≤ j ≤ m. It follows there must exist a point

[v] ∈
m⋃
i=1

{[xi + kdi] ∈ C(n,H)}si;si≥1k=0

such that L[v],[$t([a])] is an axis of the CoP C(n,H), by virtue of the previous
arguments. Otherwise, we discard this choice of point and scout for a point with
such property by varying the scale of the rotation $t. The proof is completed by
choosing the dilation δr such that r = dj for r < 0 if $t([a])] is the last degenerate
point in the set and r > 0 if $t([a])] is the first degenerate point or a non-degenerate
point in the set, so that L[v],[||$t([a])||+dj ] is an axis of the CoP

C(n+ dj ,H).

�

Theorem 6.2. There are infinitely many n ∈ Ma,d with fixed a, d ∈ N such that
the representation

n = z1 + z2

where µ(z1) = µ(z2) 6= 0, z1, z2 ∈ N and µ is the Möbius function defined as

µ(m) =


1 if m = 1

0 if pk|m, k ∈ N \ {1}
(−1)r if m = p1p2 · · · pr

is valid.

Proof. The set of square-free integers

Q := {m ∈ N : µ(m) 6= 0}

has natural density 6
π2 [1, 2]. For n large enough there exists some fixed N0 > n

such that the representation is valid

No = z1 + z2

with µ(z1), µ(z2) 6= 0. Invoking Theorem 6.1 there exist some t ∈ N such that the
representation is valid

Nt := No + t = v1 + v2

with µ(v1) = µ(v2) 6= 0. The result follows by an upwards induction in this manner.
�
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Corollary 6.1. There are infinitely many n ∈ Ma,d with fixed a, d ∈ N such that
the representation

n = z1 + z2

with gcd(z1, z2) = 1 and z1, z2 ∈ N is valid.

Proof. The set

R := {(m,n) : gcd(m,n) = 1, 1 ≤ m < n}

has natural density D(R) = 6
π2 with relatively small density for the residual set [2].

The result follows by adapting a similar reasoning in Theorem 6.2. �

It is worth recognizing that we can obtain an analogous formulation of Theorem
6.1 for the primes by virtue of Theorem 1.2. We state the result as follows

Theorem 6.3. Let π(n) denotes the number of primes no more than n. If A ⊂ P
the set of all prime numbers such that

lim sup
n−→∞

|A ∩ Nn|
π(n)

> 0

with

lim
n−→∞

|(P \ A) ∩ Nn|
π(n)

< lim
n−→∞

|A ∩ Nn|
π(n)

then there exists a dilation δr : C(n,A) −→ C(n+ r,A) such that

C(n+ r,A) 6= ∅.

Proof. We keep the conditions, replace n with π(n) in the bottom expression and
H with A and repeat the same argument as espoused in Theorem 6.1 tied with
the computation of density of the point with weights in A on the CoP C(n,P) by
applying Lemma 6.1. �

Conjecture 6.1 (Erdős-Turán). Let B ⊂ N and consider

rB(n) := #
{

(a, b) ∈ B2| a+ b = n
}
.

If rB(n) > 0 for all sufficiently large values of n, then

lim sup
n−→∞

rB(n) =∞.

This version, which one might think of as the binary version of the Erdős-Turan
conjecture, can be reformulated in the language of CoPs as follows:

Conjecture 6.2 (Erdős-Turán). Let B ⊂ N and consider

GB(n) = #
{
L[a],[b] ∈̂ C(n,B)

}
.

If GB(n) > 0 for all sufficiently large values of n, then

lim sup
n−→∞

GB(n) =∞.
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Remark 6.1. Though we are nowhere near the proof of this conjecture, we prove a
weaker version by imposing some suitable conditions. The result is encapsulated in
the following theorem.

Theorem 6.4. Let B ⊂ N with

lim
n−→∞

|B ∩ Nn|
n

> 0

such that

#
{
L[x],[y] ∈̂ C(n)| x ∈ N \ B, y ∈ B

}
≤ #

{
L[x],[y] ∈̂ C(n,B)

}
.

If GB(n) = #
{
L[a],[b] ∈̂ C(n,B)

}
> 0 for all sufficiently large values of n, then

lim sup
n−→∞

GB(n) =∞.

Proof. Suppose B ⊂ N and let GB(n) > 0 for all sufficiently large values of n.
Suppose to the contrary that

lim sup
n−→∞

GB(n) <∞.

Consider the CoP C(n,B), then we note that by the uniqueness of axes of CoPs we
can compute the density of points [x] ∈ C(n) with ||[x]|| ∈ B in the following way

D(BC(∞)) = lim
n−→∞

#{L[x],[y] ∈̂ C(n)|{x, y} ∩ B 6= ∅}⌊
n−1
2

⌋
= lim
n−→∞

#{L[x],[y] ∈̂ C(n)| x ∈ N \ B, y ∈ B}⌊
n−1
2

⌋ + lim
n−→∞

#{L[x],[y] ∈̂ C(n,B)}⌊
n−1
2

⌋
≤ 2 lim

n−→∞

#{L[x],[y] ∈̂ C(n,B)}⌊
n−1
2

⌋
= 0

by virtue of the earlier assumption. By applying Proposition 6.2, it follows that

lim
n−→∞

⌊
|B∩Nn|

2

⌋
⌊
n−1
2

⌋ = 0.

It follows that D(B) = 0, thereby contradicting the requirement of the statement.
�

7. Special Maps of Circles of Partition

In this section we introduce and study the notion of several special maps of
circles of partition. We launch more formally the following languages.

Definition 7.1. Let M ⊆ N and C(n,M) 6= ∅ be a CoP containing the axis L[a],[b].
By the flipping of the CoP C(n,M) along the so called flipping axis L[a],[b], we
mean the map

ϑ[a],[b] : C(n,M) −→ C(m,M)

with ϑ[a],[b]([a]) = [a] and ϑ[a],[b]([b]) = [b] such that for any two [x], [y] ∈ C(n,M)
with [x], [y] 6= [a], [b] holds

‖ϑ[a],[b]([x])‖+ ‖ϑ[a],[b]([y])‖ 6= n

We say the CoP C(n,M) is susceptible to flipping if there exists such a map.
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Example 7.1. Let be M = P and n = 20. The CoP C(20,P) is the set {[3], [7], [13], [17]
with two axes L[3],[17] and L[7],[13]. Then the map

ϑ[3],[17] : C(20,P) −→ C(22,P)

with C(22,P) = {[3], [5], [11], [17], [19]} is a flipping of C(20,P) along the axis L[3],[17]

if f.i.

ϑ[3],[17]([3]) = [3]

ϑ[3],[17]([7]) = [5]

ϑ[3],[17]([13]) = [11] and [19]

ϑ[3],[17]([17]) = [17].

Hence we get ‖[5]‖+ ‖[11]‖ = 16 6= 20 or ‖[5]‖+ ‖[19]‖ = 24 6= 20.
Vice versa there are no axis points of C(22,P) that are also points of C(20,P).

Hence there exists no flipping from C(22,P) to C(20,P) along an axis of C(22,P).

Proposition 7.1. Let Ma,d be defined as in (2.5) with 0 < a ≤ d. Then the CoP
C(n,Ma,d) is susceptible to flipping if and only if n > m.

Proof. We must regard that in order to get C(n,Ma,d) 6= ∅ it must be n ∈ M2a,d.
Then is n− a ∈Ma,d. The same is valid for C(m,Ma,d).
We assume that n > m. Then holds with Corollary 2.3

C(n,Ma,d) ⊃ C(m,Ma,d).

Due to n ∈M2a,d holds n−2a
d ∈ N. The weights of C(n,Ma,d) are

‖C(n,Ma,d)‖ =

{
a+ k · d | k = 0, 1, 2, . . . ,

n− 2a

d

}
.

