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I propose a Lagrangian proof of Einstein's well-known law that the mass system is its internal energy.  
The interest of this proof is to show how the distinction between internal degrees of freedom and 
the center of mass appears in the Lagrangian formalism. Considering that the Lagrangian depends on 
a particular set of variables for the internal degree of freedom, I show in a standard Lagrangian way 
how one can naturally find the desired law. This proof does not use the tensors of energy-
momentum and can be easily used by students familiar with Lagrangian mechanics and the basis of 
special relativity. I apply the method for the particles and for the field, using the scalar field for 
simplification but it is easy to generalize for other fields (containing only the first derivative in 
Lagrangian). I give the example for the gravitation field. The method permits us to observe a strong 
relation between the Einstein’s  E=mc² law and his other famous law of the time dilatation. I carefully 
analyze the meaning of the particular choice of the variable and showing a sort of a modified speed 
addition formula without contradicting, of course, the one of Einstein (& Poincaré). I also try to 
untangle (for myself at least) the relation between the mass and the origin of the energy scale. 
Finally I analyze the reason why in Newtonian mechanic we don’t have a such law. In future 
complement I will apply this way of thinking in the toy model of the electron (useful for an explicit 
classical renormalization of the mass) and the effective  description of a complex system in term of a 
particle in order to better understand the passage from this 2 forms of description often used but 
never really explained. 
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1. The Einstein law 
1.1. The law 

According the expression of the law of physics via the principle of least action [1] and the relativistic 
invariance: the mass 𝑚 of a material point “a” is simply the multiplicative coefficient appearing in 
the Lagrangian of this material point, interacting or not with an external field.  

𝑆[𝒓𝒂(𝑡)] = − න 𝑚 . 𝑐. 𝑑𝑠

௦ೌ,మ

௦ೌ,భ

+ ⋯ = − න
𝑚 . 𝑐ଶ

𝛾(𝒗𝒂)

௧మ

௧భ

𝑑𝑡 + ⋯ 

In 1905, Einstein tells us that whatever the system: a set of material points (dynamically 

characterised with a Lagrangian 𝐿 ቀ{𝒓𝒂}, ቄ
ௗ𝒓𝒂

ௗ௧
ቅቁ) or a field (dynamically characterised with the 

Lagrangian 𝛬 ቀ𝜑,
డఝ

డ𝒓
,

డఝ

డ௧
ቁ) we should have: 

𝑆[𝑹𝒄(𝑡), … ] = − න
𝐸∗

𝛾(𝑽𝒄)

௧మ

௧భ

𝑑𝑡 + ⋯ 

o With 𝐸∗ = ∑
ௗ𝒓𝒂

∗

ௗ௧∗
డ∗

డ
𝒓𝒂

∗

∗

− 𝐿∗ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧∗ቅቁ for a material system; 

o Or  𝐸∗ ≡ ∭ ቆ
డఝ∗

డ௧∗

డ

డቀ
ങക∗

ങ∗ ቁ
𝛬∗ − 𝛬∗ቇ 𝑑𝑉∗ for a scalar field (for example). 

Where the quantities with a star * are relative to the reference frame associated to the mass center 
K*. So 𝐸∗ is the internal energy. 

Thus, every system has a centre of mass which has a Lagrangian, analogous to a material point with a 

mass 𝑀 =
ா∗

²
. This is the famous law of Einstein. 

1.2. The current proof 

This law is well established since its first publication in 1905 and was re-demonstrated more clearly 
after by other (Einstein himself, Von Laue ...). The simpler way (that the author know and read in [1]), 
is to demonstrate that the momentum is a 4 vector. 

Indeed, tanks to the stress energy tensor 𝑇 of the system, we can always associate to it a 4-vector  

 𝑃(𝐾∗) ≡
ଵ


∫ ∭ 𝑇𝑑𝑆௦ି௧ ,

 ,  where we choose the hyper-surface of integration as the 

hyperplane of the reference frame K* (𝑡∗ = 𝑐𝑡𝑒). 

In any frame ([3]), 𝑃(𝐾∗)  can be written equivalently 

  𝑃(𝐾∗) =
ଵ


∫ ∭ 𝑇𝛿 ቀ𝑛𝑥𝜂(𝐾∗)ቁ . 𝜂(𝐾∗)

௦ି௧
𝑑ସ𝑥   

 where 𝜂(𝐾∗) is an orthogonal vector of the hyperplane 𝑡∗ = 𝑐𝑡𝑒 of K* such that 
𝜂∗


(𝐾∗) = (1,0,0,0) in 𝐾∗. 

Thus, the Lorentz transformations tells us: 



𝑃(𝐾∗) =
1

𝑐
න ම 𝐿 

 𝐿 ௦
 𝑇∗௦𝛿(𝑡∗). 𝐿

. 𝜂∗


(𝐾∗)
௦ି௧

𝑑ସ𝑥∗  = 𝐿 


1

𝑐
ම 𝑇∗(0, 𝑥∗ఈ)𝑑𝑉∗

௫∗ഀఢ∗
 

So 𝑃(𝐾∗) = 𝐿 
 𝑃∗(𝐾∗) where 𝑃∗(𝐾∗) =

ଵ


∭ 𝑇∗(0, 𝑥∗ఈ)𝑑𝑉∗

ௌ
 

But 𝐸∗ ≡ ∭ 𝑇∗(0, 𝑥∗ఈ)𝑑𝑉∗
ௌ

 and 𝑃∗ఈ(𝐾∗) ≡ 0 by definition of K* 

So we have 𝑃(𝐾∗) = ቀ𝛾
ா∗


, 𝛾

ா∗

మ 𝑽𝐊∗/𝐊ቁ, hence 𝑷 =  𝛾
ா∗

మ 𝑽𝐊∗/𝐊 => 𝑀 =
ா∗

²
  

That is to say, the 3-momentum of any system is the same as a material point: 

o with a mass 𝑀 =
ா∗

²
; 

o and a speed 𝒗 = 𝑽𝐊∗/𝐊. 

2 remarks: 
o 𝑃(𝐾∗) is here relative to the particular time 𝑡∗ = 0 and is not a priori constant; 
o 𝑃(𝐾∗) is not the only one 4-momentum since we can define a different one for each frame of 

reference, 𝑃(𝐾), 𝑃(𝐾′), 𝑃(𝐾∗)  ..., all are associated to different hyperplane of simultaneity 
linked to each possible (an infinity) frame of reference K,K’,K*...(see [3]). 
 

It exists a particular case where there is only one 4-momentum 𝑃: 𝑃(𝐾) = 𝑃(𝐾′) = 𝑃(𝐾∗)...In [1] 
we know that (in a general field theory): 

o if the system is locally conserved : the stress-energy tensor has a null divergence 
 𝜕𝑇 = 0;  

o and if there is “nothing (other than gravitation field)” in infinity (in the sense of 
convergence to infinity). 

 𝑃(𝐾) ≡
ଵ


∫ ∭ 𝑇𝑑𝑆௦ି௧,

  is conserved and doesn’t depend on the hyperplane 

of integration (thanks to the conservation law). 

----------------------- 
In a less general theorem (but more old) from Von Laue (cf. [4]) we can also say that if 𝜕𝑇 = 0  
(and nothing to infiny): 

𝑃 =
ଵ


∭ 𝑇𝑑𝑉

ௌ
 is a 4-momentum  ଵ


∭ 𝑇ఈఉ𝑑𝑉

ௌ
=0 

-------------- 

1.3. Why (I am) searching another proof ? 
The proof above does not use the Lagrangian directly but indirectly via the stress energy tensor. 
However, the base of all dynamics in physics laws is (until now) always to start from the Lagrangian 
of a system with the appropriate variables (including degrees of freedom). We should be able to 
select the center of mass and the complementary degrees of freedom (which we called logically the 
internal degrees of freedom since they are seen in the “hidden” K*).  Unfortunately (for myself at 
least...), I never found any proof using this point of view. With the current approach (even if it is 
sufficient for physics) it is not clear, for me, how the centre of mass appears in the Lagrangian, in 
parallel with the internal degrees of freedom. Indeed the Lagrangian is reconstructed only a 

posterior, after to demonstrate that 𝑷𝒄 = 𝛾
ா∗

²
𝑽𝐂 (using the stress-energy tensor) (see [1]). So we 

don’t clearly see the passage: 



 From an initial Lagrangian 𝑆[{𝒓𝒂(𝑡)}] = ∫ 𝐿 ቀ{𝒓𝒂}, ቄ
ௗ𝒓𝒂

ௗ௧
ቅቁ

௧మ

௧భ
𝑑𝑡 or  𝑆[{𝜑(𝑥, 𝑡)}] =

ଵ


∫ ∭ 𝛬 ቀ𝜑,

డఝ

డ𝒓
,

డఝ

డ௧
ቁ 𝑑Ω 

 To a Lagrangian of an apparent material point 𝑆[𝑹𝒄(𝑡), … ] = − ∫
ா∗

ఊ(𝑽𝒄)

௧మ

௧భ
𝑑𝑡 + ⋯ 

In this article, I propose, using directly the Lagrangian formalism, to give the proof, for a material 
system (to present the method), for a field (scalar in order to simplified) and finally a system where 
the two interact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Material system free 
2.1. The proof for a material system 

We begin with the action principle for a set of particles: 

𝑆[{𝒓𝒂(𝑡)}] = න 𝐿 ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰

௧మ

௧భ

𝑑𝑡 

In this expression, we are using coordinates in a Galilean reference frame K. 
The degrees of freedom are the vectors {𝒓𝒂}, and we integrate the expression between the plan H1 
(𝑡ଵ = 𝑐𝑡𝑒), and H2 ( 𝑡ଶ = 𝑐𝑡𝑒′) in this frame. 
We want now separate: 
 the internal degree of freedom {𝒓𝒂

∗ } ,  defined in the  frame K*of the center of mass ; 
 from the external degree of freedom 𝑹𝒄 defined in the Galilean frame K. 
So the degrees of freedom {𝒓𝒂}, are equivalent to the degree o freedom {𝒓𝒂

∗ , 𝑹𝒄 }. 
---------------------- 

Note 1: a plane t=cte is seen differently for different internal particle in the frame of the center of mass K* 

Thanks to the relativist invariance we know that each terms of the action associated to a particle is invariant (𝐿. 𝑑𝑡 =

∑ −𝑚. 𝑐𝑑𝑠 ). However in the frame K*, the border plan H1  and H2  are associated to different time for each particle (in 
Einstein relativity the simultaneity is relative to a frame). 

More explicitly, the Lorentz transformation said that a coordinate 𝑡′  seen in the frame K is expressed like 

𝑡′ − 𝑡 = 𝛾(𝑡) ൭൫𝑡′∗ − 𝑡(௧)
∗ ൯ +

𝜷(𝑡)

𝑐
𝒓∗൱ 

With: 

 𝛾(𝑡) = 𝛾൫𝑽𝐂(𝑡)൯ , 
 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊(𝑡), 

 and 𝑡
∗, the time measured by a clock in C: 𝑡(௧)

∗ = ∫
𝑑𝑡′

𝛾൫𝑡′൯
𝑡

0  

, in the frame K*(𝑡) at the instant t (t’≠t, a priori, since t’ is a generic coordinate of K but t defines the time of K for which 
the center of mass has the speed 𝑽𝐂(𝑡) ). 

So a plane 𝑡′ = 𝑐𝑡𝑒 in K is seen like a plane  𝛾(𝑡) ൬൫𝑡′∗ − 𝑡(௧)
∗ ൯ +

𝜷


𝒓∗൰ + 𝑡 = 𝑐𝑡𝑒 in the frame K*(𝑡) around t. 

Thus a particle at the position 𝒓𝒂
∗ , sees the plane 𝑡′ = 𝑐𝑡𝑒 at the instant  𝑡′∗ =

௧ᇲି௧

ఊ(௧)
−

𝑽𝐂

²
𝒓𝒂

∗ + 𝑡(௧)
∗  

This is the proof of the assertion in the title. 

Note 2: measurement of a clock fixed on K*(𝑡)   

Around t (t given and constant), a clock in  𝒓∗  of K*(𝑡), and always in 𝒓∗ , measures the duration time 

 𝑡′∗ − 𝑡(௧)
∗ =

௧ᇲି௧

ఊ(௧)
−

𝑽𝐂(௧)

²
𝒓∗ between the event ൫𝑐𝑡(௧)

∗ , 0∗൯
∗(௧)

associated to C in K*(𝑡) and a certain event (𝑐𝑡′∗, 𝒓∗)∗(௧) 

localised, by definition, in a different position than C: that is to say 𝒓∗. 

If we demand to this clock to measures now the duration between 2 events localised in its own position, the duration is 

now  ∆൫𝑡′∗ − 𝑡(௧)
∗ ൯ = ∆ ቀ

௧ᇲି௧

ఊ(௧)
−

𝑽𝐂(௧)

²
𝒓∗ቁ <=> (∆𝑡′∗ − 0) = ቀ

∆௧ᇲି

ఊ(௧)
− 0ቁ since 𝛾(𝑡), 𝑽𝐂(𝑡), t are constant since we work 

always in the same reference frame K*(𝑡). More over 𝒓∗ = 𝒄𝒕𝒆 by definition of the 2 events considered. 



So we have ∆𝑡′∗ =
∆௧ᇲ

ఊ(௧)
 and 𝑑𝑡′∗ =

𝒅௧ᇲ

ఊ(௧)
 for 2 infinitesimal events. 

When we observe 2 events associated to a particle, we study the duration time between 2 hyperplanes  𝑡′∗ = 𝑐𝑡 of K*(𝑡) 
where the 2 successive positions of the particle occurred. The duration is always measured by a clock fixed in K*(𝑡). So we 
can apply the relation above for the duration time associated to a particle:  

∀ particle  𝑎:  𝑑𝑡
∗ = 𝑑𝑡∗ =

ௗ௧

ఊ(௧)
 

Note 3 : On the Lorentz transformation 

A more general Lorentz transformation is: 

൬
𝑡 − 𝑡

𝒓𝒂(𝑡) − 𝑹𝒄(𝑡)൰ = 𝐿(𝑡). ൬
𝑡

∗ − 𝑡
∗

𝒓𝒂
∗ ൰ <=> ቐ

𝑡 − 𝑡 = 𝛾(𝑡) ൬(𝑡
∗ − 𝑡

∗) +
𝜷


𝒓𝒂

∗ ൰

𝒓𝒂(𝑡) − 𝑹𝒄(𝑡) = 𝑐(𝑡
∗ − 𝑡

∗)𝛾(𝑡)𝜷 + 𝒓𝒂
∗ + (𝛾 − 1)

𝜷

ఉమ
. (𝜷𝒓𝒂

∗ )

  

For a movement of K* along x, we have the special Lorentz transformation principally used in this article:  

൞
𝑡 − 𝑡 = 𝛾(𝑡) ൭൫𝑡

∗ − 𝑡(௧)
∗ ൯ +

𝛽(𝑡)

𝑐
. 𝑥

∗൱

𝑥 − 𝑋 = 𝛾(𝑡)൫𝑐൫𝑡
∗ − 𝑡(௧)

∗ ൯𝛽(𝑡) + 𝑥
∗൯

  

---------------- 

Now we express the action in the local frame K*(t): 

𝑆[{𝒓𝒂
∗ (𝑡∗), 𝑹𝒄(𝑡)}] = න 𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰
൛𝒕𝒂,𝟐

∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗ 

Taking account 𝑑𝑡∗ =
ௗ௧

ఊ(௧)
 and returnig to the Galilean frame K we have: 

𝑆 = න 𝐿∗ ൬{𝒓𝒂
∗ }, ൜

𝑑𝑡

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

൛𝒕𝒂,𝟐
∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗

𝑑𝑡
𝑑𝑡 = න

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

𝛾(𝑽𝐂)

௧మ

௧భ

𝑑𝑡 

So far, nothing new. 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝒓𝒂
∗  :  

 relative to the internal time 𝑡∗of K*: ௗ𝒓𝒂
∗

ௗ௧∗  ; 

 but instead relative to time t of K: ௗ𝒓𝒂
∗

ௗ௧
. 

