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1.  INTRODUCTION 

 

The main objective of this paper is to extend the following Trigonometric double angle and Trigonometric Product formulae: 

(1.1)                                                                                     2SinxCosx = Sin2x  

(1.2)                                                                                     2Cos2x = 1 + Cos2x  

(1.3)                                                                                     SinP −  SinQ =  2Cos (
P+Q

2
) Sin (

P−Q

2
) 

(1.4)                                                                                     CosP +  CosQ =  2Cos (
P+Q

2
) Cos (

P−Q

2
) 

 

 

2. EXTENSIONS 

 

(1.1) can be extended as follow: 

(2.1)           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛
𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

(1.2) can be extended as follow: 

(2.2)           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

(1.3) can be extended as follow: 

(2.3)           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘)𝑆𝑖𝑛((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

(1.4) can be extended as follow: 

(2.4)           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘)𝐶𝑜𝑠((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

 

 

3. PROOFS 

 

To proof (2.1) and (2.2), we start by noting that, 

(3.1)                                                                      (e(a+
m

n
)ix. (e−iax + eiax))𝑛 =  (e(ai−ai+i

m

n
)x + e(ai+ai+i

m

n
)x)𝑛 

(3.2)                                                                                                                        =  (e(
m

n
)ix + e(2a+

m

n
)ix)𝑛 

 

Expanding (3.2) using binomial expansion, we see that, 

(e(
m
n

)ix + e(2a+
m
n

)ix)𝑛 =  (
𝑛

0
) . (en(

m
n

)ix) +  (
𝑛

1
) . (e(n−1)(

m
n

)ix). e(2a+
m
n

)ix + (
𝑛

2
) . (e(n−2)(

m
n

)ix). e2(2a+
m
n

)ix + ⋯ + (
𝑛

𝑛
) . en(2a+

m
n

)ix 

                                           =  (
𝑛

0
) . (eimx) + (

𝑛

1
) . (e

(2ai+(
im
n )+(

inm
n )−(

im
n ))x

) + (
𝑛

2
) . (e

(4ai+(
2im

n )+(
inm

n )−(
2im

n ))x
) + ⋯ + (

𝑛

𝑛
) . e(2an+m)ix 

(3.3)                                   =  (𝑛
0). (eimx) +  (𝑛

1). (e(2a+m)ix) + (𝑛
2). (e(4a+m)ix) + ⋯ + (𝑛

𝑛). e(2an+m)ix 

 

We can see from (3.3) that, 

(3.4)                             (𝑛
0). (eimx) +  (𝑛

1). (e(2a+m)ix) + (𝑛
2). (e(4a+m)ix) + ⋯ + (𝑛

𝑛). e(2an+m)ix = ∑ (𝑛
𝑘)e(2ak+m)ix

𝑛

𝑘=0
 

 

Now, equating (3.1) and (3.4), we get, 

(3.5)                                                                 (e(a+
m

n
)ix. (e−iax + eiax))𝑛 = ∑ (𝑛

𝑘)e(2ak+m)ix
𝑛

𝑘=0
 

 

From (3.5), we see that, 

                                                                        (e(a+
m

n
)ix. (e−iax + eiax))𝑛  =  (2e(a+

m

n
)ix(

eiax+e−iax

2
))𝑛 
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We know that, 

Cos(a)x = (
eiax+e−iax

2
) 

So, 

(e(a+
m
n )ix. (e−iax + eiax))𝑛   =  2𝑛en(a+

m
n )ixcos𝑛𝑎𝑥 

                                                    =  2𝑛e(an+m)ixcos𝑛𝑎𝑥 

We know that, 

e(an+m)ix = 𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 +i𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 

Therefore, 

(e(a+
m

n
)ix. (e−iax + eiax))𝑛   =  2𝑛(𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 + i𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥)Cos𝑛𝑎𝑥 

(3.6)                                                                                            = 2𝑛Cos𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 + i(2𝑛Cos𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥) 

Also from (3.5), we see that, 

∑ (𝑛
𝑘)e(2ak+m)ix

𝑛

𝑘=0
 =  ∑ (𝑛

𝑘)(𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥 +  i𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
) 

 (3.7)                                                                                  = ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 +  i ∑ (𝑛

𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

Since (3.6) is equal to (3.7), we have, 

(3.8)          2𝑛Cos𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 + i(2𝑛Cos𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥) =  ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 + i∑ (𝑛

𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

Equating the real and imaginary parts of (3.8), we see that, 

(3.9)                                                           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘

)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

This completes the proof of (2.1). 

(3.10)                                                        2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘

)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

This completes the proof of (2.2). 

 

If we set 𝑚 =  𝑛𝑝 − 𝑎𝑛 𝑎𝑛𝑑 𝑥 = 1 in (3.9)and (3.10), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡, 

(3.11)                                                                  2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑛𝑝) = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘 − 𝑛)𝑎 + 𝑛𝑝)

𝑛

𝑘=0
 

(3.12)                                                                 2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑛𝑝) = ∑ (𝑛
𝑘)𝐶𝑜𝑠((2𝑘 − 𝑛)𝑎 + 𝑛𝑝)

𝑛

𝑘=0
 

 

If we set 𝑎 =  (
𝑃+𝑄

2
) , 𝑝 =  (

𝑃−𝑄

2
)  𝑖𝑛 (3.11), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡,  

                                               2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘
)𝑆𝑖𝑛((2𝑘 − 𝑛) (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                                                                   = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘) (

𝑃+𝑄

2
) − 𝑛 (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
 

                                                                                                   = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘) (

𝑃+𝑄

2
) + 𝑛 (

−𝑝−𝑄+𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                 2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
)   = ∑ (𝑛

𝑘)𝑆𝑖𝑛((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

This completes the proof of (2.3). 

 

Also, if we set 𝑎 =  (
𝑃+𝑄

2
) , 𝑝 =  (

𝑃−𝑄

2
)  𝑖𝑛 (3.12), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡,  

                                            2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘)𝐶𝑜𝑠((2𝑘 − 𝑛) (
𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                                                                 = ∑ (𝑛
𝑘)𝐶𝑜𝑠((2𝑘) (

𝑃+𝑄

2
) − 𝑛 (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
 

                                                                                                 = ∑ (𝑛
𝑘)𝐶𝑜𝑠((2𝑘) (

𝑃+𝑄

2
) + 𝑛 (

−𝑝−𝑄+𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
)  = ∑ (𝑛

𝑘)𝐶𝑜𝑠((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

This completes the proof of (2.4). 
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