Hence C(n,Ma,d) has

ln =
n− 2a

d
+ 1 members.

This is in accordance with the general counting function for CoPs:

|C(n,Ma,d)| = 1 +
∑

1 ≤ x ≤ n− a
x ≡ a (mod d)

1

= 1 +
n− 2a

d
.

The addition of 1 is required because the counting starts with 0. Now we must
distinguish two cases

rC: The CoP C(n,Ma,d) has a real center.
dC: The CoP C(n,Ma,d) has a deleted center.

In the case rC holds ln is odd and ln is even in the other case. Now we choose the
axis L[u],[v] of the CoP C(n,Ma,d) as the flipping axis which is the closest one to
the center of the CoP. The weights of [u], [v] are u = v = n

2 for the case rC and

u = n−d
2 , v = n+d

2 in the other case. In order to satisfy the requirements

ϑ[u],[v]([u]) = [u] and ϑ[u],[v]([v]) = [v]
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the last point of C(m,Ma,d) should be [v]. Due to Corollary 2.1 we get for m as the
sum of the weights of the first and the last member of CoP C(m,Ma,d)

m =

a+
n

2
for rC

a+
n+ d

2
for dC.

(7.1)

Analogously to C(n,Ma,d) holds for the number of members of C(m,Ma,d)

lm − 1 :=
∑

1 ≤ x ≤ m− a
x ≡ a (mod d)

1 =
m− 2a

d

=


a+ n

2 − 2a

d
=
n− 2a

2d
=
ln − 1

2
for rC

a+ n+d
2 − 2a

d
=
n− 2a

2d
+

1

2
=
ln − 1

2
+

1

2
for dC.

Hence we obtain for both cases

lm =

⌈
ln − 1

2

⌉
+ 1 =

⌊
ln
2

⌋
+ 1.

All these fulfills the following map

ϑ[u],[v](x) = a+ k(x) · d with

x− a
d
≡ k(x) (mod lm) .

The heaviest point of CoP C(m,Ma,d) is [m− a]. In the case rC the flipping axis is
L[u],[v] with u = v = n

2 and we get with (7.1)∥∥∥ϑ[u],[v] ([n
2

])∥∥∥ = m− a =
n

2
.

Hence the requirements ‖ϑ[u],[v]([u])‖ = u = n
2 and ‖ϑ[u],[v]([v])‖ = v = n

2 are
fulfilled. In the case dC we get with (7.1)∥∥∥∥ϑ[u],[v]([n+ d

2

])∥∥∥∥ = m− a =
n+ d

2
= v.

And therefore is u = v− d = n−d
2 and for each two points [x], [y] ∈ C(n,Ma,d) with

[x], [y] 6= [u], [v] holds

‖ϑ[u],[v]([x])‖+ ‖ϑ[u],[v]([y])‖ < n

because ϑ[u],[v]([u]) = [u] and ϑ[u],[v]([v]) = [v] are the two heaviest points of
C(m,Ma,d) in case dC respectively is the heaviest point of C(m,Ma,d) in rC with
the sum of weights of the two heaviest points ≤ n. The weight sum of all others is
lesser. Thereby the first part of the claim is proven.

If on the other hand holds n ≤ m then the source CoP is a subset of the target
CoP. All axis points of C(n,Ma,d) are identically mapped into C(m,Ma,d). And for
all these ϑ[u],[v]([x]) and ϑ[u],[v]([y]) from any axis L[x],[y] of C(n,Ma,d holds

‖ϑ[u],[v]([x])‖+ ‖ϑ[u],[v]([y])‖ = n.

This is a contradiction to the requirements of the claim. �

Remark 7.1. Note that due to M1,1 = N this statement also holds for each CoP
C(n).
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Proposition 7.2. The chosen axis closest to the center of the CoP C(n,Ma,d) is
the only one for flipping along an axis in the case of M = Ma,d.

Proof. For all axes L[x],[y] ∈̂ C(n,Ma,d) holds 6

x ≤ n

2
≤ y.

Therefore there is no axis L[x],[y] with y < n
2 . For the chosen axis L[u],[v] closest to

the center of C(n,Ma,d) holds

n− d
2
≤ ‖[u]‖ ≤ ‖[v]‖ ≤ n+ d

2
.

The only opposite of this are axes L[w],[z] with ‖[w]‖ < n−d
2 and its axis partner

with ‖[z]‖ > n+d
2 . Then between [w] and [z] there is at least one axis L[x],[y] with

w < x ≤ y < z and x + y = n. This is a contradiction to the requirements of
flipping along the axes L[w],[z]. Hence only the axis L[u],[v] with

rC: ‖[u]‖ = ‖[v]‖ =
n

2

dC: ‖[u]‖ =
n− d

2
, ‖[v]‖ =

n+ d

2
satisfies the requirements of a flipping axis. �

It is quite suggestive from this proposition the notion of flipping of CoPs under
M = Ma,d can be thought of as the process of slicing a circle into two equal half
and overturning one half to lie perfectly on top of the other half, thereby forming
a geometric structure akin to the semi-circle.

Example 7.2. We choose a = 2, d = 4 and hence M = M2,4. Then with n = 20 is

‖C(20,M2,4)‖ = {2, 6, 10, 14, 18},

ln =
20− 2 · 2

4
+ 1 = 5,

lm =

⌊
5

2

⌋
+ 1 = 3 and

m = 2 +
20

2
= 12

with the flipping axis L[10],[10]. Hence is

‖ϑ[10],[10] (C(20,M2,4)) ‖ = ‖C(12,M2,4)‖
= {2, 6, 10}.

All weight sums of any two members of {[2], [6], [10]} \ {10} are less than 20. If we
would take L[14],[6] as flipping axis we would obtain as target set

C(16,M2,4) = {[2], [6], [10], [14]}.

And here would be possible out of {[6], [14]} one weight sum contradicting to the
requirements:

10 + 10 = 20.

6W.l.o.g. we assume x ≤ y for all axes L[x],[y].
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Now we introduce and study the concept of filtration of the CoPs. At first we
deal with the filtration along an axis.

Definition 7.2. Let M ⊆ N with the corresponding CoP C(n,M) containing the
axis L[x],[y]. By the filtration of the CoP C(n,M) along the filtration axis L[x],[y]

we mean the map

Φ[x],[y] : C(n,M) −→ C(m,M)

such that [x], [y] 6∈ C(m,M) for some m ∈ N \ {1} and there exists the so called
co-axis L[u],[v] of C(n,M) so that L[u],[a] and L[v],[b] are axes of C(m,M) for some
[a], [b] ∈M. We say the CoP C(n,M) is susceptible to filtration if there exists such
a map.

Also here an example will demonstrate this special map.

Example 7.3. Let be again M = P and n = 20. Then the map

Φ[7],[13] : C(20,P) −→ C(22,P)

is a filtration of C(20,P) along the filtration axis L[7],[13] due to the target CoP

C(22,P) = {[3], [5], [11], [17], [19]}

contains the axes L[3],[19] and L[17],[5] where L[3],[17] is the co-axis of C(20,P).

Proposition 7.3. The CoP C(n,M) admits aligned embedding is not susceptible
to filtration along an axis.

Proof. The claim is true if one of the following statements holds

(A) The CoP C(n,M) has no filtration axis.
(B) The CoP C(n,M) has no co-axis

We suppose at first n ≤ m. Then holds with Theorem 2.2

C(n,M) ⊆ C(m,M).

Then the images of all axis points of the source CoP are points of the target CoP.
Hence there is no filtration axis (A).
Now we look for m < n. In this case holds with Corollary 2.3

C(n,M) ⊃ C(m,M).