That is to say, the Lagrangian considered is 𝐿′ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ ≡

∗൬{𝒓𝒂
∗ },൜ఊ(𝑽𝐂)

𝒓𝒂
∗


ൠ൰

ఊ(𝑽𝐂)
, instead of 

using the most « natural » 𝐿 ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧∗ቅ , 𝑹𝐂, 𝑽𝐂ቁ ≡
∗൬{𝒓𝒂

∗ },൜
𝒓𝒂

∗

∗ ൠ൰

ఊ(𝑽𝐂)
 

 

So, we can now calculate the momentum of the center of mass, with 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊: 



𝑷𝒄 ≡
𝜕𝐿ᇱ

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)
 

= 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝜕

𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
+

1

𝛾(𝑽𝐂)

𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ 

 
డ

డ𝑽𝐂

ଵ

ఊ(𝑽𝐂)
=

డ

డ𝑽𝐂

ට1 −
𝑽𝐂

𝟐

𝒄²
=

ି
భ

మ
ଶ

𝑽𝐂

𝒄²

ටଵି
𝑽𝐂

𝟐

𝒄²

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
 

 డ

డ𝑽𝐂

𝐿∗ ቀ{𝒓𝒂
∗ }, ቄ𝛾(𝑽𝐂)

ௗ𝒓𝒂
∗

ௗ௧
ቅቁ = ∑

డఊ(𝑽𝐂)
𝒓𝒂

∗



డ𝑽𝐂


డ∗

డఊ(𝑽𝐂)
𝒓𝒂

∗



= ∑
ௗ𝒓𝒂

∗

ௗ௧

డ൬ଵି
𝑽𝐂

𝟐

𝒄²
൰

షభ/మ

డ𝑽𝐂


డ∗

డ
𝒓𝒂

∗

∗

 

= 
𝑑𝒓𝒂

∗

𝑑𝑡

⎝

⎛

1
2

2
𝑽𝐂

𝒄²

൬1 −
𝑽𝐂

𝟐

𝒄²
൰

ଷ/ଶ

⎠

⎞



𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

= 
𝑑𝒓𝒂

∗

𝑑𝑡
𝛾ଷ(𝑽𝐂)

𝑽𝐂

𝒄²


𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

𝑷𝒄 = 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ ൬−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
൰ +

1

𝛾(𝑽𝐂)


𝑑𝒓𝒂
∗

𝑑𝑡
𝛾ଷ(𝑽𝐂)

𝑽𝐂

𝒄²


𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
ቌ−𝐿∗ ൬{𝒓𝒂

∗ }, ൜𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ൰ +  𝛾

𝑑𝒓𝒂
∗

𝑑𝑡


𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

ቍ 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²

⎝

⎛ 𝛾
𝑑𝒓𝒂

∗

𝑑𝑡


𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

⎠

⎞ 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²
ቌ∑

ௗ𝒓𝒂
∗

ௗ௧∗
డ∗

డ
𝒓𝒂

∗

∗

− 𝐿∗ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧∗ቅቁቍ since ௗ𝒓𝒂
∗

ௗ௧∗ = 𝛾(𝑽𝐂)
ௗ𝒓𝒂

∗

ௗ௧
 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∑
ௗ𝒓𝒂

∗

ௗ௧∗
డ∗

డ
𝒓𝒂

∗

∗

− 𝐿∗ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧∗ቅቁ is the internal energy. 

So we have our relation. 

𝐸∗ is relative to the hyperplane 𝑡∗=cte, the mass 𝑀 =
ா∗

²
 is dealing with events ( the spatio-

temporal positions of the particles) simultaneous in the frame K* and not in the frame K. This 

is well defined since 𝑡∗ = ∫
ௗ௧

ఊ(௧ᇱ)

௧


 .  

𝑀 = 𝑀(𝑡∗) = 𝑀 ቌන
𝑑𝑡′

𝛾(𝑡′)

௧



ቍ 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector momentum 
to demonstrate it (we don’t even use the expression 𝐿. 𝑑𝑡 = ∑ −𝑚. 𝑐𝑑𝑠 ).  



We have to note, in the proof, the importance to freeze the right variable ቄௗ𝒓𝒂
∗

ௗ௧
ቅ (and notቄ

ௗ𝒓𝒂
∗

ௗ௧∗ቅ ) in 

order to have the good expression. 

 
2.2. Momentum and energy of a material system 

2.2.1. Momentum 

We can also notice that 𝑷𝒂 ≡
డᇲ

డ
𝒓𝒂

∗



= 𝛾
∗𝑚 .

ௗ𝒓𝒂
∗

ௗ௧∗  , so 𝑷𝒂 =
డ∗

డ
𝒓𝒂

∗

∗

which is surprising but reassuring for 

the intelligibility of this quantity: this is the same as the one we would have in the frame of the 
centre of mass K*. 

More over the total momentum 𝑷𝒕𝒐𝒕𝒂𝒍 associated to the Lagrangian  𝐿′ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ is 

 𝑷𝒕𝒐𝒕𝒂𝒍 = ∑
డᇲ

డ
𝒓𝒂

∗



 +
డᇲ

డ𝑽𝐂

= ∑ 𝑷𝒂 + 𝑷𝒄 = 𝑷𝒄 since by definition of K*: ∑ 𝑷𝒂 ≡ 0. This is interesting 

since despite considering the internal variables on the same level as the mass center, we obtain as it 
should the total momentum is the one associated to the mass center. 

-------------------- 

Proof: 

Indeed 𝐿. 𝑑𝑡 = − ∑ 𝑚 . 𝑐𝑑𝑠  => 𝐿 = − ∑ 𝑚. 𝑐
ௗ௦ೌ

ௗ௧ = − ∑ 𝑚. 𝑐
ௗ௦ೌ

ௗ௧∗
ௗ௧∗

ௗ௧
= − ∑ 𝑚. 𝑐²

ଵ

ఊೌ∗
ଵ

ఊ
 

But ଵ

ఊ.ఊೌ∗ =
ଵ

ఊ

ඨ1 −
ቀ

𝒓𝒂
∗

∗ ቁ
𝟐

𝒄²
= ඨ ଵ

ఊమ
−

భ

ംమቀ
𝒓𝒂

∗

∗ ቁ
𝟐

𝒄²
= ඨ ଵ

ఊమ
−

ቀ
𝒓𝒂

∗


ቁ

𝟐

𝒄²
 since ௗ𝒓𝒂

∗

ௗ௧∗
= 𝛾(𝑽𝐂)

ௗ𝒓𝒂
∗

ௗ௧
 

Moreover  డ

డ
𝒓𝒂

∗



ቀ
ଵ

ఊ.ఊೌ∗ቁ =
డ

డ
𝒓𝒂

∗



ඨ ଵ

ఊమ
−

ቀ
𝒓𝒂

∗


ቁ

𝟐

𝒄²
= −

ଵ

ଶ

𝟐
𝒓𝒂

∗



𝒄²

𝟏

ඩ భ

ംమି
ቆ

𝒓𝒂
∗


ቇ

𝟐

𝒄²

= −
𝒓𝒂

∗



𝒄²
𝛾. 𝛾

∗ 

So 𝑷𝒂 = −
డ

డ
𝒓𝒂

∗



∑ 𝑚ᇱ. 𝑐²
ଵ

ఊೌ ᇲ
∗ᇱ

ଵ

ఊ
= 𝑚. 𝑐²

𝒓𝒂
∗



𝒄²
𝛾. 𝛾

∗ = 𝑚.
ௗ𝒓𝒂

∗

ௗ௧∗
𝛾

∗ 

------------- 

2.2.2. Energy 

By definition the energy associated to the Lagrangian 𝐿′ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ is: 

𝐸′ ≡ 
𝜕𝐿ᇱ

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕𝐿ᇱ

𝜕𝑽𝐂

𝑽𝒄 − 𝐿ᇱ 

We can re-express it as: 

𝐸′ = ∑ 𝑷𝒂
ௗ𝒓𝒂

∗

ௗ௧
+ 𝑷𝒄𝑽𝒄 −

∗

ఊ

ᇱ
 since 𝐿ᇱ =

∗

ఊ

ᇱ
  



= ∑
డ∗

డ
𝒓𝒂

∗

∗


ௗ𝒓𝒂
∗

ௗ௧
+ ቀ𝛾

ா∗

మ . 𝑽𝒄ቁ 𝑽𝒄 −
∗

ఊ

ᇱ
 since 𝑷𝒂 ≡

డᇲ

డ
𝒓𝒂

∗



=
డ∗

డ
𝒓𝒂

∗

∗

  

= 
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐿∗

𝛾

ᇱ

+ 𝛾
𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 

= 
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝛾𝑑𝑡∗
−

𝐿∗

𝛾

ᇱ

+ 𝛾
𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 = ቌ
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗
− 𝐿∗ᇱቍ

1

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 

=
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 =
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 =
𝐸∗ + 𝛾ଶ 𝐸∗

𝑐ଶ . 𝑽𝒄
𝟐

𝛾
= 𝐸∗

1 + 𝛾ଶ. 𝛽ଶ

𝛾
= 𝐸∗

1 +
𝛽ଶ

1 − 𝛽ଶ

𝛾
 

= 𝐸∗

1 − 𝛽ଶ + 𝛽ଶ

1 − 𝛽ଶ

𝛾
= 𝐸∗

1
1 − 𝛽ଶ

𝛾
= 𝐸∗

𝛾ଶ

𝛾
= 𝛾𝐸∗ 

We find that, as it should : 
𝐸′ = 𝛾𝐸∗ 

With 𝐸∗ ≡ ∑
డ∗

డ
𝒓𝒂

∗

∗


ௗ𝒓𝒂
∗

ௗ௧∗ − 𝐿∗ 

 
Indeed, it is the same relation that we had with the energy associated to the classical Lagrangian 
𝐿 ቀ{𝒓𝒂}, ቄ

ௗ𝒓𝒂

ௗ௧
ቅቁ 

 𝐸 ≡ 
𝜕𝐿

𝜕
𝑑𝒓𝒂
𝑑𝑡

𝑑𝒓𝒂

𝑑𝑡
− 𝐿 = 𝛾𝐸∗ 

 
We can conclude that 𝐸ᇱ = 𝐸 
We can also conventionally note: 𝐸 = 𝐸∗ + (𝛾 − 1)𝐸∗ where we observe, for a closed system 
(E=cte), an exchange of Energy between the internal energy 𝐸∗ and the kinetic energy (𝛾 − 1)𝐸∗, 
the one depending of the center of mass. 
 

2.3. The Euler-Lagrange equation for the internal particles and the mass center 

The Euler-Lagrange equations are : 

𝑑

𝑑𝑡

𝜕

𝜕𝑽𝐂
𝐿′ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ =

𝜕

𝜕𝑹𝐂

𝐿′ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ 

 ∀𝑎  
𝑑

𝑑𝑡

𝜕

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝐿′ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ =

𝜕

𝜕𝒓𝒂
∗ 𝐿′ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ =

𝜕

𝜕𝒓𝒂
∗

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)

=
1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ ൬{𝒓𝒂

∗ }, ൜𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ൰ 

Taking account the momentum expression above we have therefore: 



𝑑

𝑑𝑡
൬𝛾

𝐸∗

𝑐²
𝑽𝐂൰ =

𝜕

𝜕𝑹𝐂

𝐿′ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ 

 ∀𝑎  
𝑑

𝑑𝑡
൬𝛾

∗𝑚.
𝑑𝒓𝒂

∗

𝑑𝑡∗
൰ =

1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ ൬{𝒓𝒂

∗ }, ൜𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ൰ 

As 𝑑𝑡∗ =
ௗ௧

ఊ(𝑽𝐂)
 , the second equation can be re-write: 

𝑑

𝑑𝑡∗
൬𝛾

∗𝑚.
𝑑𝒓𝒂

∗

𝑑𝑡∗
൰ =

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ൰ 

It is remarkable that we obtain the same equation that we should obtain for the dynamic in a K* 
frame. However, we should notice that, since the center of mass can a priori accelerate, this is the 
equation for a material point in a local Galilean frame. Indeed, 𝑑𝑡∗ is not constant as it is equal to  

𝑑𝑡∗ =
ௗ௧

ఊ(𝑽𝐂)
 where dt is the true constant differential element. 𝑽𝐂 varies, so 𝑑𝑡∗ has to vary also. 

2.4. The material system seen as a material point: the reduced action 

We can write: 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = න 𝐿′ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

௧మ

௧భ

𝑑𝑡 

= න  𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡


+ 𝑷𝒄. 𝑽𝒄 − 𝐸൩
௧మ

௧భ

𝑑𝑡 

= න  𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡


+ ൬𝛾
𝐸∗

𝑐²
𝑽𝐂൰ . 𝑽𝒄 − 𝛾𝐸∗൩

௧మ

௧భ

𝑑𝑡 

= න  𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡


+ 𝛾𝐸∗(𝛽ଶ − 1)൩
௧మ

௧భ

𝑑𝑡 = න  𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡


−
𝐸∗

𝛾
൩

௧మ

௧భ

𝑑𝑡 

So  

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = න  𝑷𝒂.

𝑑𝒓𝒂
∗

𝑑𝑡


−
𝐸∗

𝛾
൩

௧మ

௧భ

𝑑𝑡  

If we ignore the final position of the internal degree of freedom, we have like a “spatial 
Maupertuis principle” (instead of a temporal used in [2]): 

𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] − ൭ 𝑷𝒂. 𝛿𝒓𝒂

∗



൱

ுమ

= 0 

We can see that if all the internal momentum are constant, it exists a reduced action principle: 

𝑆[𝑹𝒄(𝑡)] = − න
𝐸∗

𝛾

௧మ

௧భ

𝑑𝑡 



We can surely generalize it for closed systems with internal separable variables where we’ve chosen 
well the variables with constant momentum. In this case, we see that for “stationary” system, in this 
restrict sense, the center of mass dynamic is the same as a material point. 

Note: my idea to consider the quantity ቄௗ𝒓𝒂
∗

ௗ௧
ቅ comes initially from the willingness to make appear the 

Lagrangian of the apparent material point with this reduced action (in the same manner we make 

appear the virtual work theorem: 𝛿 ∫ [∑ 𝑷𝒂. 𝑑𝒓 − 𝐻[𝑷𝒂, 𝒓𝒂]𝑑𝑡]
௧మ

௧భ
+ (∑ 𝑷𝒂. 𝛿𝒓𝒂 )ுమ

= 0 and 

𝑷𝒂 = 𝒄𝒕𝒆=>  𝛿 ∫ 𝐻𝑷𝒂ୀ𝒄𝒕𝒆,({𝒓𝒂})
௧మ

௧భ
𝑑𝑡 = 0 ), cf .[2]). 

------------------- 

Proof: 

Indeed (do the same that [2] but for space and not for time)): 

𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] − ൭ 𝑷𝒂. 𝛿𝒓𝒂

∗



൱

ுమ

= 0 

<=> 𝛿 න 𝑑 [𝑷𝒂. 𝒓𝒂
∗ ]



௧మ

௧భ

+ 𝛿 න −
𝐸∗

𝛾
൨

௧మ

௧భ

𝑑𝑡 − ൭ 𝑷𝒂. 𝛿𝒓𝒂
∗



൱

ுమ

= 0 

<=> 𝛿  𝑷𝒂. 𝒓𝒂
∗



൩

ுమ

+ 𝛿 න −
𝐸∗

𝛾
൨

௧మ

௧భ

𝑑𝑡 − ൭ 𝑷𝒂. 𝛿𝒓𝒂
∗



൱

ுమ

= 0 

<=> 𝛿 න −
𝐸∗

𝛾
൨

௧మ

௧భ

𝑑𝑡 = 0 

------------------- 

2.5. The material system seen as a material point: the internal dynamic is known  
As already written: 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = න 𝐿′ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

௧

௧

𝑑𝑡 

= න  𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡


−
𝐸∗

𝛾
൩

௧

௧

𝑑𝑡 = න  𝛾
∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡


−
𝐸∗

𝛾
൩

௧

௧

𝑑𝑡 

We decide to say that we know the internal dynamic of the system.  

That is to say we know the maps: 

 {𝒓𝒂
∗ (𝑡∗)} 

 ቄ
ௗ𝒓𝒂

∗

ௗ௧∗
(𝑡∗)ቅ 

So, it results that the mass center is in the field (in the [2] terms) of the internal degree of 

freedom{𝒓𝒂
∗ }. We can inject this information {𝒓𝒂

∗ (𝑡∗)}, ቄௗ𝒓𝒂
∗

ௗ௧∗
(𝑡∗)ቅ in the Action : 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = න 𝐿′ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

௧

௧

𝑑𝑡 



= න  𝛾
∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗
𝑑𝒓𝒂

∗



−
𝐸∗(𝑡∗)

𝛾
𝑑𝑡൩

௧

௧

 

= න  𝛾
∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗
𝑑𝒓𝒂

∗



൩
ቄ𝒕𝒂,𝒇

∗ ቅ

൛𝒕𝒂,𝒊
∗ ൟ

+ න −
𝐸∗(𝑡∗)

𝛾
𝑑𝑡

௧

௧

 

= න 𝑑𝑓{𝑡
∗}

ቄ𝒕𝒂,𝒇
∗ ቅ

൛𝒕𝒂,𝒊
∗ ൟ

+ න −
𝐸∗(𝑡∗)

𝛾
𝑑𝑡

௧

௧

 

The least action principle can therefore be express with the following action: 

𝑆ᇱᇱ[𝑹𝒄(𝑡), 𝑡] = න 𝐿ᇱᇱ
௧

௧

(𝑡, 𝑹𝐂, 𝑽𝐂)𝑑𝑡 = න −
𝐸∗(𝑡∗)

𝛾(𝑽𝐂)
𝑑𝑡

௧

௧

 

With 𝑡∗ = 𝑡∗(𝑡) = ∫
ௗ௧ᇱ

ఊ(௧ᇱ)

௧

௧
 

It is important to not that we a priori don’t know the expression of 𝑡∗ although we know the internal 
dynamic express relative to it. Indeed, knowing 𝑡∗ required to know the map 𝑽𝐂(𝑡)  (part of the 

solution we are looking for) since  𝑡∗ = ∫
ௗ௧

ఊ(௧ᇱ)

௧

௧
,which is absurd. Another proof:  knowing 𝑡∗, implies 

the undesirable consequence that  ா
∗൫௧∗(௧)൯

ఊ
𝑑𝑡 = 𝐸∗൫𝑡∗(𝑡)൯𝑑𝑡∗(𝑡) = 𝑑𝑓൫𝑡∗(𝑡)൯ = 𝑑𝑔(𝑡). . This would 

suppress (according to the least action principle) the only one term of the action that we want to 
maintain in order to find the trajectory. We see therefore that the center of mass is again in the field 
of a variable : his own proper time 𝑡∗, as for a material point. 