At first let be m < n
2 . In this case the images of the end points of all axes of

C(n,M) do not exist in C(m,M). Hence there is no co-axis (B).
At last we look for n

2 ≤ m < n. In this case the images of the begin points of all
axes of C(n,M) are points of C(m,M). Hence there is no filtration axis (A). �

Definition 7.3. Let M ⊆ N with the corresponding CoP C(n,M) containing the
axis L[x],[y]. By the reduction of the CoP C(n,M) in the base set M we mean the
map

φ[x],[y] : C(n,M) −→ C(n,M∗)

with M∗ := M \ {x, y}. We say the CoP C(n,M) is susceptible to reduction if there
exists such a map.

Proposition 7.4. Let Ma,d be defined as in (2.5). Then the CoP C(n,Ma,d) is
susceptible to reduction.
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Proof. W.l.o.g. we suppose x < y and take

φ[x],[y]([u]) =

 [u] if u 6= x and u 6= y
[u+ d] if u = x
[u− d] if u = y

for all points [u] ∈ C(n,Ma,d). Due to all members of Ma,d have the same distance
d it holds that if u ∈Ma,d then is also u± d ∈Ma,d and

‖φ[x],[y]([x])‖+ ‖φ[x],[y]([y])‖ = x+ d+ y − d = n

because L[x],[y] is an axis of C(n,Ma,d). �

Due to M1,1 = N this proposition holds for C(n) too.

8. Open and Connected Circles of Partition

In this section we introduce the notion of open CoP. We first launch the notion
of a path connecting CoP and examine in-depth the concept of connected CoPs
and their interplay with other notions launched thus far.

Definition 8.1. Let M ⊆ N with C(n,M) 6= ∅ and C(s,M) 6= ∅ be any two distinct
CoPs. Then by the path joining the CoP C(n,M) to the CoP C(s,M) we mean the
line joining [x] ∈ C(n,M) to [y] ∈ C(s,M), denoted as L[x],[y], such that L[x],[y] is
an axis of the CoP C(s,M)

L[x],[y] = L[x],[y] ∈̂ C(s,M).

We say the CoP C(n,M) is connected to the CoP C(s,M) if there exists such a
path.
We say the CoP C(n,M) is strongly connected to some CoP C(m,M) if the
connection exists for all possible dilations

δr : C(n,M) −→ C(s,M) by s = n+ r.

with δr([x]) = [y]. We say the CoP C(n,M) is fully connected to the CoP C(s,M)
if there exists such a path for each [x] ∈ C(n,M).

Proposition 8.1. Let M ⊆ N with C(n,M) 6= ∅ and C(s,M) 6= ∅ be any two
distinct CoPs with a common point [x]. Then and only then C(n,M) is connected
to C(s,M).

Proof. Since [x] ∈ C(s,M) there must be an axis L[x],[s−x] ∈̂ C(s,M). Since [x] ∈
C(n,M) there exists the path L[x],[s−x]. Hence C(n,M) is connected to C(s,M).
If otherwise there exists such a path L[x],[y] with a fixed [x] ∈ C(n,M) and any

[y] ∈ C(s,M) such that L[x],[y] ∈̂ C(s,M) then it must certainly be that [y] = [s−x]
and [x] is also a point of C(n,M). �

Theorem 8.1. Let M ⊆ N and C(n,M) be any CoP admits aligned embedding.
Then C(n,M) is strongly connected to some CoP C(m,M) admits aligned embedding.

Proof. We assume that C(n,M) is not strongly connected to any C(m,M), by virtue
of the definition. Invoking the virtue the CoPs admit aligned embedding, we can
assume C(n,M) ⊂ C(s,M). The line L[x],[n−x] is an axis of C(n,M) for any [x] ∈
C(n,M). It follows that L[x],[s−x] is also an axis of the CoP C(s,M). Since no two
CoPs are strongly connected and because of Theorem 4.2 there exists some dilation
δr1 : C(n,M) −→ C(s,M) such that [s− x] 6= δr1([x]) for each [x] ∈ C(n,M). Let us
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produce a line L[x],[δr1 ([x])]
by joining [x] to δr1([x]). Now, we can certainly partition

these lines as axes of large and small CoPs relative to the CoP C(s) as below

{L[x],δr1 ([x])
∈̂ C(v,M)| n < v ≤ s− 1}

⋃
{L[x],δr1 ([x])

∈̂ C(k,M)| k > s}.

Let us now pick arbitrarily a small CoP relative to the CoP C(s,M) and large
relative to the CoP C(n,M). That is we pick a CoP C(v,M) from the first set
arbitrarily. Then we obtain the strict embedding

C(n,M) ⊂ C(v,M) ⊂ C(s,M).

Otherwise the CoP C(n,M) will have the axis L[x],[δr1 ([x])]
, which will contradict

our assumption. Under the assumption that no two CoPs are strongly connected,
it follows that there exist some dilation

δr2 : C(n,M) −→ C(v,M)

such that for each [x] ∈ C(n,M) then δr2([x]) 6= [v−x]. By repeating the argument
in this manner under the assumption that no two CoPs are connected we obtain
the following infinite embedding into the CoP C(n,M) as follows

C(n,M) ⊂ · · · ⊂ C(t,M) ⊂ C(v,M) ⊂ C(s,M)

and we have the following infinite descending sequence of generators toward the
generator n

n < · · · < t < v < s.

This is absurd, thereby ending the proof of the claim. �

Corollary 8.1. Let C(n,M) and C(n,M) be two CoPs admit aligned embedding. If
holds n < m then C(n,M) is fully connected to the CoP C(m,M).

Proof. Due to Theorem 2.2 holds

C(n,M) ⊂ C(m,M).

Hence each point of C(n,M) is also a point of C(m,M). Because of Proposition 8.1,
it follows that C(n,M) is connected to C(m,M) for each point [x] ∈ C(n,M). Hence
C(n,M) is fully connected to C(m,M) �

Definition 8.2. Let M ⊆ N and C(n,M) be a CoP with L[x],[y] ∈̂ C(n,M). Then by
the open CoP induced by the point [x], [y], we mean the exclusion C(n,M) \ [x], [y].
We call the points [x], [y] the gates to the interior of the open CoP. We denote

the induced open CoP by ̂C(n,M)[x],[y] ⊂ C(n,M). We say the CoPs C(s,M) and
C(n,M) forms a two-member community if and only if there is a path joining the

gate [x], [y] of ̂C(n,M)[x],[y] to the CoP C(s,M).

9. Children, Offspring and Family Induced by Circles of Partition

In this section we introduce the notion of children, the offspring and the family
induced by a typical CoP. We relate this notion to the notion of connected CoPs.

Definition 9.1. Let M ⊆ N and C(n,M) 6= ∅ and let
{
L[ui],[vi]

}N ;N≥2
i=1

for some

N ≥ 2 be the set of all the axes. Then we say the CoP C(s,M) is a child of the CoP

C(n,M) if there exist some axes L[uk],[vk],L[uj ],[vj ] ∈
{
L[ui],[vi]

}N ;N≥2
i=1

such that at

least one of L[uk],[uj ],L[uk],[vj ],L[vk],[uj ],L[vk],[vj ] is an axis of the child CoP C(s,M).
This axis forms the principal axis of the child CoP. We call the collection of all
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CoPs generated in this manner the offspring of the parent CoP C(n,M). The
parent CoP C(n,M) together with its offspring forms a complete family of CoPs.
The size of the family of CoPs is the number of CoPs in the family. A subset of a
family is said to be an incomplete family of CoPs.

Example 9.1. Let us consider the CoP with ‖C(20,P)‖ = {3, 7, 13, 17} with axes
L[3],[17] and L[7],[13]. We consider the following axes L[3],[7],L[3],[13],L[7],[17],L[13],[17].
These axes correspond to the following CoPs

C(10,P), C(16,P), C(24,P), C(30,P).

Hence we obtain a complete family of CoPs of size 5.

Proposition 9.1. Let C(n,M) a non-empty CoP. Then each axis point [x] together
with a point [u] of another axis of C(n,M) generates a child C(s,M) of the parent
C(n,M) with s = ‖[x]‖+ ‖[u]‖.

Proof. Let L[x],[y] and L[u],[v] be two axes of C(n,M). Appealing to Proposition 2.1,
we have

‖[x]‖+ ‖[u]‖ = s 6= n.

Hence [x] and [u] form the axis L[x],[v] ∈̂ C(s,M) and C(s,M) is a child of C(n,M).
�

Proposition 9.2. Let n ∈ N, M ⊆ N and C(n,M) be a CoP admitting aligned
embedding. If holds |C(n,M)| ≥ 4 then the CoP C(n,M) admits an infinite chain
of its descendants.

Proof. Due to |C(n,M)| ≥ 4 there is an axis point [u] ∈ C(n,M) with

u > min (‖[w]‖ | [w] ∈ C(n,M))

and a point [v] ∈ C(n,M) of another axis with u + v = m > n. It follows that
there exists an axis L[u],[v] ∈̂ C(m,M). Ergo holds [u] ∈ C(m,M). Appealing to
Proposition 9.1 the CoP C(m,M) is a child of the CoP C(n,M). Since m > n and
C(n,M) admits aligned embedding, it holds

C(n,M) ⊂ C(m,M).

Now we choose a point [w] of C(m,M) and the latter changes its role to be a
parent. With the same procedure as above we produce an axis L[u],[w] ∈̂ C(r,M)
with [u], [w] ∈ C(r,M) and

C(n,M) ⊂ C(m,M) ⊂ C(r,M).

This procedure can be repeated infinitely many often. We obtain an infinite chain
of descendants of the CoP C(n,M) as its prime father. �

Proposition 9.3. Let M ⊆ N and C(n,M) be a parent of a complete family. Then
C(n,M) partitions the offspring into two incomplete families of equal sizes.

Proof. In virtue of Proposition 9.1 two points of distinct axes of the CoP C(n,M)
generates a child of it. Let

L[u],[v],L[x],[y] | u < x



30 T. AGAMA AND B. GENSEL

two arbitrary axes of C(n,M). Because [u], [v] and [x], [y] are axis points holds

n = u+ v = x+ y and therefore

v = x− u+ y and because of x > u

v > y

Hence we get

u < x < y < v and therefore

s1 := u+ x < s2 := u+ y < n = x+ y and

t1 := v + y > t2 := v + x > n = v + u

and a chain of children

C(s1,M), C(s2,M), C(n,M), C(t1,M), C(t2,M) with

s1 < s2 < n < t1 < t2.

Therefore holds that for all two axes 4 children are generated, two on the left side
of C(n,M) and two on the right side in a chain of children. Because C(n,M) for all
two axes is located in the middle of the chain, the parent CoP C(n,M) partitions
its offspring in two halves, the incomplete families of equal sizes. �

Proposition 9.4. If the parent CoP admits embedding then their children admit
aligned embedding.

Proof. We look at the last proof and choose [u] as the first point of the parent CoP
C(n,M)

u := min (w ∈ ‖C(n,M)‖) .
Then holds

[u] ∈ C(s1,M) and [u] ∈ C(s2,M) and

max (w ∈ ‖C(s1,M)‖) = x < y = max (w ∈ ‖C(s2,M)‖)
and hence

C(s1,M) ⊂ C(s2,M) under s1 < s2.

Because C(n,M) admits embedding holds

C(s1,M) ⊂ C(s2,M) ⊂C(n,M) ⊂ C(t1,M) ⊂ C(t2,M) under

s1 < s2 <n < t1 < t2.

�

Corollary 9.1. If the CoP C(n,M) admits embedding, then it follows by appealing
to Proposition 9.4 and Proposition 9.3 for its complete family

C(s1,M) ⊂ . . . ⊂ C(sk,M) ⊂ C(n,M) ⊂ C(t1,M) ⊂ . . . ⊂ C(tk,M)

provided C(n,M) has 2k children.

Theorem 9.1. Let M ⊆ N and C(n,M) be a CoP with |C(n,M)| = k. Then the
number of children in the family with parent C(n,M) satisfies the upper bound

≤ 2

⌊
k

2

⌋(⌊
k

2

⌋
− 1

)
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and the lower bound

≥ 2 (na − 2) = 4

(⌊
k

2

⌋
− 1

)
with na = 2

⌊
k

2

⌋
.

Proof. At first we prove the upper bound. The CoP C(n,M) with |C(n,M)| = k
contains bk2 c different axes. Each axis contains two points of the parent C(n,M)

and determines children with at most bk2 c − 1 number of axes. The upper bound
follows from this counting argument.
Now we prove the lower bound. In virtue of Corollary 2.2 the weights of the points
of C(n,M) are strictly totally ordered. Now we remove from this sequence the
weight of the center if it exists. It remains na = 2

⌊
k
2

⌋
weights. We enumerate

them as
x1 < x2 < . . . < xna−1 < xna

and form the following sequences

s1 := x1 + x2 < s2 := x1 + x3 < . . . < sna−2 := x1 + xna−1 < x1 + xna = n

and

t1 := xna + xna−1 > t2 := xna + xna−2 > . . . > tna−2 := xna + x2 > xna + x1 = n.

Hence we obtain
s1 < . . . < sna−2 < t1 < . . . < tna−2

and have at least 2(na − 2) different generators for children of C(n,M). �

Remark 9.1. Next we launch an important result that will certainly have significant
offshoots throughout our studies. Very roughly, It tells us that we can always
partition any complete family into incomplete families with equal dilation between
the members.

Lemma 9.1 (Regularity lemma). The offspring of a CoP C(n,M) can be partitioned
into incomplete families with equal scale dilation between sequence of successive
embedding.

Proof. If there exist no embedding among the children of the parent C(n,M), then
obviously we have a partition into a one member incomplete family and the dilation
in each family is trivial. Let us assume C(s1,M) ⊂ C(s2,M) ⊂ · · · ⊂ C(sk,M) for
k ≥ 2 be a sequence of children of the parent C(n,M) with equal scale dilation
between successive embedding. If the sequence is all of the children of the parent
C(n,M) then the parent C(n,M) must be contained in the embedding. Suppose the
parent C(n,M) is outside the embedding then we have two possible cases

C(s1,M) ⊂ C(s2,M) ⊂ · · · ⊂ C(sk,M) ⊂ C(n,M)

or

C(n,M) ⊂ C(s1,M) ⊂ C(s2,M) ⊂ · · · ⊂ C(sk,M).

In the first case there must exists a point of the parent C(n,M) that is not contained
in all the children. This contradicts the fact the CoP C(n,M) is a parent of all its
children. In the second case there must exist a point on all children that is not
contained in the parent C(n,M). This is also absurd since points on each child
must be a point on the parent C(n,M). Now let us insert the parent C(n,M) into
the a priori sequence of embedding. Next let us remove from the chain produced the
parent C(n,M) with two closest children. Then we obtain a partition of collection
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of children in the embedding into two sub-chains of embedding with equal scale
dilation between successive children, those to the left of the children closest to the
parent C(n,M) and to the right of the children closest to the parent C(n,M). For
the sequence removed from the a priori sequence of children given below

C(si,M) ⊂ C(n,M) ⊂ C(si+1,M)

we remove the parent C(n,M) and we obtain a third partition of offspring with
equal scale dilation

C(si,M) ⊂ C(si+1,M).