It seems difficult to find any relevant way in order to take account the constraint 𝑡∗ = ∫
ௗ௧ᇱ

ఊ(௧ᇱ)

௧

௧
 in the 

Lagrangian. 

Despite this problem, we can make a stronger supposition that we know, in addition to the internal 
dynamic, the behaviour of the energy relative  to t (and not): 𝐸∗൫𝑡∗(𝑡)൯ noted abusively  𝐸∗(𝑡). 

Indeed even if we don’t know 𝑡∗(𝑡) we can pretend to know 𝐸∗(𝑡). More precisely 

 𝐸∗൫𝑡∗(𝑡)൯ = (𝐸∗𝜊 𝑡∗)(𝑡). Knowing the map (𝐸∗𝜊 𝑡∗) is not sufficient to know the map 𝑡∗ since the 
inverse map 𝐸∗ିଵ could eventually not exist. 

Knowing  𝐸∗൫𝑡∗(𝑡)൯ and inject it in the Lagrangian, is equivalent to say that the center of mass is now 
in the field of the energy.   

This situation is automatically realized in the classical case where we put 𝑡∗ ≈ 𝑡 in the Energy. However, we do not make the same 

approximation for 𝑑𝑡∗, indeed we put 𝑑𝑡∗ ≈ 𝑑𝑡 ቀ1 −
ଵ

ଶ

మ

²
ቁ. Otherwise, all the information would be lost:  

we do ா
∗൫௧∗(௧)൯

ఊ
𝑑𝑡 ≈ 𝐸∗(𝑡)𝑑𝑡 ቀ1 +

ଵ

ଶ

మ

²
ቁ but not ா

∗൫௧∗(௧)൯

ఊ
𝑑𝑡 ≈ 𝐸∗(𝑡)𝑑𝑡 

 

 

 



2.6. A strong link between the Einstein law and the dilatation of time 

𝑷𝒄 ≡
𝜕𝐿ᇱ

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)
 

= 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝜕

𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
+

1

𝛾(𝑽𝐂)

𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ 

Since in special relativity, the space is isotropic (≡the laws of a material system in a homogeneous & 
isotropic gravitational field are isotropic) 𝛾(𝑽𝐂) depends only on the norm of 𝑽𝐂 or equivalently on 
𝑽𝐂

𝟐. 

 
డ

డ𝑉C,x

ଵ

ఊ(𝑽𝐂)
= −

ଵ

ఊ(𝑽𝐂)మ

డఊ(𝑽𝐂)

డ𝑉C,x

= −
ଵ

ఊ(𝑽𝐂)మ

డఊ(𝑽𝐂
𝟐)

డ𝑉C,x

= −
ଵ

ఊ(𝑽𝐂)మ

డ𝑽𝐂
𝟐

డ𝑉C,x

డఊ(𝑽𝐂
𝟐)

డ𝑽𝐂
𝟐

= −
ଵ

ఊ(𝑽𝐂)మ 2𝑉C,x

డఊ(𝑽𝐂
𝟐)

డ𝑽𝐂
𝟐

 

 డ

డ𝑉C,x

𝐿∗ ቀ{𝒓𝒂
∗ }, ቄ𝛾(𝑽𝐂)

ௗ𝒓𝒂
∗

ௗ௧
ቅቁ = ∑

డఊ(𝑽𝐂)
𝒓𝒂

∗



డ𝑉C,x


డ∗

డఊ(𝑽𝐂)
𝒓𝒂

∗



= ∑ ቀ
ௗ𝒓𝒂

∗

ௗ௧

డఊ(𝑽𝐂)

డ𝑉C,x

ቁ
డ∗

డ
𝒓𝒂

∗

∗

=

∑ ቀ
ௗ𝒓𝒂

∗

ௗ௧
2𝑉C,x

డఊ(𝑽𝐂
𝟐)

డ𝑽𝐂
𝟐

ቁ
డ∗

డ
𝒓𝒂

∗

∗

= ∑ ቀ
ௗ𝒓𝒂

∗

ௗ௧
2𝑉C,x

డఊ(𝑽𝐂
𝟐)

డ𝑽𝐂
𝟐

ቁ
డ∗

డ
𝒓𝒂

∗

∗

 

𝑃,௫ =
𝜕𝐿ᇱ

𝜕𝑉C,x

= 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ ቆ−

1

𝛾(𝑽𝐂)ଶ
2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

ቇ

+
1

𝛾(𝑽𝐂)
 ቆ

𝑑𝒓𝒂
∗

𝑑𝑡
2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

ቇ



𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

1

𝛾(𝑽𝐂)ଶ 𝛾(𝑽𝐂)  ൬
𝑑𝒓𝒂

∗

𝑑𝑡
൰



𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

1

𝛾(𝑽𝐂)ଶ 
𝑑𝒓𝒂

∗

𝑑𝑡∗



𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰ 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

𝐸∗

𝛾(𝑽𝐂)ଶ
= 𝑉C,x ቆ

2𝑐ଶ

𝛾(𝑽𝐂)ଶ

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

ቇ
𝐸∗

𝑐ଶ
 

Starting from 𝑷𝒄 ≡
డᇲ൬{𝒓𝒂

∗ },൜
𝒓𝒂

∗


ൠ,𝑹𝐂,𝑽𝐂൰

డ𝑽𝐂

 , the fact that the space is isotropic in special relativity 

and without express explicitly 𝛾(𝑽𝐂),  we have: 

𝑷𝒄 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)

𝐸∗

𝑐ଶ
 

With 𝛾(𝑽𝐂) ≡
ଶమ

ఊ(𝑽𝐂
𝟐)మ

ௗఊ(𝑽𝐂
𝟐)

ௗ𝑽𝐂
𝟐

 

And of course 𝛾(𝑽𝐂
𝟐) ≡

ௗ௧

ௗ௧∗ is dilatation of time 



This is the expression of the 3-momentum of a material system without knowing explicitly the 
relation between the dilatation of time and the speed of the mass center 𝑽𝐂. 

Now using this general result, we want to know if the Einstein law is sufficient to obtain the right 
expression of the dilatation of time 𝛾 relative to 𝑽𝐂, that is to say the expression 𝛾(𝑽𝐂

𝟐) 

We start from ா
∗

మ = 𝑀. This expression means that the form of the impulsion of a system, with 

internal energy 𝐸∗,  is the same of a material point of mass M verifying ா
∗

మ = 𝑀. 

 But for a material point we have 𝑷𝒄 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)𝑀, so the Einstein law implies 

ா∗

మ = 𝑀 => 𝛾(𝑽𝐂
𝟐) =  𝛾(𝑽𝐂) 

𝛾(𝑽𝐂) = ቀ
ଶమ

ఊ(𝑽𝐂
𝟐)మ

ௗఊ(𝑽𝐂
𝟐)

ௗ𝑽𝐂
𝟐

ቁ => 
ଵ

ଶమ =
ଵ

ఊ(𝑽𝐂
𝟐)య

ௗఊ(𝑽𝐂
𝟐)

ௗ𝑽𝐂
𝟐

=>  
ௗఊ(𝑽𝐂

𝟐)

ఊ(𝑽𝐂
𝟐)య =

ௗ𝑽𝐂
𝟐

ଶమ  => −
ଵ

ଶ
𝑑[𝛾(𝑽𝐂

𝟐)ିଶ] =
ௗ𝑽𝐂

𝟐

ଶమ   

=> −
ଵ

ଶ
𝑑[𝛾(𝑽𝐂

𝟐)ିଶ] =
ௗ𝑽𝐂

𝟐

ଶమ  => −
ଵ

ଶ
[𝛾(𝑽′𝐂

𝟐)ିଶ]
𝑽𝐂

𝟐

=
[𝑽′𝐂

𝟐]
𝟎

𝑽𝐂
𝟐

ଶమ  => −[𝛾(𝑽𝐂
𝟐)ିଶ − 𝛾(0)ିଶ] =

𝑽𝐂
𝟐

మ  

=> 𝛾(0)ିଶ −
𝑽𝐂

𝟐

𝑐ଶ
= 𝛾(𝑽𝐂

𝟐)ିଶ => 𝛾(𝑽𝐂
𝟐) =

1

ට𝛾(0)ିଶ −
𝑽𝐂

𝟐

𝑐ଶ

 

But 𝛾(𝟎) =  𝛾(𝟎)=1 => 1 =
ଶమ

ఊ(𝟎)మ ቀ
ௗఊ(𝑽𝐂

𝟐)

ௗ𝑽𝐂
𝟐

ቁ
𝑽𝐂

𝟐ୀ
=

ଶమ

ఊ(𝟎)మ ൭−
𝟏

మ

ିଵ

ଶ

ଵ

ቀఊ(0)షమି
𝑽𝐂

𝟐

మ ቁ
య/మ൱

𝑽𝐂
𝟐=0

=

మ

ఊ(𝟎)మ

𝟏

మ

ଵ

(ఊ(0)షమ)య/మ =
మ

ఊ(𝟎)మ

𝟏

మ 𝛾(0)ଷ = 𝛾(0) 

So ா
∗

మ = 𝑀 with 𝑷𝒄 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)𝑀 => 𝛾(𝑽𝐂

𝟐) =
ଵ

ටଵି
𝑽𝐂

𝟐

మ

 

We have the final result: 

Starting from 𝑷𝒄 ≡
డᇲ൬{𝒓𝒂

∗ },൜
𝒓𝒂

∗


ൠ,𝑹𝐂,𝑽𝐂൰

డ𝑽𝐂

 , the fact that the space is isotropic in special relativity 

and without express explicitly 𝛾(𝑽𝐂),  we have the equivalence: 

𝐸∗ = 𝑀𝑐ଶ <=>  𝛾(𝑽𝐂
𝟐) =

1

ට1 −
𝑽𝐂

𝟐

𝑐ଶ

 

With the definition  

൜
𝐸∗

𝑐ଶ
= 𝑀ൠ ≡ 

≡ ቄthe form of the 𝐢𝐦𝐩𝐮𝐥𝐬𝐢𝐨𝐧 of a system, with internal energy 𝐸∗,

is the same of a material point of mass M verifying 
ா∗

మ
= 𝑀. ቅ 



Hence the Einstein law is not only a necessary condition of special relativity (via kinematic and least 
action principle), but also a sufficient condition for the dilatation factor expression 𝛾(𝑽𝐂

𝟐). 
In this sense, this theorem shows that the dilatation of time and the Einstein law are strongly related. 
So any proof of the dilatation of time, is a proof of the Einstein Law and inversely. 

This can also be illustrated by showing that any empirical deviation of the Einstein law ∆≡
ா∗

మ − 𝑀 is 

linked to a deviation of the Special Relativity relation ଵ

ఊ൫𝑽𝐂
𝟐൯

మ = 1 −
𝑽𝐂

𝟐

𝟐 . 

∆≡
𝐸∗

𝑐ଶ
− 𝑀 =

𝛾(𝑽𝐂
𝟐)

𝛾(𝑽𝐂
𝟐)

𝑀 − 𝑀 = 𝑀 ቆ
𝛾(𝑽𝐂

𝟐)

𝛾(𝑽𝐂
𝟐)

− 1ቇ = 𝑀 ൮
𝛾(𝑽𝐂

𝟐)

2𝑐ଶ

𝛾(𝑽𝐂
𝟐)ଶ

𝑑𝛾(𝑽𝐂
𝟐)

𝑑𝑽𝐂
𝟐

− 1൲ 

= 𝑀 ൮
𝛾(𝑽𝐂

𝟐)ଷ

2𝑐ଶ 𝑑𝛾(𝑽𝐂
𝟐)

𝑑𝑽𝐂
𝟐

− 1൲ = 𝑀 ൮
1

2𝑐ଶ

−2
𝑑[𝛾(𝑽𝐂

𝟐)ିଶ]
𝑑𝑽𝐂

𝟐

− 1൲ = −𝑀 ൮1 +
1

𝑐ଶ 𝑑[𝛾(𝑽𝐂
𝟐)ିଶ]

𝑑𝑽𝐂
𝟐

൲ 

So we have 

∆≡
ா∗

మ − 𝑀 = −𝑀 ൭1 +
ଵ

మൣം(𝑽𝐂
𝟐)షమ൧

𝑽𝐂
𝟐

൱ or 𝑐ଶ ௗൣఊ(𝑽𝐂
𝟐)షమ൧

ௗ𝑽𝐂
𝟐

= ቆ
ଵ

∆

షಾ
ିଵ

ቇ = ቆ
ିଵ

ଵା
∆

ಾ

ቇ ≈ −1 +
∆

ெ
 

If we measures ଵ

ఊ(𝑽𝐂
𝟐)మ in function of 𝑽𝐂

𝟐 (like Bertozzi Experiment [5]), we can obtain an empiric law 

like 

 
ଵ

ఊ(𝑽𝐂
𝟐)మ = ∑ (𝑎

ௌோ + 𝜀). ቛ
𝑽𝐂

𝑐
ቛ

𝟐𝒏
ஶ
ୀ  with 𝑎

ௌோ = (1, −1,0,0,0, … ) 

<=> ଵ

ఊ(𝑽𝐂
𝟐)మ = (1 + 𝜀) + (−1 + 𝜀ଵ). ቀ

𝑽𝐂

𝑐
ቁ

𝟐

+ ∑ 𝜀. ቛ
𝑽𝐂

𝑐
ቛ

𝟐𝒏
ஶ
ୀଶ  

=>
𝑑[𝛾(𝑽𝐂

𝟐)ିଶ]

𝑑𝑽𝐂
𝟐

=
1

𝑐²

𝑑[𝛾(𝑽𝐂
𝟐)ିଶ]

𝑑 ቀ
𝑽𝐂

𝑐
ቁ

𝟐 =
1

𝑐²
൭𝜀ଵ − 1 + 2  𝜀. ฯ

𝑽𝐂

𝑐
ฯ

𝟐𝒏−𝟏


ୀଶ

൱ 

Thus we  have the following relation between the empiric deviation of the 2 laws: 

𝜀ଵ + 2  𝜀. ฯ
𝑽𝐂

𝑐
ฯ

𝟐𝒏−𝟏


ୀଶ

=
∆

𝑀
 

 

 

 

 

 

 



Any deviation of the Einstein law is linked to a deviation of the expression of the dilatation of time :     

𝜀ଵ + 2  𝜀. ฯ
𝑽𝐂

𝑐
ฯ

𝟐𝒏−𝟏


ୀଶ

≈
∆

𝑀
 

with 

 ∆≡
ா∗

మ − 𝑀 

 ଵ

ఊ(𝑽𝐂
𝟐)మ = (1 + 𝜀) + (−1 + 𝜀ଵ). ቀ

𝑽𝐂

𝑐
ቁ

𝟐

+ ∑ 𝜀. ቛ
𝑽𝐂

𝑐
ቛ

𝟐𝒏
ஶ
ୀଶ  

This is another way to express the link between the 2 laws. 

2.7. Questions about the meaning of events and physical quantities used in the proof 
2.7.1. The meaning of a speed    

There is a priori a problem with the speed ௗ𝒓𝒂
∗

ௗ௧
 since it combines 2 quantities that each relies to 2 

different references frames: K* for 𝑑𝒓𝒂
∗  and K for 𝑑𝑡. It may be thought to be ill-defined, which would 

break the demonstration.  

In many textbook like in [5] we can “traditionally” write ௗ𝒓𝒂
∗

ௗ௧
=

ௗ𝒓𝒂
∗

ௗ௧∗

ௗ௧∗

ௗ௧
 , and according to the Lorentz 

Transformation ௗ௧∗

ௗ௧
=

ଵ

ఊቀௗ௧∗ା
ഁ


ௗ௫ೌ

∗ ቁ
=

ଵ

ௗ௧భାௗ௧మ
  with 𝑑𝑡ଵ ≡ 𝛾. 𝑑𝑡∗ and 𝑑𝑡ଶ ≡ 𝛾

ఉ


𝑑𝑥

∗ . 