For the case where not all children are contained in the a priori embedding, then we
have already obtained a partition of collection of children into an incomplete family
with equal scale dilation between successive members. The remaining collection of
children can also be partitioned into incomplete families by choosing an embedding
with equal scale dilation between successive children. �

Definition 9.2. Let

O =
⋃
i≥2

Fi

be a partition of the offspring of the parent C(n,M) into incomplete families Fi.
Then we say the the partition is irreducible if no embedding into the parent overlaps
the embedding of children C(s,M) ∈ Fi for i ≥ 2.

Theorem 9.2. Let M ⊂ N and let C(n,M) be a parent with |C(n,M)| = k and
admits embedding. Let O be the offspring of the parent C(n,M) and

O =
⋃
i≥2

Fi

be an irreducible partition into incomplete families Fi such that for a fixed r > 0
there exist a dilation δr between successive children of the embedding in each Fi.
Then

|Fi| ≤
⌊
k

2

⌋(⌊
k

2

⌋
− 1

)
.

Proof. Let C(n,M) be a parent and construct its offspring. Let us consider the
sequence of embedding with equal scale dilation between successive children

C(s1,M) ⊂ C(s2,M) ⊂ · · · ⊂ C(sk,M).

Let us assume all the children are contained in the chain and insert the parent
C(n,M). By invoking Proposition 9.3 there are as many children above and below
the parent C(n,M) in the chain. Finally let us remove the parent from the chain and
we obtain a partition into two incomplete family with equal scale dilation between
successive children in their embedding. The size of each of the incomplete family
is at most

≤
⌊
k

2

⌋(⌊
k

2

⌋
− 1

)
.

In the case where not all children are members of the a priori chain then inserting
and removing from the chain the parent C(n,M) cuts down on the expected size of
the incomplete family with such property. �
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Theorem 9.3. The number of pairs of connected children in any complete family
is lower bounded by

≥ na(na − 2)(na − 3)

2
= 2

⌊
k

2

⌋(⌊
k

2

⌋
− 1

)
(na − 3) ≥ 2

⌊
k

2

⌋(⌊
k

2

⌋
− 1

)
if the parent CoP has na axis points and na = 2

⌊
k
2

⌋
> 3.

Proof. In virtue of Proposition 8.1 two CoPs are connected if and only if they have
a common point. And the children are generated by pairs of points on different
axes. Each such point [x] of the parent CoP occurs therefore in na − 2 children at

least. Hence there are (na−2)(na−3)
2 pairs of children containing the point [x]. There

are na axis points. Therefore this number of pairs must be multiplied by na. This
results the formula of the lower bound.

�

In comparison with Theorem 9.1 we observe that the number of pairs of con-
nected children of a complete family is always greater or equal to the number of its
children. From the proof of Theorem 9.3 we see that each child is connected with
another child of the same family.

Example 9.2. We take as parent CoP
C(22,P) = {[3], [5], [11], [17], [19]} → k = 5, na = 4. In virtue of Theorem 9.1. it
has maximal

2 · 2 · 1 = 4

children and in virtue of Theorem 9.3 at least
4 · 2 · 1

2
= 4

pairs of connected children. As children we get

C(8,P) = {[3], [5]}
C(20,P) = {[3], [7], [13], [17]}
− −−−−−−−−−−−−−
C(24,P) = {[5], [7], [11], [13], [17], [19]}
C(36,P) = {[5], [7], [13], [17], [19], [23], [29], [31]}.

We see that [3] occurs in the children 2 times. With it there is 1 pair of children
containing the point [3]. [5] occurs 3 times and is hence contained in 3 pairs. [17]
occurs 3 times too and [19] occurs 2 times and is contained in 1 pair. All together we
have 8 > 6 pairs of connected children with respect to the points of the parent CoP.
But we see that more than these points are common points in the offset. Hence
there are 6 further pairs of connected children. The principal axes are marked as
boldface.
The CoP C(24,P) contains 6 axis points and has therefore at most 12 children with
36 pairs of connected children at least.

Conjecture 9.1. Let M ⊂ N and let C(n,M) be a parent with |C(n,M)| = k. Let
O be the offspring of the parent C(n,M) and

O =

N⋃
i≥2

Fi
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be an irreducible partition into incomplete families Fi such that for a fixed r > 0
there exist a dilation δr between successive children of the embedding in each Fi.
Then

|Fi| =
|O|
N

where N is the number of such incomplete families in the partition.

Theorem 9.4. Let M ⊆ N and C(n,M) and C(m,M) be two CoPs admitting aligned
embedding. Without loss of generality we assume

C(n,M) ⊂ C(m,M).

Then C(n,M) is a child of C(m,M). If there is a chord L[x],[y] of C(n,M) with
x + y = m then C(m,M) is also a child of C(n,M). Additionally the complete

family Ôn of C(n,M) is a subset of the complete family Ôm of C(m,M).

Proof. Due to C(n,M) ⊂ C(m,M) by virtue of Definition 2.3 hold n < m and

min (x | [x] ∈ C(n,M)) = min (u | [u] ∈ C(m,M)) .

All chords L[x],[y] of C(n,M) are also chords of C(m,M) excluding the chords be-
tween points [x], [y] ∈ C(n,M) with x + y = m. By exploiting the underlying
embedding, we notice that all chords of C(m,M) which are axes of C(n,M) gener-
ate all the same child, the CoP C(n,M). Hence the CoP C(n,M) is a child of the
CoP C(m,M), and if there is no chord L[x],[y] of C(n,M) with x + y = m then all

children of C(n,M) are children of C(m,M) too. Hence the complete family Ôn is

a subset of the complete family Ôm in this case.
If such a chord of C(n,M) exists then this chord is an axis of C(m,M), so that
C(m,M) is a child of C(n,M). Because the parents belong to its complete family

holds that the complete family Ôn is a subset of Ôm in this case too. �

10. Isomorphic Circles of Partition

In this section we introduce and study the notion of isomorphism between CoPs.

Definition 10.1. Let M ⊆ N and let C(n,M) and C(m,M) be parents with the

complete families Ôn and Ôm, respectively. Then we say the parents C(n,M) and
C(m,M) are isomorphic if

Ôm ∩ Ôn 6= ∅.

We call the number |Ôm ∩ Ôn| the degree of isomorphism. We denote this isomor-
phism by C(n,M) ∼= C(m,M). We say the degree of isomorphism is high if at least
one of the following equalities holds

|Ôm ∩ Ôn|
|Ôn|

= 1

or

|Ôm ∩ Ôn|
|Ôm|

= 1.

Otherwise, we say the degree of isomorphism is low.
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Theorem 10.1. Let C(n,M) and C(m,M) be two parent CoPs admitting aligned
embedding. Then holds

C(n,M) ∼= C(m,M)

with a high degree.

Proof. Without loss of generality let us assume that C(n,M) ⊂ C(m,M). Then by
virtue of Theorem 9.4 all children of C(n,M) are children of C(m,M) too. Hence

holds Ôn ⊂ Ôm and therefore

|Ôn ∩ Ôm|
|Ôn|

= 1.

�

Corollary 10.1. Let

Ra,d(n) := #
{

(x, y) ∈M2
a,d| x+ y = n, x < y

}
then Ra,d(n) is non-decreasing for all n ∈M2a,d.

Proof. By virtue of Theorem 2.2 the CoP C(n,Ma,d) admits aligned embedding.
Let n, n+ t ∈M2a,d with n < n+ t. Let us assume to the contrary that

#
{

(x, y) ∈M2
a,d| x+ y = n+ t, x < y

}
< #

{
(x, y) ∈M2

a,d| x+ y = n, x < y
}

for all t ∈ N. Then by virtue of Theorem 10.1, it follows that each [x] ∈ C(n+t,Ma,d)
is such that [x] ∈ C(n,Ma,d). It follows that there exists no axis L[u],[v] ∈̂ C(n +
t,Ma,d) such that ||[u]||, ||[v]|| ∈ (n, n + t) for all t ∈ N. This is absurd, thereby
ending the proof of the claim. �

It is worth pointing out that this result could yet be obtained from several
perspective (see Proposition 2.4). The only reason we have chosen to adopt this
proof strategy is to illustrate the relevance of the notion of isomorphism between
CoPs.

Theorem 10.2. Let P be the set of prime numbers. Then there exist infinitely
many parents C(n,P) and C(m,P) such that C(n,P) ∼= C(m,P) with low degree.

Proof. Suppose to the contrary that there are only finitely many such parent CoPs
and that C(no,P) ∼= C(mo,P) with low degree where no,mo are the greatest gen-
erators for such CoPs. Without loss of generality we can assume no < mo. Then
we have for all generators n,m > mo only pairs of parent CoPs C(n,P) ∼= C(m,P)
with high degree. Without loss of generality, let us assume that

#
{
L[p],[q] ∈̂ C(m,P)

}
≤ #

{
L[p],[q] ∈̂ C(n,P)

}
then it follows that

|Ôm ∩ Ôn|
|Ôm|

= 1

so that for each [p] ∈ C(m,P) then [p] ∈ C(n,P). Let us suppose that for all t ∈ N
then

#
{
L[p],[q] ∈̂ C(m+ 2t,P)

}
< #

{
L[p],[q] ∈̂ C(m,P)

}
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so that by the high degree of isomorphism we have

|Ôm+2t ∩ Ôm|
|Ôm+2t|

= 1.

It follows that each [p] ∈ C(m + 2t,P) is such that [p] ∈ C(m,P). It follows that
there exists no axis L[u],[v] ∈̂ C(m + 2t,P) such that ||[u]||, ||[v]|| ∈ (m,m + 2t) for
all t ∈ N. This is absurd. Now we can order the cardinality of axes of the CoPs

#
{
L[p],[q] ∈̂ C(m,P)

}
≤ #

{
L[p],[q] ∈̂ C(m+ 2,P)

}
≤ · · · ≤ #

{
L[p],[q] ∈̂ C(m+ 2s,P)

}
for all s ≥ 1 with s ∈ N. Let L[p],[q] ∈̂ C(m,P) then it follows that L[p+2],[q] ∈̂ C(m+

2,P), L[p+4],[q] ∈̂ C(m+ 4,P), . . . ,L[p+2s],[q] ∈̂ C(m+ 2s,P) for s ≥ 2 with s ∈ N by
the virtue of high degree isomorphism between CoPs. It follows that each term of
the infinite sequence

p < p+ 2 < p+ 4 < · · · < p+ 2s < · · ·

for all s ≥ 2 with s ∈ N must be prime. This is absurd, hence the supposed finite
cardinality of CoPs with low degree cannot be true. �

The language of isomorphism could be a good enough tool for studying the
Hardy-Littlewood prime tuple conjecture or what is now known as the first Hardy-
Littlewood conjecture. In fact the conjecture can be stated in the language of
isomorphism in the following manner:

Conjecture 10.1 (Hardy-Littlewood). Let P be the set of all prime numbers. Then
there exist infinitely many n, t ∈ N such that

C(n,P) ∼= C(n+ 2t,P)

with high degree.

To see why this formulation yields the first Hardy-Littlewood Conjecture,
we notice that the high degree isomophism between the CoPs implies that for t ∈ N
sufficiently large then

#
{
L[p],[q] ∈̂ C(n,P)

}
≤ #

{
L[p],[q] ∈̂ C(n+ 2t,P)

}
so that for each axis L[p],[q] ∈̂ C(n,P) then L[p+2t],[q] ∈̂ C(n+ 2t,P). It follows that
for all [p1], . . . , [pk] ∈ C(n,P) then [p1 + 2t], . . . , [pk + 2t] ∈ C(n+ 2t,P) so that for
the tuple (p1 − 1, p2 − 1, . . . , pk − 1) ∈ Nk, then

(p1 − 1 + r, p2 − 1 + r, . . . , pk − 1 + r) ∈ Pk

where by choice r = 2t+ 1. We note that the case t = 1 in the conjecture is the
Twin Prime Conjecture.

Corollary 10.2. There are infinitely many CoPs of the forms C(n,P), C(m,P)
such that none of the following embedding holds

C(n,P) ⊂ C(m,P) and C(m,P) ⊂ C(n,P).
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Proof. The proof is an easy consequence of Theorem 10.2. Assume to the contrary
that there are finitely many CoPs of the forms C(n,P) that fails to admit an embed-
ding. The upshot will be that there are infinitely many chains of CoPs of the forms
C(n,P) and C(m,P) with consecutive even generators such that C(m,P) ∼= C(n,P)
with a high degree. Then the proof technique in Theorem 10.2 can then be adapted
by taking n and m sufficiently large. �

11. Ascending, Descending and Stationary Circles of Partition

In this section we introduce the notion of ascending, descending and station-
ary CoPs between generators. We formalize this notion in the following language.

Definition 11.1. Let M ⊂ N with C(n,M) be a CoP. Then we say the CoP C(n,M)
is ascending from n to the spot m if for n < m holds

#
{
L[x],[y] ∈̂ C(n,M)

}
< #

{
L[x],[y] ∈̂ C(m,M)

}
.

Similarly, we say it is descending from n to the spot m if for n < m then

#
{
L[x],[y] ∈̂ C(n,M)

}
> #

{
L[x],[y] ∈̂ C(m,M)

}
.

We say it is globally ascending (resp. descending) if at ∀m ∈ N it is ascending
(resp. descending). We say the CoP C(n,M) is stationary from n to the spot m
if for n < m then

#
{
L[x],[y] ∈̂ C(n,M)

}
= #

{
L[x],[y] ∈̂ C(m,M)

}
.

Similarly, we say it is globally stationary if it is stationary at all spots m ∈ N. If
the CoP C(n,M) is neither globally ascending, descending nor stationary, then we
say it is globally oscillatory.

Proposition 11.1. The CoP C(n,Ma,d) is globally ascending for all n ∈ M2a,d

with fixed a, d ∈ N.

Proof. Pick arbitrarilym ∈M2a,d such thatm > n and consider the CoP C(m,Ma,d).
Since CoPs with base set Ma,d are isomorphic with high degree, it follows that

#
{
L[x],[y] ∈̂ C(n,Ma,d)

}
< #

{
L[x],[y] ∈̂ C(m,Ma,d)

}
and the claim follows since m was chosen arbitrarily in M2a,d. �

Theorem 11.1. Let H ⊂ N and C(n,H) be a CoP. If

lim
n−→∞

|H ∩ Nn|
n

> 0

with

lim
n−→∞

|(N \H) ∩ Nn|
n

<
1

2
lim

n−→∞

|H ∩ Nn|
n

then C(n,H) is ascending at infinitely many spots.

Proof. Let C(n,H) be a CoP and assume to the contrary that there are finitely
many spots at which it is ascending. Let us name and arrange the spots as follows
m1 < m2 < · · · < mk. It follows that

#
{
L[x],[y] ∈̂ C(n,H)

}
≥ #

{
L[x],[y] ∈̂ C(mk+1,H)

}
≥ · · ·#

{
L[x],[y] ∈̂ C(mk+i,H)

}
≥ · · ·
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for all i ≥ 1. The upshot is that

lim
n−→∞

#
{
L[x],[y] ∈̂ C(n,H)

}⌊
n−1
2

⌋ = 0.