𝑑𝒓𝒂
∗

𝑑𝑡
=

𝑑𝒓𝒂
∗

𝑑𝑡ଵ + 𝑑𝑡ଶ
=

𝑑𝒓𝒂
∗

𝛾 ൬𝑑𝑡∗ +
𝛽
𝑐

𝑑𝑥
∗ ൰

 

However we don’t use this textbook (or traditional) formula above in this article but another 
instead (consequently 𝑑𝒓𝒂

∗  has also another meaning): 
𝑑𝒓𝒂

∗

𝑑𝑡
=

𝑑𝒓𝒂
∗

𝑑𝑡ଵ
=

𝑑𝒓𝒂
∗

𝛾𝑑𝑡∗
 

 So what the 2 expressions really mean, why are we using the second whereas the first ? and is there 
any sense to use the second ? The latter question is important since my proof is totally based on it. 
 

a. In the first expression ௗ𝒓𝒂
∗

ௗ௧
=

ௗ𝒓𝒂
∗

ఊቀௗ௧∗ା
ഁ


ௗ௫ೌ

∗ ቁ
 , we are actually using the Lorentz transformation about 

the 2 same events seen in 2 different Galilean Frames K and K*: 
 𝑎ଵ = ቀ𝑐𝑡భ

∗ , 𝒓𝒂,భ
∗൫𝑡భ

∗൯ቁ
భ

∗
 = ൫𝑐𝑡ଵ, 𝒓𝒂(𝑡ଵ)൯


 

 𝑎ଶ = ቀ𝑐൫𝑡భ
∗ + 𝑑𝑡భ

∗൯, 𝒓𝒂,భ
∗൫𝑡భ

∗ + 𝑑𝑡భ
∗൯ቁ

భ
∗

= ቀ𝑐൫𝑡ଵ + (𝑡ଶ − 𝑡ଵ)൯, 𝒓𝒂(𝑡ଵ) + 𝑑𝒓𝒂(𝑡ଵ)ቁ


  

Indeed, at the time t1 of K we associate to the center of mass C, at the position 𝑥(𝑡ଵ) and any  
coordinate ൫𝑐𝑡భ

∗ , 𝑥భ
∗൯

భ
∗  of the local (current Galilean ) reference frame K* is related to that of K 

(𝑐𝑡, 𝑥) with the Lorentz transformation: 

⎩
⎪
⎨

⎪
⎧𝑐. 𝑡 − 𝑐. 𝑡ଵ = 𝛾௧భ

. ൭𝑐 ቆ𝑡భ
∗ − න

𝑑𝑡

𝛾௧

௧భ



ቇ + 𝛽௧భ
. ൫𝑥భ

∗ − 𝑥,భ
∗൯൱

𝑥 − 𝑥(𝑡ଵ) = 𝛾௧భ
. ൭൫𝑥భ

∗ − 𝑥,భ
∗൯ + 𝛽௧భ

. ቆ𝑡భ
∗ − න

𝑑𝑡

𝛾௧

௧భ



ቇ൱

  

<=> ൝
𝑐. 𝑡 − 𝑐. 𝑡ଵ = 𝛾௧భ

. ൫𝑐൫𝑡భ
∗ − 𝑡(௧భ)

∗ ൯ + 𝛽௧భ
. 𝑥భ

∗൯

𝑥 − 𝑥(𝑡ଵ) = 𝛾௧భ
. ቀ𝑥భ

∗ + 𝛽௧భ
. ൫𝑡భ

∗ − 𝑡(௧భ)
∗ ൯ቁ

  

 



 𝑡(௧భ)
∗ ≡ ∫

ௗ௧

ఊ

௧భ


  the time seen from the clock in C ; 

 𝑥,భ
∗ ≡ 0 by deciding that C is the spatial origin of the current K*. 

 𝛾௧భ
, 𝑡(௧భ)

∗ , 𝛽௧భ
 are constants associated to the Lorentz transformation at the time t1. 

So we simply apply this transformation for the 2 events: 
 On one hand:  

d(𝑐. 𝑡 − 𝑐. 𝑡ଵ) ≡ (𝑐. 𝑡 − 𝑐. 𝑡ଵ)మ
− (𝑐. 𝑡 − 𝑐. 𝑡ଵ)భ

= (𝑐. 𝑡)మ
− 𝑐. 𝑡ଵ − (𝑐. 𝑡)భ

+ 𝑐. 𝑡ଵ = 𝑐. 𝑑𝑡 
 On the other hand: (𝑐. 𝑡 − 𝑐. 𝑡ଵ)మ

− (𝑐. 𝑡 − 𝑐. 𝑡ଵ)భ
= 

= ൣ𝛾௧భ
. ൫𝑐൫𝑡భ

∗ − 𝑡(௧భ)
∗ ൯ + 𝛽௧భ

. 𝑥భ
∗൯൧

మ
− ൣ𝛾௧భ

. ൫𝑐൫𝑡భ
∗ − 𝑡(௧భ)

∗ ൯ + 𝛽௧భ
. 𝑥భ

∗൯൧
భ

 

= 𝛾௧భ
ቂ൬𝑐ቀ𝑡భ,

∗ మ
− 𝑡భ,

∗ భ
ቁ + 𝛽௧భ

. ቀ𝑥భ,
∗ మ

− 𝑥భ,
∗ భ

ቁ൰ቃ since 𝛾௧భ
, 𝑡

∗  & 𝛽௧భ
 are constant 

= 𝛾௧భ
൫𝑐𝑑𝑡భ

∗ + 𝛽௧భ
. 𝑑𝑥భ

∗൯ 

So we got what we expected  𝑐. 𝑑𝑡 = 𝛾௧భ
൫𝑐. 𝑑𝑡భ

∗ + 𝛽௧భ
. 𝑑𝑥భ

∗൯ 

b. Now what is the meaning of the second expression ௗ𝒓𝒂
∗

ௗ௧
=

ௗ𝒓𝒂
∗

ௗ௧భ
=

ௗ𝒓𝒂
∗

ఊௗ௧∗  ? 

The answer of the question need to clarify what we are actually doing in the reasoning of this article. 
First, we start to suppose the knowledge of the movement of the center of mass C, for each time t of 
K. This knowledge imposes the movement of the reference frame K*  since we choose to define it 
such that, around each time t, it coincides with the family of Galilean reference frame ൫K∗(t)൯

୲∈ୖ
 

o in a uniform rectilinear translation relative to K (with the speed of C: 𝑽𝑪/𝐊∗); 
o and having for spatial origin the position of C. 

So we have parameterized the reference frame K* with the time 𝑡 of K with a map, say g: 

𝒈: 𝑡 → 𝐾∗(𝑡) 𝑎𝑙𝑠𝑜 𝑛𝑜𝑡𝑒𝑑 𝐾
∗ 

Secondly, what are the events involved in the two frames ? We are studying a particle “a” of a 
material system with C as its mass center. We can a priori think that, at the instant 𝑡ଵ of K, since we 
study an event ൫𝑐𝑡ଵ, 𝑥(𝑡ଵ)൯


 , we have to study in 𝐾∗(𝑡ଵ) the same event seen with the different 

coordinate due to the direct application of the Lorentz transformation to ൫𝑐𝑡ଵ, 𝑥(𝑡ଵ)൯


 ...But it is 

actually not the case.  

Indeed, at the instant 𝑡ଵ of K we apply the map g defined above and we observe in 𝐾∗(𝑡ଵ) all the 
elements which are simultaneous with the event associated to the spatio-temporal position of C:  
(𝑐𝑡ଵ, 𝑥). 

So contrary to the case 1), in the case 2): we are not studying the same event (the same spatio-
temporal position of the partcicle “a”) in two different frame but : 

 An event ൫𝑐𝑡ଵ, 𝑥(𝑡ଵ)൯


 in K; 
 And an event Eଵ = ൫𝑐. 𝑡(௧భ)

∗ , 𝑥,భ
∗൯

భ
∗ in 𝐾∗(𝑡ଵ) defined by its simultaneity with (𝑐𝑡ଵ, 𝑥).  

By the relativity of the simultaneity, this event Eଵ in 𝐾∗(𝑡ଵ) cannot be associated to the instant 𝑡ଵ of 
K. In fact, only the event (𝑐𝑡ଵ, 𝑥) is analysed with the two reference frame K & 𝐾∗(𝑡ଵ). So we 
understand why we cannot use the expression of the case a). 
In order to visualize the situation, we show below the schematic view of what we are truly doing. 



 

This schematic view use the 2 following expressions calculated in ANNEX: 

 𝑐. 𝑡(௫಼
∗ୀ௧)(𝑥) = 𝑐. 𝑡 +

௫ି௫(௧)

ఉ

−
௧

ఊ
.ఉ

  

 𝑐. 𝑡(௧಼
∗ୀ௧)(𝑥) = 𝑐. 𝑡 + 𝛽௧

. (𝑥 − 𝑥(𝑡)) +
ୡቀ௧ି௧

൫൯
∗ ቁ

ఊ

 

We also use the fact that, according to the definition of the reference frame of the centre of mass, 
the orientation all the hyperplane of simultaneity of 𝐾∗(𝑡ଵ) are (around 𝑡ଵ): 

o the hyperplanes 𝑡భ
∗ = 𝑡(௧భ)

∗   

o and all the other separated by 𝑑𝑡భ
∗ =

ௗ௧

ఊభ

 

Indeed, thanks to the Lorentz transformation between the reference frame K and  𝐾
∗ ≡ 𝐾∗(𝑡)  

൝
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧

. ൫c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
. 𝑥

∗൯

𝑥 − 𝑥(𝑡) = 𝛾௧
. ቀ𝑥

∗ + 𝛽௧
. ൫𝑡

∗ − 𝑡(௧)
∗ ൯ቁ

 , we have 

 𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧
. ൫c൫𝑡

∗ − 𝑡(௧)
∗ ൯ + 𝛽௧

. 𝑥
∗൯=> 𝑐. 𝑡 = 𝑐. 𝑡 + 𝛾௧

. ൫c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
. 𝑥

∗൯ 

=> 𝑐. 𝑡(௫಼
∗ୀ )(c𝑡

∗)  = 𝑐. 𝑡 + 𝛾௧
. ൫c൫𝑡

∗ − 𝑡(௧)
∗ ൯ + 𝛽௧

. 𝑐𝑡𝑒൯ 

Its results that relative to K, events situated, at rest, at the origin of 𝐾ଵ
∗ (that is to say C) and having 

the time 𝑡
∗ are observed at the time 𝑡(௫಼భ

∗ ୀ)(c𝑡
∗)  = 𝑡ଵ + 𝛾௧భ

. ൫𝑡భ
∗ − 𝑡(௧భ)

∗ ൯. 

This situation is of course relevant for the centre of mass C between the instant 𝑡ଵ and 𝑡ଶ: 

𝑡ଶ − 𝑡ଵ = 𝛾௧భ
. ൫𝑡మ

∗ − 𝑡ଵ,భ
∗൯ <=> 𝑡భ

∗ − 𝑡(௧భ)
∗ =

௧మି௧భ

ఊభ

. 



This relation also relevant to all couples of events having the same position (at rest) in 𝐾∗(𝑡ଵ). So, we 
have the relation affirmed in 2) and showed in the picture above. 

The particle event of the reference frame K* are also parameterized by the time 𝑡 of K 
Indeed, we can define for a particle “a” a map: 

𝒈𝒂: 𝑡 → E௧
= ൫𝑐. 𝑡(௧)

∗ , 𝑥,
∗൯

భ
∗
 

That is to say, at each time 𝑡 of K, we associate a frame 𝐾∗(𝑡) , then the event E௧
 associated to the 

particle is the one localized in the hyperplane of 𝐾∗(𝑡)  which contain also C at the instant 𝑡. 
We are not saying that the particle “a” is seen at the instant  𝑡 in 𝐾∗(𝑡) (a non-sense in relativity) 
but instead it is associated to the instant  𝑡 in the map 𝒈𝒂 sense: indeed, the hyperplane of 
simultaneity of 𝐾∗(𝑡) is parameterized by 𝑡. 
 
In order to more untangle these relations,  we give just below the explicit expression of E = E௧

 in K.  
To insist in the fact that E is parameterized by the time 𝑡, I will always write it E௧

. 

2.7.2. What is the coordinates of Et1  in K? 
We suppose the knowledge of the trajectory of C and the internal particle “a” relative to K 𝑥(𝑡). 

At 𝑡ଵ, E௧భ
 has the same plane 𝑐. 𝑡∗ = 𝑐𝑡భ

∗  than C which has the coordinate ൫𝑐𝑡(௧భ)
∗ , 0∗൯

భ
∗ =

ቀ𝑐. ∫
ௗ௧

ఊ

௧భ


, 0∗ቁ

భ
∗
 in 𝐾∗(𝑡ଵ). 

Moreover at a given coordinate x of “a” in K we have: 

𝑐. 𝑡(.௧∗ୀ௧(భ)
∗ )(𝑥) = 𝑐. 𝑡ଵ + 𝛽௧భ

. (𝑥 − 𝑥(𝑡ଵ)) 

What can we choose for x ?  

The expression was calculated for a particle “a” on the x-axis of K at a time of K where the function 
𝑥(𝑡) is the x-coordinate associate to 𝑐. 𝑡(.௧∗ୀ௧(భ)

∗ )  which different from  𝑡ଵ with a certain duration 

∆𝑡ଵ. The time of K where E௧భ
 tooks place is : 

𝑐. 𝑡(.௧∗ୀ௧(భ)
∗ )൫𝑥(𝑡ଵ + ∆𝑡ଵ)൯ = 𝑐. 𝑡ଵ + 𝛽௧భ

. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)) 

We can notice that, knowing the trajectories 𝑥(𝑡) , 𝑥(𝑡) ,  ∆𝑡ଵ  is a solution of the equation: 

∆𝑡ଵ =
𝛽௧భ

𝑐
. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)) 

o In a particular case where 𝑥(𝑡ଵ + ∆𝑡ଵ)  can be developed at the first order, the latter 
equation is reduced to:  

∆𝑡ଵ
(ଵ) ≈

𝛽௧భ

𝑐
. ൬𝑥(𝑡ଵ) +

𝑑𝑥

𝑑𝑡
(𝑡ଵ)∆𝑡ଵ

(ଵ) − 𝑥(𝑡ଵ)൰ 

<=> ∆𝑡ଵ
(ଵ) ൭1 −

𝛽௧భ

𝑐

𝑑𝑥

𝑑𝑡
(𝑡ଵ)൱ ≈

𝛽௧భ

𝑐
. (𝑥(𝑡ଵ) − 𝑥(𝑡ଵ)) 

<=>∆𝑡ଵ ≈ ∆𝑡ଵ
(ଵ) ≡

𝛽௧భ

𝑐
.
𝑥(𝑡ଵ) − 𝑥(𝑡ଵ)

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
 



o In a particular case where 𝑥(𝑡ଵ + ∆𝑡ଵ)  can be developed at the second order, the latter 
equation is reduced to:  

∆𝑡ଵ
(ଶ) ≈

𝛽௧భ

𝑐
. ൭𝑥(𝑡ଵ) +

𝑑𝑥

𝑑𝑡
(𝑡ଵ). ∆𝑡ଵ

(ଶ) +
𝑑ଶ𝑥

𝑑𝑡ଶ
(𝑡ଵ).

∆𝑡ଵ
(ଶ)ଶ

2
− 𝑥(𝑡ଵ)൱ 

<=> 0 ≈ ቈ
𝛽௧భ

2𝑐

𝑑ଶ𝑥

𝑑𝑡ଶ
(𝑡ଵ) ∆𝑡ଵ

(ଶ)ଶ
+ ቈ

𝛽௧భ

𝑐

𝑑𝑥

𝑑𝑡
(𝑡ଵ) − 1 ∆𝑡ଵ

(ଶ) +
𝛽௧భ

𝑐
[𝑥(𝑡ଵ) − 𝑥(𝑡ଵ)] 

<=>0 ≈ ቈ
𝛽௧భ

2

𝑎

𝑐
(𝑡ଵ) ∆𝑡ଵ

(ଶ)ଶ
− 1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)൨ ∆𝑡ଵ

(ଶ) + ∆𝑡ଵ
(ଵ) ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ 

We can try to solve it directly, using the standard solution of the second order equation, but it should 
be not useful since the solution will not be applicable in the usual case where there is no 
acceleration...However, there is another way to solve it with the perturbation  𝜀 of the first order 

solution ∆𝑡ଵ
(ଵ): ∆𝑡ଵ

(ଶ) = ∆𝑡ଵ
(ଵ) + 𝜀 

0 ≈ ቈ
𝛽௧భ

2

𝑎

𝑐
(𝑡ଵ) ∆𝑡ଵ

(ଶ)ଶ
− ൫∆𝑡ଵ

(ଶ) − ∆𝑡ଵ
(ଵ)൯ ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ 

<=> ∆𝑡ଵ
(ଶ) − ∆𝑡ଵ

(ଵ) ≈


ഁభ
మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

∆𝑡ଵ
(ଶ)ଶ

 

Using ∆𝑡ଵ
(ଶ) = ∆𝑡ଵ

(ଵ) + 𝜀, we have: 

𝜀 ≈

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
൫∆𝑡ଵ

(ଵ) + 𝜀൯
ଶ

=

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
ቀ∆𝑡ଵ

(ଵ)ଶ
+ 𝜀ଶ + 2𝜀∆𝑡ଵ

(ଵ)ቁ 

<=>  𝜀 =

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
ቀ∆𝑡ଵ

(ଵ)ଶ
+ 𝜀ଶ + 2𝜀∆𝑡ଵ

(ଵ)ቁ 

<=>  𝜀 ≈


ഁభ
మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

ቀ∆𝑡ଵ
(ଵ)ଶ

+ 2𝜀∆𝑡ଵ
(ଵ)ቁ with ∆𝑡ଵ

(ଵ) ≫ 𝜀 

<=>  𝜀 ൮1 − 2∆𝑡ଵ
(ଵ)


𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
൲ ≈


𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
∆𝑡ଵ

(ଵ)ଶ
 

<=>  𝜀 ≈


𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)

1 − 2∆𝑡ଵ
(ଵ)


𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)

∆𝑡ଵ
(ଵ)ଶ

 



=> 𝜀 ≈

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
. ∆𝑡ଵ

(ଵ)ଶ
൮1 + 2∆𝑡ଵ

(ଵ)

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
൲ ≈


𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
. ∆𝑡ଵ

(ଵ)ଶ
 

∆𝑡ଵ
(ଶ) = ∆𝑡ଵ

(ଵ) +

𝛽௧భ

2
𝑎
𝑐

(𝑡ଵ)൨

1 − 𝛽௧భ

𝑉
𝑐

(𝑡ଵ)
∆𝑡ଵ

(ଵ)ଶ
 

With ∆𝑡ଵ
(ଵ) ≡

ఉభ


.

௫ೌ(௧భ)ି௫(௧భ)

ଵିఉభ
ೇೌ


(௧భ)

 

The traditional calculation gives: 

∆= 1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)൨

ଶ

− 4.
𝛽௧భ

2

𝑎

𝑐
(𝑡ଵ). ∆𝑡ଵ

(ଵ) ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ 

<=>∆= ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ ቆ1 − 𝛽௧భ

൬
𝑉

𝑐
(𝑡ଵ) +

𝑎

𝑐
(𝑡ଵ). 2∆𝑡ଵ

(ଵ)൰ቇ 

<=>∆= ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ ቆ1 − 𝛽௧భ

𝑉

𝑐
൫𝑡ଵ + 2∆𝑡ଵ

(ଵ)൯ቇ 

∆> 0 <=> 1 > 𝛽௧భ

ೌ


൫𝑡ଵ + 2. ∆𝑡ଵ

(ଵ)൯ which is always true 

=> ∆𝑡ଵ
(ଶ) =

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ ± ඨቀ1 − 𝛽௧భ

𝑉(𝑡ଵ)ቁ ቆ1 − 𝛽௧భ

𝑉

𝑐 ൫𝑡ଵ + 2∆𝑡ଵ
(ଵ)൯ቇ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

 

<=> ∆𝑡ଵ
(ଶ) =

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ ± ඨቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ ቆ1 − 𝛽௧భ

ቀ
𝑉

𝑐
(𝑡ଵ) +

𝑎

𝑐
(𝑡ଵ). 2∆𝑡ଵ

(ଵ)ቁቇ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

 

<=> ∆𝑡ଵ
(ଶ) =

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

⎣
⎢
⎢
⎡
1 ± ඩ

1 − 𝛽௧భ
ቀ

𝑉

𝑐
(𝑡ଵ) +

𝑎

𝑐
(𝑡ଵ). 2∆𝑡ଵ

(ଵ)ቁ

1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)

⎦
⎥
⎥
⎤
 

<=> ∆𝑡ଵ
(ଶ) =

ቀ1 − 𝛽௧భ
𝑉(𝑡ଵ)ቁ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

൦1 ± ඩ1 −
𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)

. 2∆𝑡ଵ
(ଵ)൪ 

<=> ∆𝑡ଵ
(ଶ) ≈

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

1 ± 1 ∓
𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)

. ∆𝑡ଵ
(ଵ) 

<=> ∆𝑡ଵ
(ଶ) ≈ ∓∆𝑡ଵ

(ଵ) + (1 ± 1)

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ

𝛽௧భ

𝑎

𝑐
(𝑡ଵ)

 

∆𝑡ଵ
(ଶ) ≈ ∆𝑡ଵ

(ଵ) ≡
𝛽௧భ

𝑐
.
𝑥(𝑡ଵ) − 𝑥(𝑡ଵ)

1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)

 

𝑜𝑟 ≈ −∆𝑡ଵ
(ଵ) + 2

ቆ1 − 𝛽௧భ

𝑉

𝑐
(𝑡ଵ)ቇ

𝛽௧భ
𝑎(𝑡ଵ)

 



As explained, this solution relevant only when 𝑎(𝑡ଵ) ≠ 0 

I will not use this one, I will use the first showed above. 

-------------------------------------------------------- 

The position where E௧భ
 takes place in K is therefore 𝑥(𝑡ଵ + ∆𝑡ଵ): 

With  ∆𝑡ଵ ≈ ∆𝑡ଵ
(ଵ) +


ഁభ

మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

∆𝑡ଵ
(ଵ)ଶ

, and ∆𝑡ଵ
(ଵ) ≡

ఉభ


.

௫ೌ(௧భ)ି௫(௧భ)

ଵିఉభ
ೇೌ


(௧భ)

 

We have finally: 

E௧భ
= ൫𝑐. 𝑡(௧భ)

∗ , 𝑥,భ
∗൯

భ
∗ = ൫𝑐(𝑡ଵ +  ∆𝑡ଵ), 𝑥(𝑡ଵ +  ∆𝑡ଵ)൯


 

with  ∆𝑡ଵ =
ఉభ


. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)), that we can call it the shift time : the time to wait after 𝑡ଵ 

in order to have the event “the particle “a” arrives on the hyper plane of 𝐾∗(𝑡ଵ) ".  

We can notice that: 

 E௧భ
≠ (𝑐. 𝑡ଵ, … ) 

 𝒈𝒂: 𝑡 → E௧
= ൫𝑐. (𝑡 + ∆𝑡), 𝑥(𝑡 + ∆𝑡)൯


 

We clearly see that E௧భ
 is parameterized by 𝑡ଵ although it is not seen at this instant in K but at the 

instant   𝑡 = 𝑡ଵ + ∆𝑡ଵ. 

Another interesting point is that, at the 𝑡ଵ , the internal events that take place in 𝐾∗(𝑡ଵ) are not of 
the kind ൫𝑐(𝑡ଵ), 𝑥(𝑡ଵ)൯


 but the “shifted” version൫𝑐(𝑡ଵ +  ∆𝑡ଵ), 𝑥(𝑡ଵ + ∆𝑡ଵ)൯


. That is to say the 

internal events considered (spatio-temporal position of particle) will happen in the future (or the 
past, depending the position compared to the mass centre). The weird consequence (another one of 
relativity...) is that the internal energy and so the mass, is relative to the future and the past of the 
material system (and also field as we will see below), in the point of view of K. 

2.7.3. What is the difference of coordinates of the particle for infinitesimal interval dt, 
seen in K ? 

With the same reasoning, we have at the instant 𝑡ଶ just after 𝑡ଵ: 

E௧మ
= ൫𝑐. 𝑡(௧మ)

∗ , 𝑥,మ
∗൯

మ
∗ = ൫𝑐(𝑡ଶ +  ∆𝑡ଶ), 𝑥(𝑡ଶ +  ∆𝑡ଶ)൯


 

With  ∆𝑡ଶ ≈ ∆𝑡ଶ
(ଵ) +


ഁమ

మ

ೌೌ


(௧మ)൨

ଵିఉమ
ೇೌ


(௧మ)

∆𝑡ଶ
(ଵ)ଶ

, and ∆𝑡ଶ
(ଵ) ≡

ఉమ


.

௫ೌ(௧మ)ି௫(௧మ)

ଵିఉమ
ೇೌ


(௧మ)

 

So by doing the simple algebraic difference in K, we have: 

E௧మ
− E௧భ

= ൫𝑐. (𝑡ଶ + ∆𝑡ଶ), 𝑥(𝑡ଶ +  ∆𝑡ଶ)൯


− ൫𝑐. (𝑡ଵ + ∆𝑡ଵ), 𝑥(𝑡ଵ +  ∆𝑡ଵ)൯


 

= ቀ𝑐. (𝑡ଶ − 𝑡ଵ) + 𝑐(∆𝑡ଶ − ∆𝑡ଵ), [𝑥]௧భା ∆௧భ

௧మା ∆௧మቁ


 

With [𝑥]௧భା ∆௧భ

௧మା ∆௧మ ≡ 𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଵ +  ∆𝑡ଵ) 



When (𝑡ଶ − 𝑡ଵ) tends to dt (no 2nd degree), we have: 

o 𝛽௧మ
= 𝛽௧భ

+ ቀ
ௗఉ

ௗ௧
ቁ

௧భ

(𝑡ଶ − 𝑡ଵ) 

o ∆𝑡ଶ = ∆𝑡ଵ + (𝑡2 − 𝑡1) ቀ
𝑑

𝑑𝑡
∆𝑡ቁ

𝑡1

 

With: 

o ∆𝑡ଵ ≈ ∆𝑡ଵ
(ଵ) +


ഁభ

మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

∆𝑡ଵ
(ଵ)ଶ

 

o ∆𝑡ଵ
(ଵ) ≡

ఉభ


.

௫ೌ(௧భ)ି௫(௧భ)

ଵିఉభ
ೇೌ


(௧భ)

 

o ቀ
ௗ

ௗ௧
∆𝑡ଵቁ

௧భ

=
ௗ

ௗ௧
ቆ∆𝑡ଵ

(ଵ) + ∆𝑡ଵ
(ଵ)ଶ ଵ

ଶ

ఉభೌ

ଵି
భ


ఉభ

ቇ 

Moreover [𝑥]௧భା ∆௧భ

௧మା ∆௧మ = 𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଵ +  ∆𝑡ଵ) = 𝑥(𝑡ଵ + (𝑡ଶ − 𝑡ଵ) +  ∆𝑡ଶ) − 𝑥(𝑡ଵ +  ∆𝑡ଵ) 

= 𝑥(𝑡ଵ + (𝑡ଶ − 𝑡ଵ) +  ∆𝑡ଶ) − 𝑥(𝑡ଵ + ∆𝑡ଵ) 

= 𝑥 ൭𝑡ଵ + (𝑡ଶ − 𝑡ଵ) +  ∆𝑡ଵ + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ)൱ − 𝑥(𝑡ଵ +  ∆𝑡ଵ) 

= 𝑥 ቆ𝑡ଵ +  ∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ቈ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

ቇ − 𝑥(𝑡ଵ +  ∆𝑡ଵ) 

= 𝑥(𝑡ଵ +  ∆𝑡ଵ) + ൬
d𝑥

𝑑𝑡
൰

௧భା ∆௧భ

(𝑡ଶ − 𝑡ଵ) ቈ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

 − 𝑥(𝑡ଵ +  ∆𝑡ଵ) 

[𝑥]௧భା ∆௧భ

௧మା ∆௧మ = (𝑡ଶ − 𝑡ଵ). ൬
d𝑥

𝑑𝑡
൰

௧భା ∆௧భ

. ቈ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

 

=> E௧మ
− E௧భ

= ቀ𝑐. (𝑡ଶ − 𝑡ଵ) + 𝑐(∆𝑡ଶ − ∆𝑡ଵ), [𝑥]௧భା ∆௧భ

௧మା ∆௧మቁ


 

= ൭𝑐. (𝑡ଶ − 𝑡ଵ) + 𝑐 ൬
d∆𝑡

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ), (𝑡ଶ − 𝑡ଵ). ൬
d𝑥

𝑑𝑡
൰

௧భା ∆௧భ

. ቆ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

ቇ൱



 

= 𝑐. (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

ቇ . ቆ1,
1

𝑐
൬

d𝑥

𝑑𝑡
൰

௧భା ∆௧భ

ቇ


 

=>E௧మ
− E௧భ

= 𝑐. (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬
d∆𝑡

𝑑𝑡
൰

௧భ

ቇ . ቆ1,
1

𝑐
൬

d𝑥

𝑑𝑡
൰

௧భା ∆௧భ

ቇ


 

With: 

o ∆𝑡ଵ ≈ ∆𝑡ଵ
(ଵ) +


ഁభ

మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

∆𝑡ଵ
(ଵ)ଶ

 

o ∆𝑡ଵ
(ଵ) ≡

ఉభ


.

௫ೌ(௧భ)ି௫(௧భ)

ଵିఉభ
ೇೌ


(௧భ)

 



o ቀ
ௗ

ௗ௧
∆𝑡ଵቁ

௧భ

=
ௗ

ௗ௧
ቆ∆𝑡ଵ

(ଵ) + ∆𝑡ଵ
(ଵ)ଶ ଵ

ଶ

ఉభೌ

ଵି
భ


ఉభೌ

ቇ 

We can use this difference of events in order to calculate the speed of a particle “a” with these 2 
events, we have: 

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ

௧భ,

= 𝑉(𝑡ଵ +  ∆𝑡ଵ) 

The speed associated to the 2 events E௧మ
& E௧భ

 is actually different than the one associated to the 
speed measured by K in the standard way. It is of course different to study in K 2 events observed at 
the instant 𝑡ଵ & 𝑡ଵ + 𝑑𝑡 than the 2 others at 𝑡ଵ +  ∆𝑡ଵ & 𝑡ଶ + ∆𝑡ଶ. 

We recover the standard speed at a given time t when the particle is sufficiently close to the mass 
centre C =>∆𝑡ଵ

(ଵ) ≈ 0. 

2.7.4. What is the difference of coordinates of the particle for infinitesimal interval dt, 
seen in K* 

The first event is: 

E௧భ
= ቀ𝑐𝑡(భ),భ

∗ , 𝑥(భ),భ
∗ቁ

భ
∗

= ቀ𝑐𝑡(௧భ)
∗ , 𝑥(భ),భ

∗ቁ
భ

∗
= ൫𝑐. 𝑡ଵ + 𝑐. ∆𝑡ଵ, 𝑥(𝑡ଵ +  ∆𝑡ଵ)൯


 

Remark: we use the expression 𝑥(భ),భ
∗  as we have explained above that the events in 𝐾∗(𝑡ଵ) are 

parameterized via the map ga. 