Next, by virtue of uniqueness of axes of CoPs, we can compute the density of points
with weight in H on the CoP C(n) as follows

D(HC(∞)) = lim
n−→∞

#
{
L[x],[y] ∈̂ C(n)| {x, y} ∩H 6= ∅

}⌊
n−1
2

⌋
= lim
n−→∞

#
{
L[x],[y] ∈̂ C(n)| x ∈ H, y ∈ N \H

}⌊
n−1
2

⌋ + lim
n−→∞

#
{
L[x],[y] ∈̂ C(n,H)

}⌊
n−1
2

⌋
= lim
n−→∞

#
{
L[x],[y] ∈̂ C(n)| x ∈ H, y ∈ N \H

}⌊
n−1
2

⌋
≤ lim
n−→∞

|(N \H) ∩ Nn|⌊
n−1
2

⌋
≤ 2 lim

n−→∞

|(N \H) ∩ Nn|
n

.

Invoking Proposition 6.2, we have the inequality

lim
n−→∞

|H ∩ Nn|
n

≤ 2 lim
n−→∞

|(N \H) ∩ Nn|
n

.

This, however, violates the requirement of the statement, thereby ending the proof.
�

Remark 11.1. Next we obtain from this result another weak variant of the Erdős-
Turán conjecture. Roughly speaking, it purports very dense sequences sufficiently
qualifies to be an additive base.

Corollary 11.1. Let H ⊂ N with D(H) > 0 such that D(N \H) < 1
2D(H). If

rH(n) := #
{

(a, b) ∈ H2| a+ b = n
}

then lim
n−→∞

rH(n) =∞.

12. Compatible and Incompatible Circles of Partition

In this section we introduce the notion of compatibility and incompatibility of
circles of partition. We launch the following formal language.

Definition 12.1. Let M ⊆ N and C(n,M) and C(m,M) be any two CoPs. Then
we say the CoPs C(n,M) and C(m,M) are compatible if there exists some CoP
C(r,M) satisfying

C(n,M) ∪ C(m,M) ⊆ C(r,M)

such that for each [x] ∈ C(n,M) ∪ C(m,M) with 2x 6= n there exist some [y] ∈
C(n,M) ∪ C(m,M) so that

L[x],[y] ∈̂ C(r,M).

We denote the compatibility by C(n,M) � C(m,M). We call the CoP C(r,M) the
cover of this compatibility.
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Proposition 12.1. Let C(n,M) and C(m,M) be any two CoPs admitting aligned
embedding. Then C(n,M) � C(m,M).

Proof. The result follows very easily by virtue of the feasibility of the embedding

C(n,M) ⊆ C(m,M)

or

C(m,M) ⊆ C(n,M)

according as n ≤ m or m ≤ n. �

Theorem 12.1. Let M ⊆ N. Then there exists no CoPs of the forms C(n,M)
and C(m,M) with all axes points concentrated at their center and additionally that
C(n,M) ∩ C(m,M) = ∅ for |C(n,M)| > 2 and |C(m,M)| > 2 with

#
{
L[x],[y] ∈̂ C(n,M)

}
6= #

{
L[x],[y] ∈̂ C(m,M)

}
such that

C(n,M) � C(m,M)

with a cover whose axes points are away from the center.

Proof. Let us suppose there exists at least a pair of CoPs of the form C(n,M) and
C(m,M) with m 6= n such that C(n,M) ∩ C(m,M) = ∅ for |C(n,M)|, |C(m,M)| > 2
and additionally that

#
{
L[x],[y] ∈̂ C(n,M)

}
6= #

{
L[x],[y] ∈̂ C(m,M)

}
so that C(n,M) � C(m,M). It follows that there exists some CoP C(s,M) such that

C(n,M) ∪ C(m,M) ⊆ C(s,M)

so that for each [x] ∈ C(n,M) ∪ C(m,M) there exists some [y] ∈ C(n,M) ∪ C(m,M)
such that

L[x],[y] ∈̂ C(s,M).

Under the conditions

#
{
L[x],[y] ∈̂ C(n,M)

}
6= #

{
L[x],[y] ∈̂ C(m,M)

}
and

C(n,M) ∩ C(m,M) = ∅

it follows from the pigeon-hole principle and the uniqueness of the axes of CoPs
there exists some L[x],[y] ∈̂ C(s,M) such that [x], [y] ∈ C(n,M) or [x], [y] ∈ C(m,M).
Without loss of generality let us assume that [x], [y] ∈ C(n,M). By virtue of the
embedding

C(n,M) ⊂ C(s,M)

the line L[x],[y] ∈̂ C(n,M) is such that L[x],[y] 6= L[x],[y] ∈̂ C(n,M). It follows that
the line L[x],[y] must be a chord in C(n,M) and C(s,M) must be a child of the
parent C(n,M). Now let us locate all the remaining chords L[u],[v] 6= L[x],[y] in
the parent C(n,M). We claim that each chord L[u],[v] must be an axis of the child
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C(s,M). Let us assume to the contrary that some chord L[u],[v] ∈̂ C(n,M) is also a
chord in the child C(s,M). Then there exist some axes

L[u],[a],L[v],[b] ∈̂ C(n,M).

By virtue of the underlying embedding, it follows that the lines

L[u],[a],L[v],[b]

cannot be axes of the CoP C(s,M) so that L[u],[a] and L[v],[b] are chords in C(s,M)
with

D([u], [b]) = D([v], [a]). (12.1)

It follows that at least one of L[u],[b] and L[v],[a] must be chords in C(s,M). Other-

wise, it would mean both lines L[u],[b] = L[u],[b] ∈̂ C(s,M) and L[v],[a] = L[v],[a] ∈̂ C(s,M),
which in relation to (12.1) is absurd for axes points of CoPs. Without loss of
generality let us assume L[u],[b] is a chord then so is L[v],[a] under the condition

L[u],[a],L[v],[b] ∈̂ C(n,M). Otherwise it would imply the chord L[a],[v] must be an
axis of C(s,M). Since all the axes points of C(n,M) are concentrated around the
center, it certainly follows that

n

2
=
a+ u

2
≈ a and

n

2
=
a+ u

2
≈ u (12.2)

and

n

2
=
b+ v

2
≈ b and

n

2
=
b+ v

2
≈ v (12.3)

so that we have a ≈ b ≈ u ≈ v and we deduce that the co-axis point [a], [v] of the
cover CoP C(s,M) is close to the center by the relation

s

2
=
a+ v

2
≈ a ≈ v

which contradicts the requirement of the proximity of the axes points of the cover
C(s,M). It follows that L[u],[v] and L[a],[b] are also chords in C(s,M) with

D([u], [v]) = D([a], [b]) (12.4)

since the lines L[u],[a],L[v],[b] ∈̂ C(n,M) tied with the embedding C(n,M) ⊂ C(s,M).
It follows from (12.1) and (12.4)

L[u],[a],L[v],[b] ∈̂ C(s,M)

so that n = u + a = v + b = s and C(n,M) = C(s,M), thereby contradicting the
embedding

C(n,M) ⊂ C(s,M).

Thus each chord in C(n,M) must be an axis of the child C(s,M). The upshot is
that the parent has only one child C(s,M), which is impossible since |C(n,M)| >
2. �

Conjecture 12.1. Let C(n,M) and C(m,M) be parents CoPs with the offspring
On and Om, respectively. Then C(n,M) � C(m,M) if and only if there exists some
C(s,M) ∈ Om and C(t,M) ∈ On such that

C(s,M) � C(t,M).
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Conjecture 12.1 could have several ramifications if it turns out to be true. Yet we
believe it is very hard to establish as we found it far-fetched with the current tools
developed thus far. Any progress on this conjecture would require an expansion on
the notion of compatibility and their interplay with other concepts.