According to Lorentz ቐ
(𝑐. 𝑡ଵ + 𝑐. ∆𝑡ଵ) − 𝑐. 𝑡ଵ = 𝛾௧

. ቀc ቀ𝑡(భ),భ
∗ − 𝑡(௧భ)

∗ ቁ + 𝛽௧భ
. 𝑥(భ),భ

∗ቁ

𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ) = 𝛾௧భ
. ൬𝑥(భ),భ

∗ + 𝛽௧భ
. ቀ𝑡(భ),భ

∗ − 𝑡(௧భ)
∗ ቁ൰

  

<=>

ቐ
𝑐 ቀ𝑡(భ),భ

∗ − 𝑡(௧భ)
∗ ቁ = 𝛾௧భ

. ቀ(𝑐. 𝑡ଵ + 𝑐. ∆𝑡ଵ − 𝑐. 𝑡ଵ) − 𝛽௧భ
. (𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ))ቁ

𝑥(భ),భ
∗ = 𝛾௧భ

. ቀ𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ) − 𝛽௧భ
. (𝑐. 𝑡ଵ + 𝑐. ∆𝑡ଵ − 𝑐. 𝑡ଵ)ቁ

  

<=>൝
𝑡(భ),భ

∗ = 𝛾௧భ
. ቀ𝛽௧భ

. (𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ)) − 𝛽௧భ
. (𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ))ቁ

𝑥(భ),భ
∗ = 𝛾௧భ

. ൫𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ) − 𝛽௧భ
. 𝑐. ∆𝑡ଵ൯

  

<=>൝
𝑐 ቀ𝑡(భ),భ

∗ − 𝑡(௧భ)
∗ ቁ = 0 =>   𝑎𝑠 𝑖𝑡 𝑠ℎ𝑜𝑢𝑙𝑑

𝑥(భ),భ
∗ = 𝛾௧భ

. ൫𝑥(𝑡ଵ +  ∆𝑡ଵ) − 𝑥(𝑡ଵ) − 𝛽௧భ
. 𝛽௧భ

. 𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)൯
  

<=>ቐ
ቀ𝑡(భ),భ

∗ − 𝑡(௧భ)
∗ ቁ = 0

𝑥(భ),భ
∗ =

௫ೌ(௧భା ∆௧భ)ି௫(௧భ)

ఊభ

=
∆௧భ

ఉభ
.ఊభ

  

We use ∆𝑡ଵ =
ఉభ


. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)) 

 

The second event is: 

Eଶ = ቀ𝑐𝑡(మ),మ
∗ , 𝑥(మ),మ

∗ቁ
భ

∗
= ቀ𝑐. 𝑡(௧మ)

∗ , 𝑥(మ),మ
∗ቁ

మ
∗

= ൫𝑐. (𝑡ଶ + ∆𝑡ଶ), 𝑥(𝑡ଶ + ∆𝑡ଶ)൯


 



But, in point of view of 𝐾ଵ
∗ we have also  

Eଶ = ቀ𝑐. 𝑡(మ),భ
∗ , 𝑥(మ),భ

∗ቁ
భ

∗
= ቀ𝑐. 𝑡ଶ + 𝛽௧మ

. (𝑥(𝑡ଶ) − 𝑥(𝑡ଶ)), 𝑥(𝑡ଶ)ቁ


 

Remark: 

o In the notation 𝑡(మ),భ
∗ we have to note the small change: this is the event in the 

hyperperplane of 𝐾∗(𝑡ଶ) parametrized at 𝑡ଶ but seen by an observatory in the frame𝐾∗(𝑡ଵ). 
o 𝑐. 𝑡(మ),భ

∗ ≠ 𝑡(௧భ)
∗   a priori 

 

ቐ
𝑐 ቀ𝑡(మ),భ

∗ − 𝑡(௧భ)
∗ ቁ = 𝛾௧భ

. ቀ𝑐. (𝑡ଶ + ∆𝑡ଶ) − 𝑐. 𝑡ଵ − 𝛽௧భ
. (𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଵ))ቁ

𝑥ుమ
,భ

∗ = 𝛾௧భ
. ቀ𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଵ) − 𝛽௧భ

. (𝑐. (𝑡ଶ + ∆𝑡ଶ) − 𝑐. 𝑡ଵ)ቁ

  

 

𝑐 ൬𝑡𝑎൫𝑡2൯,𝐾
1

∗ − 𝑡(௧భ)
∗ ൰ = 𝛾௧భ

. ቀ𝑐. (𝑡ଶ + ∆𝑡ଶ) − 𝑐. 𝑡ଵ − 𝛽௧భ
. (𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଶ) − 𝑥(𝑡ଵ) + 𝑥(𝑡ଶ))ቁ 

= 𝛾௧భ
. ቆ𝑐. (𝑡ଶ + ∆𝑡ଶ) − 𝑐. 𝑡ଵ − 𝑐

∆௧మ

ఉమ

𝛽௧భ
− 𝛽௧భ

(−𝑥(𝑡ଵ) + 𝑥(𝑡ଶ))ቇ  

= 𝛾௧భ
. ൬𝑐. 𝑡ଶ + 𝑐. ∆𝑡ଶ − 𝑐. 𝑡ଵ − 𝑐

∆௧మ

ఉమ

𝛽௧భ
− (𝑡2 − 𝑡1)

ఉభ


𝑉(𝑡ଵ)൰  

= 𝛾௧భ
. ൬𝑐. (𝑡ଶ − 𝑡ଵ) + 𝑐. ∆𝑡ଶ − 𝑐

∆௧మ

ఉమ

𝛽௧భ
− (𝑡2 − 𝑡1)𝛽௧భ

ଶ൰  

= 𝛾௧భ
. 𝑐. ቌ∆𝑡2 ቆ1 −

𝛽௧భ

𝛽௧మ

ቇ + (𝑡2 − 𝑡1) ቆ1 −
𝛽௧భ

ଶ

𝑐
ቇቍ 

because  ∆𝑡ଶ = ∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ቀ
ௗ

ௗ௧
∆𝑡ଵቁ

௧భ

 

and ∆𝑡ଶ =
ఉమ


. (𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଶ)) 

= 𝛾௧భ
. 𝑐.

⎝

⎛∆𝑡ଶ

⎝

⎛1 −
𝛽௧భ

𝛽௧భ
+ ൬

𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ)
⎠

⎞ +
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ
ଶ

⎠

⎞ 

1

𝛽௧భ
+ ൬

𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ)
=

1

𝛽௧భ

+ ൭
𝑑

𝑑𝑋
൬

1

𝑋
൰൱

ୀఉభ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) =
1

𝛽௧భ

+ ൬
−1

𝑋ଶ
൰

ୀఉభ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) 

=
1

𝛽௧భ

−
1

𝛽௧భ

ଶ ൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) 

= 𝛾௧భ
. 𝑐. ൮∆𝑡ଶ ൮1 − 𝛽௧భ

ቌ
1

𝛽௧భ

−
1

𝛽௧భ

ଶ ൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ)ቍ൲ +
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ
ଶ

൲ 

= 𝛾௧భ
. 𝑐. ቆ∆𝑡ଶ ൭

1

𝛽௧భ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ)൱ +
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ
ଶ

ቇ 

= 𝛾௧భ
. 𝑐. ቆ∆𝑡ଶ

1

𝛽௧భ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) +
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ
ଶ

ቇ 

= 𝑐.
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ

+ 𝛾௧భ
. 𝑐. ∆𝑡ଶ

1

𝛽௧భ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) 

= 𝑐.
(𝑡ଶ − 𝑡ଵ)

𝛾௧భ

+ 𝛾௧భ
. 𝑐. ൭∆𝑡1 + (𝑡2 − 𝑡1) ቆ

𝑑

𝑑𝑡
∆𝑡1ቇ

𝑡1

൱
1

𝛽௧భ

൬
𝑑𝛽௧

𝑑𝑡
൰

௧భ

(𝑡ଶ − 𝑡ଵ) 

 



𝑐 ൬𝑡𝑎൫𝑡2൯,𝐾
1

∗ − 𝑡(௧భ)
∗ ൰

∗௧ ீ

= 𝑐.
(𝑡2 − 𝑡1)

𝛾
𝑡1

+ 𝛾
𝑡1

.
𝑐. ∆𝑡ଵ

𝛽
𝑡1

൬
𝑑𝛽

𝑡

𝑑𝑡
൰

𝑡1

(𝑡2 − 𝑡1) 

 
But, since we use at each time a local Galilean frame, there are non acceleration for this frame (the condition for 

the use of Lorentz transformation): ቀௗఉ

ௗ௧
ቁ

௧భ,ீ
≡ 0 

 

𝑐 ൬𝑡𝑎൫𝑡2൯,𝐾
1

∗ − 𝑡(௧భ)
∗ ൰ = 𝑐.

(𝑡2 − 𝑡1)

𝛾
𝑡1

 

 

𝑥(మ),భ
∗ = 𝛾௧భ

. ቀ𝑥(𝑡ଶ + ∆𝑡ଶ) − 𝑥(𝑡ଵ) − 𝛽௧భ
. (𝑐. (𝑡ଶ + ∆𝑡ଶ) − 𝑐. 𝑡ଵ)ቁ 

= 𝛾௧భ
. ቀ𝑥(𝑡ଵ + (𝑡2 − 𝑡1) + ∆𝑡ଶ) − 𝑥(𝑡ଵ) − 𝛽௧భ

. ൫𝑐. ∆𝑡ଶ + 𝑐. (𝑡2 − 𝑡1)൯ቁ 

= 𝛾௧భ
. ൭𝑥 ቆ𝑡ଵ + (𝑡ଶ − 𝑡ଵ) + ∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ − 𝑥(𝑡ଵ) − 𝛽௧భ
. 𝑐 ቆ∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ − 𝛽௧భ
. ൫𝑐. (𝑡ଶ − 𝑡ଵ)൯൱ 

= 𝛾௧భ
. 𝑥 ൭𝑡ଵ + ∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ൱ − 𝑥(𝑡ଵ) − 𝛽௧భ
. 𝑐 ൭∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ൱൩ 

= 𝛾௧భ
. 𝑥(𝑡ଵ + ∆𝑡ଵ) + ൬

𝑑

𝑑𝑡
𝑥൰

௧భశ∆భ

. (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ − 𝑥(𝑡ଵ) − 𝛽௧భ
. 𝑐 ൭∆𝑡ଵ + (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ൱൩ 

= 𝛾௧భ
. ቈ𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ) + 𝑉(𝑡ଵ + ∆𝑡ଵ). (𝑡ଶ − 𝑡ଵ) ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ − 𝛽௧భ
. 𝑐∆𝑡ଵ − 𝛽௧భ

. 𝑐(𝑡ଶ − 𝑡ଵ) ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡ଵ൰

௧భ

ቇ 

= 𝛾௧భ
. ቆ𝑐

∆𝑡ଵ

𝛽௧భ

− 𝛽௧భ
. 𝑐∆𝑡1 + (𝑡2 − 𝑡1). ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ ൣ𝑉(𝑡ଵ + ∆𝑡1) − 𝛽௧భ
. 𝑐൧ቇ 

= 𝛾௧భ
. ቆ𝑐∆𝑡ଵ ቆ

1 − 𝛽௧భ

ଶ

𝛽௧భ

ቇ + (𝑡2 − 𝑡1). ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ ൣ𝑉(𝑡ଵ + ∆𝑡1) − 𝛽௧భ
. 𝑐൧ቇ 

= 𝛾௧భ
. ቆ

𝑐∆𝑡ଵ

𝛾௧భ
ଶ

1

𝛽௧భ

+ (𝑡2 − 𝑡1). ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ ൣ𝑉(𝑡ଵ + ∆𝑡1) − 𝛽௧భ
. 𝑐൧ቇ 

= 𝛾௧భ
(𝑡2 − 𝑡1). ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ . 𝑐 ൬
𝑉

𝑐
(𝑡ଵ + ∆𝑡1) − 𝛽௧భ

൰ 

Because  𝑥(భ),భ
∗ =

௫ೌ(௧భା ∆௧భ)ି௫(௧భ)

ఊభ

=
∆௧భ

ఉభ
.ఊభ

 

The expression of the 
 

𝑥(మ),భ
∗ − 𝑥(భ),భ

∗ = 𝛾௧భ
(𝑡2 − 𝑡1). ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ . 𝑐 ൬
𝑉

𝑐
(𝑡ଵ + ∆𝑡1) − 𝛽௧భ

൰

𝑐 ቀ𝑡(మ),భ
∗ − 𝑡(௧భ)

∗ ቁ = 𝑐.
(𝑡2 − 𝑡1)

𝛾
𝑡1

 

 
 
 
 
 
 
 
 
 
 
 



2.7.5. What is the expression of the speed in K and K*and what are their relation (velocity 
addition formula)? 

Using the expression above, we calculate different speed for different frame. 
o Relative to the internal frame 𝐾∗(𝑡ଵ) 

𝑥(మ),భ
∗ − 𝑥(భ),భ

∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
=

𝛾௧భ
(𝑡2 − 𝑡1). ൬1 + ቀ

𝑑
𝑑𝑡

∆𝑡1ቁ
𝑡1

൰ . 𝑐 ቂ
𝑉
𝑐

(𝑡ଵ + ∆𝑡1) − 𝛽௧భ
ቃ

𝑐.
(𝑡2 − 𝑡1)

𝛾
𝑡1

 

<=> 
௫ೌ(మ),಼భ

∗ ି௫ೌ(భ),಼భ
∗

௧ೌ(మ),಼భ
∗ ି௧ೌ(భ),಼భ

∗
= 𝛾௧భ

ଶ ൬1 + ቀ
𝑑

𝑑𝑡
∆𝑡ቁ

𝑡1

൰ . ൫𝑉(𝑡ଵ + ∆𝑡1) − 𝑉(𝑡ଵ)൯ 

 

=> 
௫ೌ(మ),಼భ

∗ ି௫ೌ(భ),಼భ
∗

𝑡2−𝑡1
= 𝛾௧భ

. ൬1 + ቀ
𝑑

𝑑𝑡
∆𝑡ቁ

𝑡1

൰ . ൫𝑉(𝑡ଵ + ∆𝑡1) − 𝑉(𝑡ଵ)൯ 

 
o A modified velocity addition formula  

 

Since ቆ
௫ుమ

ି௫ుభ

௧ుమ
ି௧ుభ

ቇ
௧భ,

= 𝑉(𝑡ଵ +  ∆𝑡ଵ), we have 

 
𝑥(మ),భ

∗ − 𝑥(భ),భ
∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
= 𝛾௧భ

ଶ ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ . ൫𝑉(𝑡ଵ + ∆𝑡1) − 𝑉(𝑡ଵ)൯ 

= 𝛾௧భ
ଶ ቆ1 + ൬

𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ . ൮ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ

௧భ,

− 𝑉(𝑡ଵ)൲ 

But the “shift time” is: 

∆𝑡ଵ =
𝛽௧భ

𝑐
. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)) 

<=>∆𝑡 =
ఉ


. (𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡)) 

=>
𝑑∆𝑡

𝑑𝑡
=

𝛽௧

𝑐
. ቆ

𝑑𝑡 + ∆𝑡

𝑑𝑡
൬

𝑑𝑥

𝑑𝑡
൰

(௧ା∆௧)
−

𝑑

𝑑𝑡
𝑥(𝑡)ቇ 

<=>ௗ∆௧

ௗ௧
=

ఉ


. ቆቀ1 +

ௗ∆௧

ௗ௧
ቁ ቀ

ௗ௫ೌ

ௗ௧
ቁ

(௧ା∆௧)
−

ௗ

ௗ௧
𝑥(𝑡)ቇ 

<=>
𝑑∆𝑡

𝑑𝑡
ቆ1 −

𝛽௧

𝑐
൬

𝑑𝑥

𝑑𝑡
൰

(௧ା∆௧)
ቇ =

𝛽௧

𝑐
. ቆ൬

𝑑𝑥

𝑑𝑡
൰

(௧ା∆௧)
−

𝑑

𝑑𝑡
𝑥(𝑡)ቇ 

<=>
𝑑∆𝑡

𝑑𝑡
=

𝛽௧
𝑐

. ቆ൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

−
𝑑
𝑑𝑡

𝑥(𝑡)ቇ

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

 



=> 1 +
𝑑∆𝑡

𝑑𝑡
=

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

+
𝛽௧
𝑐

. ቆ൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

−
𝑑
𝑑𝑡

𝑥(𝑡)ቇ

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

 

=
1 −

𝛽௧
ଶ

𝑐ଶ

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

=
1

𝛾௧భ
ଶ

1

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

 

=>
𝑥(మ),భ

∗ − 𝑥(భ),భ
∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
= 𝛾௧భ

ଶ ቆ1 + ൬
𝑑

𝑑𝑡
∆𝑡1൰

𝑡1

ቇ . ൮ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ

௧భ,

− 𝑉(𝑡ଵ)൲ 

=

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ
௧భ,

− 𝑉(𝑡ଵ)

1 −
𝛽௧
𝑐

൬
𝑑𝑥
𝑑𝑡

൰
(௧ା∆௧)

 

=>
𝑥(మ),భ

∗ − 𝑥(భ),భ
∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
=

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ
௧భ,

− 𝑉(𝑡ଵ)

1 −
𝛽௧భ

𝑐
൬

𝑑𝑥
𝑑𝑡

൰
(௧భା∆௧భ)

 

We revover the Einstein-Poincaré formula when the system is close to its center of mass (∆𝑡ଵ ≈ 0)or 
otherwise for particles without acceleration. 

In the case of an accelerated particule in K, we have: 

 ቀௗ௫ೌ

ௗ௧
ቁ

(௧భା∆௧భ)
≈ ቀ

ௗ௫ೌ

ௗ௧
ቁ

(௧భ)
+ ቀ

ௗమ௫ೌ

ௗ௧మ ቁ
(௧భ)

∆𝑡ଵ 

=>
𝑥(మ),భ

∗ − 𝑥(భ),భ
∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
≈

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ
௧భ,

− 𝑉(𝑡ଵ)

1 −
𝛽௧భ

𝑐 ቆ൬
𝑑𝑥
𝑑𝑡

൰
(௧భ)

+ ൬
𝑑ଶ𝑥

𝑑𝑡ଶ ൰
(௧భ)

∆𝑡ଵቇ

 

 

≈ ቆ
௫ుమ

ି௫ుభ

௧ుమ
ି௧ుభ

ቇ
௧భ,

− 𝑉(𝑡ଵ)൩ ൬1 +
ఉభ


ቀ

ௗ௫ೌ

ௗ௧
ቁ

(௧భ)
+

ఉభ


ቀ

ௗమ௫ೌ

ௗ௧మ ቁ
(௧భ)

∆𝑡ଵ൰ for sufficiently low 

speed and/or low acceleration and/or low dimension. 

Interestingly, we see that if we cannot neglect the dimension of the system, a gravitational field 

𝑔 = ቀ
ௗమ௫ೌ

ௗ௧మ ቁ
(௧భ)

, seen in K, modifies the speed addiction formula as: 

𝑥(మ),భ
∗ − 𝑥(భ),భ

∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
≈

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ
௧భ,

− 𝑉(𝑡ଵ)

1 −
𝛽௧భ

𝑐 ቆ൬
𝑑𝑥
𝑑𝑡

൰
(௧భ)

+ 𝑔(௧భ)∆𝑡ଵቇ

 



The characteristic acceleration g verifies: 

1 ≈
𝛽௧భ

𝑐
𝑔∆𝑡ଵ 

<=> 

∆௧భఉభ

≈ 𝑔 with ∆𝑡ଵ =
ఉభ


. (𝑥(𝑡ଵ + ∆𝑡ଵ) − 𝑥(𝑡ଵ)) ≈

ఉభ


𝐿  

=>𝑔 ≈
మ

ఉభ
మ =

ర


మ  

More the system is a point, compared to other dimension of the context, less the dynamic is 
affected. We can also check that if one of the internal particle has the speed c, the apparent speed is 
no more the invariant speed c.   

𝑥(మ),భ
∗ − 𝑥(భ),భ

∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
≈

𝑐 − 𝑉(𝑡ଵ)

1 −
𝛽௧భ

𝑐 ൫𝑐 + 𝑔(௧భ)∆𝑡ଵ൯

= 𝑐
1 − 𝛽௧భ

1 − 𝛽௧భ
ቀ1 + 𝑔(௧భ)

∆𝑡ଵ
𝑐

ቁ
= 𝑐

1 − 𝛽௧భ

1 − 𝛽௧భ
− 𝛽௧భ

𝑔(௧భ)
∆𝑡ଵ

𝑐

 

= 𝑐
1

1 −
𝛽௧భ

𝑔(௧భ)

1 − 𝛽௧భ

∆𝑡ଵ
𝑐

≈ 𝑐 ቆ1 +
𝛽௧భ

𝑔(௧భ)

1 − 𝛽௧భ

∆𝑡ଵ

𝑐
ቇ =  𝑐 +

𝛽௧భ
𝑔(௧భ)

1 − 𝛽௧భ

∆𝑡ଵ 

It is of course an artefact due to the fact that the particles events considered in K* are not the same 
as the one treated in K, hence the Lorentz Transformation is not applied in a standard manner. 

o A second modified velocity addition formula  

Since 
௫ೌ(మ),಼భ

∗ ି௫ೌ(భ),಼భ
∗

𝑡2−𝑡1
= 𝛾௧భ

. ൬1 + ቀ
𝑑

𝑑𝑡
∆𝑡ቁ

𝑡1

൰ . ൫𝑉(𝑡ଵ + ∆𝑡1) − 𝑉(𝑡ଵ)൯ 

With the same reasoning we have 

𝑥(మ),భ
∗ − 𝑥(భ),భ

∗

𝑡(మ),భ
∗ − 𝑡(భ),భ

∗
=

1

𝛾௧భ
.

ቆ
𝑥మ

− 𝑥భ

𝑡మ
− 𝑡భ

ቇ
௧భ,

− 𝑉(𝑡ଵ)

1 −
𝛽௧భ

𝑐
൬

𝑑𝑥
𝑑𝑡

൰
(௧భା∆௧భ)

 

 
With  

o ∆𝑡ଵ ≈ ∆𝑡ଵ
(ଵ) +


ഁభ

మ

ೌೌ


(௧భ)൨

ଵିఉభ
ೇೌ


(௧భ)

∆𝑡ଵ
(ଵ)ଶ

 

o ∆𝑡ଵ
(ଵ) ≡

ఉభ


.

௫ೌ(௧భ)ି௫(௧భ)

ଵିఉభ
ೇೌ


(௧భ)

 

o ቀ
ௗ

ௗ௧
∆𝑡ଵቁ

௧భ

=
ௗ

ௗ௧
ቆ∆𝑡ଵ

(ଵ) + ∆𝑡ଵ
(ଵ)ଶ ଵ

ଶ

ఉభೌ

ଵି
భ


ఉభೌ

ቇ 

2.7.6. Conclusion about the proof 
We can conclude that although during the proof we use a particular duration of time  𝑑𝑡ଵ = 𝛾𝑑𝑡∗ , it 
is well defined as I try to convince the reader in this paragraph 2.6.  We should carefully take care to 
the events implied by this way of reasoning. 

 



3. Free field  
3.1. The proof for a field 

Now, I will repeat the same method for a field theory (a scalar field 𝜑 for simplify), and again: 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝜑∗ :  

 relative to the internal time 𝑡∗ of K* : డఝ∗

డ௧∗  ; 

 but instead relative to time t of K : డఝ∗

డ௧
. 

So without comments, we have successively: 

𝑆[{𝜑(𝑥, 𝑡)}] =
1

𝑐
න ම 𝛬 ൬𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
൰ 𝑑Ω 

=
1

𝑐
න ම 𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ 𝑑Ω∗ = න ම 𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൨ 𝑑𝑡∗ 

= න ම 𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൨

𝑑𝑡

𝛾
 

=> 

𝑆[{𝜑∗(𝑥∗, 𝑡∗)}, 𝑹𝐂(𝒕)] = න 𝐿′ {𝜑∗}, ൜
𝜕𝜑∗

𝜕𝒓∗
ൠ , ൜

𝜕𝜑∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ 𝑑𝑡 

With 𝐿′ ቂ{𝜑∗}, ቄ
డఝ∗

డ𝒓∗
ቅ , ቄ

డఝ∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ =

ଵ

ఊ
∭ 𝛬∗ ቀ𝜑∗,

డఝ∗

డ𝒓∗
, 𝛾

డఝ∗

డ௧
, 𝑹𝐂, 𝑽𝐂ቁ 𝑑𝑉∗ 

So we can calculate the 3-momentum as: 

𝑷𝒄 ≡
𝜕𝐿ᇱ

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂


1

𝛾
ම 𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൨ 

= ම 𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗

𝜕

𝜕𝑽𝐂

1

𝛾
+

1

𝛾
ම

𝜕

𝜕𝑽𝐂

𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ 

= ම 𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ ൬−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
൰

+
1

𝛾
ම

𝜕 ൬𝛾
𝜕𝜑∗

𝜕𝑡
൰

𝜕𝑽𝐂

𝜕

𝜕 ൬𝛾
𝜕𝜑∗

𝜕𝑡
൰

𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ 

But  డ

డ𝑽𝐂

ଵ

ఊ
= −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
  ; 𝛾

డఝ∗

డ௧
=

డఝ∗

డ௧∗  

And  
డቀఊ

ങക∗

ങ
ቁ

డ𝑽𝐂

=
డఝ∗

డ௧

డఊ

డ𝑽𝐂

=
డఝ∗

డ௧

డ
భ

ට1−
𝑽𝐂

𝟐

𝒄²

డ𝑽𝐂

=
డఝ∗

డ௧

−1

2
ቀ−2

𝑽𝐂

𝒄²
ቁ

ଵ

ቌ1−
ംమ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

𝟐

𝒄²
ቍ

3/2 =
డఝ∗

డ௧

𝑽𝐂

𝒄²
𝛾ଷ 



𝑷𝒄 = ම 𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ ൬−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
൰

+
1

𝛾
ම ൬

𝜕𝜑∗

𝜕𝑡

𝑽𝐂

𝒄²
𝛾ଷ൰

𝜕

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 ම 𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ (−1)

+ ම ൬
𝜕𝜑∗

𝜕𝑡
𝛾൰

𝜕

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 ൦ම 𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗ (−1) + ම

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
𝛬∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൪ 

=
𝑽𝐂

𝒄²
𝛾 ම ൦

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
𝛬∗ − 𝛬∗൪ 𝑑𝑉∗ 

So we have again: 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∭ ቆ
డఝ∗

డ௧∗

డ

డቀ
ങക∗

ങ∗ ቁ
𝛬∗ − 𝛬∗ቇ 𝑑𝑉∗ is the internal energy (associated to the 

hyperplane 𝑡∗ = 𝑐𝑡𝑒)  

And also: 

𝑀 = 𝑀(𝑡∗) = 𝑀 ቌන
𝑑𝑡′

𝛾(𝑡′)

௧



ቍ =

∭ ൮
𝜕𝜑∗

𝜕𝑡∗
𝜕

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
𝛬∗ − 𝛬∗൲ 𝑑𝑉∗

𝑐²
 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector to 
demonstrate it (we don’t even use the expression of any density Lagrangian).  

We have to note, in the proof, the importance to freeze the right variable డఝ∗

డ௧
 (and not డఝ∗

డ௧∗  ) in order 

to have the good expression. 

 

 

 

 



3.2. Momentum and energy for a field 
3.2.1. Momentum 

We can also notice that 𝒑ఝ∗ ≡
డఝ∗

డ𝒓∗

డ௸ᇱ∗

డ
ങക∗

ങ

=
డఝ∗

డ𝒓∗

డ௸∗

డቀ
ങക∗

ങ∗ ቁ
 , so 𝒑ఝ∗ =

డఝ∗

డ𝒓∗

డ௸∗

డቀ
ങക∗

ങ∗ ቁ
 as for material syste this is 

the same as the one we would have in the frame of the centre of mass K*. 

More over the total momentum 𝑷𝒕𝒐𝒕𝒂𝒍 associated to the Lagrangian  𝐿′ ቂ{𝜑∗}, ቄ
డఝ∗

డ𝒓∗
ቅ , ቄ

డఝ∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ is 

 𝑷𝒕𝒐𝒕𝒂𝒍 = ∭
డఝ∗

డ𝒓∗

డ௸ᇱ∗

డ
ങക∗

ങ

𝑑𝑉∗ +
డᇲ

డ𝑽𝐂

= ∭ 𝒑ఝ∗𝑑𝑉∗ + 𝑷𝒄 = 𝑷𝒄 since by definition of K*: ∭ 𝒑ఝ∗𝑑𝑉∗ ≡ 0. 

As the material system above, we obtain as it should the total momentum is the one associated to 
the mass center. 

-------------------- 

Proof: 

𝒑ఝ∗ ≡
𝜕𝜑∗

𝜕𝒓∗
డ௸ᇱ∗

డ
ങക∗

ങ

=
𝜕𝜑∗

𝜕𝒓∗
డ

∗൬ക∗,
ങക∗

ങ𝒓∗ ,ം
ങക∗

ങ
,𝑹𝐂,𝑽𝐂൰

ം

డ
ങക∗

ങ

=
𝜕𝜑∗

𝜕𝒓∗ ቆ
డቀఊ

ങക∗

ങ
ቁ

డ
ങക∗

ങ

ቇ ቌ
డ

∗൬ക∗,
ങക∗

ങ𝒓∗ ,ം
ങക∗

ങ
,𝑹𝐂,𝑽𝐂൰

ം

డቀఊ
ങക∗

ങ
ቁ

ቍ =
𝜕𝜑∗

𝜕𝒓∗ (𝛾) ቆ
ଵ

ఊ

డ௸∗ቀఝ∗,
ങക∗

ങ𝒓∗ ,ఊ
ങക∗

ങ
,𝑹𝐂,𝑽𝐂ቁ

డቀ
ങക∗

ങ∗ ቁ
ቇ 

=
𝜕𝜑∗

𝜕𝒓∗
డ௸∗ቀఝ∗,

ങക∗

ങ𝒓∗ ,ఊ
ങക∗

ങ
,𝑹𝐂,𝑽𝐂ቁ

డቀ
ങക∗

ങ∗ ቁ
=

𝜕𝜑∗

𝜕𝒓∗
డ௸∗

డቀ
ങക∗

ങ∗ ቁ
, so 𝒑ఝ∗ =

𝜕𝜑∗

𝜕𝒓∗
డ∗

డ
𝒓𝒂

∗

∗

 

------------- 

3.2.2. Energy 

By definition the energy is: 𝐸′ ≡ ∭
డ௸ᇱ∗

డ
ങക∗

ങ

డఝ∗

డ௧
𝑑𝑉∗ +

డᇲ

డ𝑽𝐂

𝑽𝒄 − 𝐿ᇱ 

We can re-express it as: 

𝐸′ = ∭
డ௸ᇱ∗

డ
ങക∗

ങ

డఝ∗

డ௧
𝑑𝑉∗ + 𝑷𝒄𝑽𝒄 −

∗

ఊ

ᇱ
 since 𝐿ᇱ =

∗

ఊ

ᇱ
  

= ∭
డ௸∗

డቀ
ങക∗

ങ∗ ቁ

డఝ∗

డ௧
𝑑𝑉∗ + ቀ𝛾

ா∗

మ . 𝑽𝒄ቁ 𝑽𝒄 −
∗

ఊ

ᇱ
 since 𝒑ఝ∗ ≡

డ௸ᇱ∗

డ
ങക∗

ങ

=
డ௸∗

డቀ
ങക∗

ങ∗ ቁ
  

= ම
𝜕𝛬∗

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰

𝜕𝜑∗

𝜕𝑡
𝑑𝑉∗ −

𝐿∗

𝛾

ᇱ

+ 𝛾
𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 

= ම
𝜕𝛬∗

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰

𝜕𝜑∗

𝛾𝜕𝑡∗
𝑑𝑉∗ −

𝐿∗

𝛾

ᇱ

+ 𝛾
𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 = ൮ම
𝜕𝛬∗

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰

𝜕𝜑∗

𝜕𝑡∗
𝑑𝑉∗ − 𝐿∗ᇱ൲

1

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 

=
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 =
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐ଶ
. 𝑽𝒄

𝟐 =
𝐸∗ + 𝛾ଶ 𝐸∗

𝑐ଶ . 𝑽𝒄
𝟐

𝛾
= 𝐸∗

1 + 𝛾ଶ. 𝛽ଶ

𝛾
= 𝐸∗

1 +
𝛽ଶ

1 − 𝛽ଶ

𝛾
 

= 𝐸∗

1 − 𝛽ଶ + 𝛽ଶ

1 − 𝛽ଶ

𝛾
= 𝐸∗

1
1 − 𝛽ଶ

𝛾
= 𝐸∗

𝛾ଶ

𝛾
= 𝛾𝐸∗ 



So we have, as it should: 
 

𝐸′ = 𝐸 = 𝛾𝐸∗  
 
We can also conventionally note: 𝐸 = 𝐸∗ + (𝛾 − 1)𝐸∗ where we observe, for a closed system 
(E=cte), an exchange of Energy between the internal energy 𝐸∗ and the kinetic energy (𝛾 − 1)𝐸∗, 
the one depending of the center of mass. 
 
 

3.3. The Euler-Lagrange equation for the internal field and the mass center 

The Euler-Lagrange equations in K are : 

𝑑

𝑑𝑡

𝜕

𝜕𝑽𝐂
𝐿′ {𝜑∗}, ൜

𝜕𝜑∗

𝜕𝒓∗
ൠ , ൜

𝜕𝜑∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ =

𝜕

𝜕𝑹𝐂

𝐿′ {𝜑∗}, ൜
𝜕𝜑∗

𝜕𝒓∗
ൠ , ൜

𝜕𝜑∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ 

 ௗ

ௗ௧
ቀ𝛾

ா∗

²
𝑽𝐂ቁ =

డ

డ𝑹𝐂

𝐿′ ቂ{𝜑∗}, ቄ
డఝ∗

డ𝒓∗
ቅ , ቄ

డఝ∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ 

And we find in K*: 

𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

ቍ +
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ =
𝜕𝛬ᇱ∗

𝜕𝜑∗
=

1

𝛾

𝜕𝛬∗

𝜕𝜑∗
 

That we can show is equivalent of the 4-dimensional equation in K*: 

<=> డ

డ𝒙𝒊 ൭
డ௸∗

డ
ങക∗

ങ𝒙𝒊∗

൱ =
డ௸∗

డఝ∗ 

As above for the material system, we obtain the same equation that we should obtain for the 
dynamic in a K* frame: the local Galilean frame. 