13. The lth Fold Energy of Circles of Partition

In this section we introduce and study the notion of the lth fold energy of CoPs
and exploit some applications in this context.

Definition 13.1. Let M ⊂ N and C(n,M) be a CoP. Then by the lth-fold energy
of the CoP C(n,M), we mean the quantity

E(l,M) :=

∞∑
n=3

#
{
L[x],[y] ∈̂ C(nl,M)

}⌊
nl−1

2

⌋
for a fixed l ∈ N.

It is important to remark that the lth energy of a typical CoP C(n,M) could
either be infinite or finite. In that latter case it certainly should have a finite value.
To that effect we state the following proposition.

Proposition 13.1. Let Jl ⊂ N be the set of all lth powers. Then E(l, Jl) <∞ for
all l ≥ 3 and E(2, J2) =∞.

Proof. Let l ≥ 3 be fixed and consider the CoP C(nl, Jl), where Jl ⊂ N is the set
of all lth powers. Then it follows from the configuration of CoPs the following
inequality

E(l, Jl) =

∞∑
n=3

#
{
L[x],[y] ∈̂ C(nl, Jl)

}⌊
nl−1

2

⌋
≤
∞∑
n=3

n
2⌊

nl−1
2

⌋
�

∞∑
n=3

1

nl−1
<∞ (13.1)

for all l ≥ 3. �

Proposition 13.2. Let M ⊂ N and C(n,M) be a CoP. If E(l,M) = ∞ for l ≥ 2,
then C(nl,M) is ascending at infinitely many spots.

Proof. Let E(l,M) = ∞ and assume to the contrary that the CoP C(nl,M) is
ascending at finitely many spots. Then it follows that

lim
n−→∞

#{L[x],[y] ∈̂ C(nl,M)} <∞.

This implies E(l,M) <∞, thereby contradicting the requirement of the statement.
�
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Theorem 13.1. Let J ⊂ N be the set of all squares and

R2(n2) := #
{

(a2, b2) ∈ J| a2 + b2 = n2
}

then

lim
n−→∞

R2(n2) =∞

Proof. The equation x2 + y2 = z2 definitely has a solution in the positive integers.
That is there exists at least a triple (a, b, c) such that

a2 + b2 = c2.

It follows that there are infinitely many triples of the forms

(a, b, c), (2a, 2b, 2c), (3a, 3b, 3c) . . . , (ta, tb, tc) . . .

for all t ∈ N satisfying the equation x2 + y2 = z2. It follows that for k sufficiently
large, we will have the following inequality 7

k∑
n=3

#
{
L[x],[y] ∈̂ C(n2, J)

}⌊
n2−1

2

⌋ = P(k)

k∑
n=3

n
2⌊

n2−1
2

⌋
�k

k∑
n=3

1

n

By taking limits on both side as k −→∞, we have

E2(2, J) =

∞∑
n=3

#
{
L[x],[y] ∈̂ C(n2, J)

}⌊
n2−1

2

⌋
�

∞∑
n=3

n
2⌊

n2−1
2

⌋
�

∞∑
n=3

1

n
.

It follows that E2(2, J) = ∞ and by invoking Proposition 13.2, it follows that the
CoP C(n2, J) is ascending at infinitely many spots. This completes the proof of the
theorem. �

Remark 13.1. In the spirit of attacking the binary Goldbach conjecture, we obtain
variants of Theorem 13.1 for the primes P without resorting to the notion of density
of CoPs. It is important to remark that the notion of density as used in the previous
section has no real content in this regard, since the primes have density zero by
virtue of the prime number theorem. The main tool used to tighten up our result
concerns that of Estermann [5], that almost all even number can be written as the
sum of two prime numbers.

Theorem 13.2. Let P be the set of all prime numbers and let

r2(n2) = #
{

(p, q) ∈ P2| p+ q = n2
}

then

lim
n−→∞

r2(n2) =∞.

7P(k) plays the role of a constant, but depending on k.
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Proof. We compute a lower bound of the single-fold energy of the CoP C(n2,P).
By virtue of the result [5], we can write for k large enough the inequality

k∑
n=3

#
{
L[x],[y] ∈̂ C(n2,P)

}⌊
n2−1

2

⌋ = P(k)

k∑
n=3

π(n2)
2⌊

n2−1
2

⌋
�k

k∑
n=3

1

log n

By taking limits on both sides of the equation we obtain the single-fold energy of
the CoP C(n2,P)

E(2,P) =

∞∑
n=3

#
{
L[x],[y] ∈̂ C(n2,P)

}⌊
n2−1

2

⌋
�

∞∑
n=3

1

log n
.

The upshot is that E(2,P) =∞ and by appealing to Proposition 13.2, we have

lim
n−→∞

#
{
L[x],[y] ∈̂ C(n2,P)

}
=∞

thereby ending the proof of the claim. �

Corollary 13.1. Let P be the set of all prime numbers and let

r2(n) = #
{

(p, q) ∈ P2| p+ q = n
}

then

lim
n−→∞

r2(n) =∞.

Proof. The result follows very easily since n ≡ n2 ≡ 0 (mod 2). �

The result established ascertains the very notion that the number of represen-
tation of even numbers - Even numbers so represented as the sum of two prime
numbers - increases as the n increases without bounds. Next we launch an im-
portant criterion for investigating the status of the weight of CoPs. We make this
assertion formal in the following proposition.

Proposition 13.3. Let M ⊆ N and C(n,M) be a non-empty CoP. Then E(1,M) =
∞ if and only if

#
{
L[x],[y] ∈̂ C(n,M)

}
> 0

for most n ∈ N.

Proof. We basically compute the 1-fold energy of the CoP C(n,M) as

E(1,M) =

∞∑
n=3

#
{
L[x],[y] ∈̂ C(n,M)

}⌊
n−1
2

⌋ .

The result follows very easily since the series considered is divergent, so that if the
counting function for the number of axes of the CoP C(n,M) is positive for finitely
many generators then the series will converge, which is an absurdity given our
presumption. The converse is also an easy argument, thereby ending the proof. �
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Theorem 13.3. Let B ⊂ N with # {n ≤ x| n ∈ B} ∼ x1−ε for any 0 < ε ≤ 1
2 and

consider

GB(n) = #
{
L[a],[b] ∈̂ C(n,B)

}
.

If GB(n) > 0 for all sufficiently large values of n, then

lim sup
n−→∞

GB(n) =∞.

Proof. First we compute the two fold energy E(2,B) of the CoP C(n2,B). Since
GB(n) > 0 for all sufficiently large values of n, It follows that for k large enough
there exist some constant L = L(k) > 0 such that

k∑
n=3

GB(n2)⌊
n2−1

2

⌋ = L(k)(1 + o(1))

k∑
n=3

⌊
n2−2ε−1

2

⌋
⌊
n2−1

2

⌋
�k

k∑
n=3

1

n2ε
.

By taking limits on both sides as k −→ ∞ and noting that 0 < ε ≤ 1
2 , we deduce

E(2,B) =∞. Appealing to Proposition 13.2, it follows that

lim sup
n−→∞

GB(n2) =∞.

Since
{
n2 ∈ N

}
⊂ {n ∈ N}, it follows that lim sup

n−→∞
GB(n) =∞. �

Let B be an additive base of order 2, then it is well-known that

# {n ≤ x| n ∈ B} ≥
√
x.

In line with this tied with Theorem 13.3 the solution to the Erdős-Turán additive
bases conjecture is an easy consequence.
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