--------------- 

Proof: 

We start  from the general Lagrangian 

𝑆[{𝜑(𝑥, 𝑡)}] = න ම 𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൨

𝑑𝑡

𝛾
= න ම 𝛬′∗ ൬𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ 𝑑𝑉∗൨ 𝑑𝑡 

With 𝛬′∗ ቀ𝜑∗,
డఝ∗

డ𝒓∗
,

డఝ∗

డ௧
, 𝑹𝐂, 𝑽𝐂ቁ ≡

௸∗ቀఝ∗,
ങക∗

ങ𝒓∗ ,ఊ
ങക∗

ങ
,𝑹𝐂,𝑽𝐂ቁ

ఊ
 

The variation of the action gives: 

𝛿𝑆[{𝜑(𝑥, 𝑡)}] = න ම
𝜕𝛬ᇱ∗

𝜕𝜑∗
𝛿𝜑∗ +

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

𝛿
𝜕𝜑∗

𝜕𝒓∗
+

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

𝛿
𝜕𝜑∗

𝜕𝑡
 𝑑𝑉∗ 𝑑𝑡 

= න ම
𝜕𝛬ᇱ∗

𝜕𝜑∗
𝛿𝜑∗ + ቐ

𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

𝛿𝜑∗ቍ −
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ 𝛿𝜑∗ቑ + ቐ
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

𝛿𝜑∗ቍ −
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

ቍ 𝛿𝜑∗ቑ 𝑑𝑉∗ 𝑑𝑡 



= න ම ቐ
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

𝛿𝜑∗ቍ +
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

𝛿𝜑∗ቍቑ + 𝛿𝜑∗ ቐ
𝜕𝛬ᇱ∗

𝜕𝜑∗
−

𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ −
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

ቍቑ 𝑑𝑉∗ 𝑑𝑡 

The least action principle tells us that 

𝛿𝑆[{𝜑(𝑥, 𝑡)}] = 0 

=>
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

ቍ +
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ =
𝜕𝛬ᇱ∗

𝜕𝜑∗
=

1

𝛾

𝜕𝛬∗

𝜕𝜑∗
 

<=> 𝛾
𝜕

𝜕𝑡
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝑡

ቍ + 𝛾
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ =
𝜕𝛬∗

𝜕𝜑∗
 

<=> 𝛾
డ

డ௧
ቆ

డ௸∗

డቀ
ങക∗

ങ∗ ቁ
ቇ + 𝛾

డ

డ𝒓∗
ቆ

డ௸ᇲ∗

డ
ങക∗

ങ𝒓∗

ቇ =
డ௸∗

డఝ∗
 since డ௸ᇱ∗

డ
ങക∗

ങ

=
డ௸∗

డቀ
ങക∗

ങ∗ ቁ
 

𝑀𝑜𝑟𝑒𝑜𝑣𝑒𝑟 
𝜕

𝜕𝒓∗
ቌ

𝜕𝛬ᇱ∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ =
𝜕

𝜕𝒓∗

⎝

⎜⎜
⎛𝜕

𝛬∗ ൬𝜑∗,
𝜕𝜑∗

𝜕𝒓∗ , 𝛾
𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰

𝛾

𝜕
𝜕𝜑∗

𝜕𝒓∗

⎠

⎟⎟
⎞

=
1

𝛾

𝜕

𝜕𝒓∗
ቌ

𝜕𝛬∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ 

And 𝛾 డ

డ௧
ቆ

డ௸∗

డቀ
ങക∗

ങ∗ ቁ
ቇ =

డ

డ௧∗
ቆ

డ௸∗

డቀ
ങക∗

ങ∗ ቁ
ቇ 

𝜕

𝜕𝑡∗
൮

𝜕𝛬∗

𝜕 ൬
𝜕𝜑∗

𝜕𝑡∗ ൰
൲ +

𝜕

𝜕𝒓∗
ቌ

𝜕𝛬∗

𝜕
𝜕𝜑∗

𝜕𝒓∗

ቍ =
𝜕𝛬∗

𝜕𝜑∗
 

<=>
𝜕

𝜕𝒙𝒊
൮

𝜕𝛬∗

𝜕
𝜕𝜑∗

𝜕𝒙𝒊∗

൲ =
𝜕𝛬∗

𝜕𝜑∗
 

-------- 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Example: Application to the Einsteinian gravitational field  

According to [1]: 

𝑆[{𝑔(𝑥, 𝑡)}] =
−𝑐ଷ

16𝜋𝑘
න ම(𝑅 − 2𝛬)ඥ−𝑔𝑑Ω 

Where R is the Ricci scalar. 

𝛿𝑆[{𝑔(𝑥, 𝑡)}] =
−𝑐ଷ

16𝜋𝑘
𝛿 න ම(𝑅 − 2𝛬)ඥ−𝑔𝑑Ω =

−𝑐ଷ

16𝜋𝑘
𝛿 න ම(𝐺 − 2𝛬)ඥ−𝑔𝑑Ω 

With : 
 

o 𝐺 ቀ𝑔 ,
డೖ

డ𝒓
,

డೖ

డ௧
ቁ = 𝑔൫𝛤

𝛤
 − 𝛤

 𝛤
൯ 

o 𝛬 the Einstein-(Lemaître) cosmological constant 

For linear transformation 𝛤
 behave like tensor, so G behaves as a scalar. 

We consider a context where the space is Lorentzian to infinity. The (linear) Lorentz transformation 
means, in this case, a modification of the speed for the part of the of the observers (associated to the 
current frame) to infinity. The modification of the coordinate system for other observers are 
meanwhile not directly evident but allowed. 

𝑆[{𝑔(𝑥, 𝑡)}] =
−𝑐ଷ

16𝜋𝑘
න ම ൬𝐺 ൬𝑔 ,

𝜕𝑔

𝜕𝒓
,
𝜕𝑔

𝜕𝑡
൰ − 2𝛬൰ ඥ−𝑔𝑑Ω. 

 

=
−𝑐ଷ

16𝜋𝑘
න ම ൬𝐺∗ ൬𝑔

∗,
𝜕𝑔

∗

𝜕𝒓∗
,
𝜕𝑔

∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ − 2𝛬൰ ඥ−𝑔∗𝑑Ω∗

=
−𝑐ସ

16𝜋𝑘
න ම ൬𝐺∗ ൬𝑔

∗,
𝜕𝑔

∗

𝜕𝒓∗
,
𝜕𝑔

∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂൰ − 2𝛬൰ ඥ−𝑔∗𝑑𝑉∗൨ 𝑑𝑡∗ 

=
−𝑐ସ

16𝜋𝑘
න ම ൬𝐺∗ ൬𝑔

∗,
𝜕𝑔

∗

𝜕𝒓∗
, 𝛾

𝜕𝑔
∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂൰ − 2𝛬൰ ඥ−𝑔∗𝑑𝑉∗൨

𝑑𝑡

𝛾
 

=> 

𝑆[{𝜑∗(𝑥∗, 𝑡∗)}, 𝑹𝐂(𝒕)] =
−𝑐ସ

16𝜋𝑘
න 𝐿′ {𝑔

∗}, ൜
𝜕𝑔

∗

𝜕𝒓∗
ൠ , ൜

𝜕𝑔
∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ 𝑑𝑡 

With 𝐿′ ቂ{𝑔
∗}, ቄ

డೖ
∗

డ𝒓∗
ቅ , ቄ

డೖ
∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ =

ଵ

ఊ
∭ ቀ𝐺∗ ቀ𝑔

∗,
డೖ

∗

డ𝒓∗
, 𝛾

డೖ
∗

డ௧
, 𝑹𝐂, 𝑽𝐂ቁ − 2𝛬ቁ ඥ−𝑔∗𝑑𝑉∗ 

 

Repeating the same calculation for the scalar field we have: 

 

 



𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡
ିర

ଵగ
∭ ൭

డೖ
∗

డ௧∗

డ൫ீ∗ඥି∗൯

డ൬
ങೖ

∗

ങ∗ ൰
− (𝐺∗ − 2𝛬)ඥ−𝑔∗൱ 𝑑𝑉∗ is the internal energy 

(associated to the hyperplane 𝑡∗ = 𝑐𝑡𝑒)  

This is of course coherent with the 4-momentum of [1], paragraph 96. 

We have therefore: 

𝑀 = 𝑀(𝑡∗) = 𝑀 ቌන
𝑑𝑡′

𝛾(𝑡′)

௧



ቍ =

−𝑐ସ

16𝜋𝑘 ∭ ൮
𝜕𝑔

∗

𝜕𝑡∗

𝜕൫𝐺∗ඥ−𝑔∗൯

𝜕 ൬
𝜕𝑔

∗

𝜕𝑡∗ ൰
− (𝐺∗ − 2𝛬)ඥ−𝑔∗൲ 𝑑𝑉∗

𝑐²
 

The Euler-Lagrange equations: 

o For the gravitational free particle of mass  in K: 

𝑑

𝑑𝑡

𝜕

𝜕𝑽𝐂
𝐿′ {𝑔

∗}, ൜
𝜕𝑔

∗

𝜕𝒓∗
ൠ , ൜

𝜕𝑔
∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ =

𝜕

𝜕𝑹𝐂

𝐿′ {𝑔
∗}, ൜

𝜕𝑔
∗

𝜕𝒓∗
ൠ , ൜

𝜕𝑔
∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ 

<=>
𝑑

𝑑𝑡
൬𝛾

𝐸∗

𝑐²
𝑽𝐂൰ =

𝜕

𝜕𝑹𝐂

𝐿′ {𝑔
∗}, ൜

𝜕𝑔
∗

𝜕𝒓∗
ൠ , ൜

𝜕𝑔
∗

𝜕𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൨ 

o For the internal (Einsteinian) gravitational field in K* ([1]): 

𝜕

𝜕𝑡
ቌ

𝜕𝐺∗ඥ−𝑔∗

𝜕
𝜕𝑔

∗

𝜕𝑡

ቍ +
𝜕

𝜕𝒓∗
ቌ

𝜕𝐺∗ඥ−𝑔∗

𝜕
𝜕𝑔

∗

𝜕𝒓∗

ቍ =
𝜕(𝐺∗ − 2𝛬)ඥ−𝑔∗

𝜕𝑔
∗

 

<=>
𝜕

𝜕𝑥∗ ൮
𝜕𝐺∗ඥ−𝑔∗

𝜕
𝜕𝑔

∗

𝜕𝑥∗

൲ =
𝜕(𝐺∗ − 2𝛬)ඥ−𝑔∗

𝜕𝑔
∗

 

<=> 𝑅
∗ −

ଵ

ଶ
𝑔

∗. 𝑅∗ + 𝑔
∗. 𝛬 = 0 <=> 𝑅

∗ = 4 𝛬 

o And also 𝐸′ = 𝐸 = 𝛾𝐸∗ 

Remark: We can observe the impact of the cosmological constant on the mass of every volume 

𝑉∗studied which are increased/decreased by the value  ∆𝑀௸ =
ି

଼గ
𝛬 ∭൫ඥ−𝑔∗൯𝑑𝑉∗ (there is a 

divergence for an infinite space...). This is why we can pretend to say that the cosmological constant 
give a mass to the gravitation field. However it is not a kind of mass which is seen by gravitation 
waves, that is to say like a more conventional field theory. In the latter sense the gravitation has not 
a mass (“the graviton has no mass”). 

 



5. Interaction between a field and a particle 

We consider the simplified action: 

𝑆[𝒓𝒂(𝑡), {𝜑(𝑥, 𝑡)}] = න ൭ −𝑚. 𝑐
𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
.
𝑑𝑠

𝑑𝑡
𝜑(𝒓𝒂, 𝑡)൨



൱
௧మ

௧భ

𝑑𝑡 +
1

𝑐
න ම 𝛬 ൬𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
൰ 𝑑Ω 

So we have also: 

𝑆 = න ൭ ቈ− ቆ𝑚 +
𝑒

𝑐ଶ
𝜑(𝒓𝒂, 𝑡)ቇ . 𝑐.

𝑑𝑠

𝑑𝑡




൱
௧మ

௧భ

𝑑𝑡 +
1

𝑐
න ම 𝛬 ൬𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
൰ 𝑑Ω 

= න ൭ ቈ− ቀ𝑚 +
𝑒

𝑐ଶ
𝜑ቁ . 𝑐²

1

𝛾






൱
௧మ

௧భ

𝑑𝑡

𝛾

+ න ቈම 𝛬ക ቆ𝜑ക ,
𝜕𝜑ക

𝜕𝒓ക
, 𝛾

𝜕𝜑ക

𝜕𝑡
, 𝑹𝐂ക

, 𝑽𝐂ക
ቇ 𝑑𝑉ക

𝑑𝑡

𝛾ఝ
 

Where we have specified the quantities relative to: 

 the frame 𝐾ఝ of the center  of mass  𝐂𝜑 of the field 𝜑 ; 

 the frame 𝐾 of the center  of mass 𝐂𝑚 of the material system.  

𝑆 ቂ൛𝒓𝒂
(𝑡), 𝑹𝐂

(𝑡)ൟ, {𝜑ക(𝑥ക , 𝑡ക )}, 𝑹𝐂ക
(𝒕)ቃ

= න 𝐿′ ቆ൛𝒓𝒂
ൟ, ቊ

𝑑𝒓𝒂


𝑑𝑡
ቋ , 𝑹𝐂

, 𝑽𝐂
, 𝑡ቇ

௧మ

௧భ

𝑑𝑡

+ න 𝐿′ ቈ{𝜑ക}, ቊ
𝜕𝜑ക

𝜕𝒓ക
ቋ , ቊ

𝜕𝜑ക

𝜕𝑡
ቋ , 𝑹𝐂ക

, 𝑽𝐂ക
 𝑑𝑡 

So in this form, we can calculate the dynamic of the center of mass of one system and the other. 
We can see that each system is not free at all, but we have again: 
 

𝑷𝐂
= 𝛾൫𝑽𝐂

൯
𝐸

𝑐²
𝑽𝐂

 

𝑷𝐂ക
= 𝛾 ቀ𝑽𝐂ക

ቁ
𝐸ക

𝑐²
𝑽𝐂ക

 

So 𝑀 =
ா಼

²
, 𝑀ఝ =

ா಼ക

²
 

With the same method we can consider any set of systems. 

 

 

 

 



6. Does the mass of a body depend on the indeterminacy of the origin of energy? 
 
We have showed the generality of the Einstein law (without Momentum tensor). A question 
frequently come in mind when we derive this law is (see [1]) : 

 the accordance between a characteristic quantities of an (apparent) particle, the mass M; 
 and the a priori indeterminacy of the origin of the internal energy which is linked with. 

How can we reconcile the 2 different aspects of theses quantities?  

Moreover, in [1] it is stated that the mass sets the origin of the energy [scale] in relativity, what does 
that mean ? 

6.1. A free material system 
As above we start from the Least Action Principle: 

𝑆[{𝒓𝒂(𝑡)}] = න 𝐿 ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰

௧మ

௧భ

𝑑𝑡 

And again: 

𝑆[{𝒓𝒂
∗ (𝑡∗), 𝑹𝒄(𝑡)}] = න 𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰
൛𝒕𝒂,𝟐

∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗ 

Taking account 𝑑𝑡∗ =
ௗ௧

ఊ(௧)
 and returnig to the Galilean frame K we have: 

𝑆 = න 𝐿∗ ൬{𝒓𝒂
∗ }, ൜

𝑑𝑡

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

൛𝒕𝒂,𝟐
∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗

𝑑𝑡
𝑑𝑡 = න

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

𝛾(𝑽𝐂)

௧మ

௧భ

𝑑𝑡 

We want to calculate 𝑷𝒄 =
డ

డ𝑽𝐂

∗൬{𝒓𝒂
∗ },൜ఊ(𝑽𝐂)

𝒓𝒂
∗


ൠ൰

ఊ(𝑽𝐂)
 

Thanks to the indeterminacy of the action we can also physically work with the equivalent action: 

𝑆ௗ[{𝒓𝒂(𝑡)}] = න 𝐿ௗ ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰

௧మ

௧భ

𝑑𝑡 = න ቆ𝐿 ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰ +

𝑑𝑓(𝑡, {𝒓𝒂})

𝑑𝑡
ቇ

௧మ

௧భ

𝑑𝑡 

Which gives now: 

𝑆ௗ[{𝒓𝒂
∗ (𝑡∗), 𝑹𝒄(𝑡)}] = න ቆ𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰ +
𝑑𝑓(𝑡∗, {𝒓𝒂

∗ })

𝑑𝑡∗ ቇ
൛𝒕𝒂,𝟐

∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗ 

= න ቆ𝐿∗ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰ +
𝑑𝑓(𝑡∗, {𝒓𝒂

∗ })

𝑑𝑡∗ ቇ
൛𝒕𝒂,𝟐

∗ ൟ

൛𝒕𝒂,𝟏
∗ ൟ

𝑑𝑡∗

𝑑𝑡
𝑑𝑡 

= න
𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰ +
𝑑𝑓(𝑡∗, {𝒓𝒂

∗ })
𝑑𝑡∗

𝛾(𝑽𝐂)

௧మ

௧భ

𝑑𝑡 

So we can work with the modified Lagrangian: 



𝐿′ௗ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ =

𝐿∗ ൬{𝒓𝒂
∗ }, ൜

𝑑𝒓𝒂
∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰ + 𝛾(𝑽𝐂)
𝑑𝑓(𝑡∗, {𝒓𝒂

∗ })
𝑑𝑡

𝛾(𝑽𝐂)
 

=
𝐿∗ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂൰

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
 

But ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
=

∑
ങቀೣೕ,ೌ

∗ቁ

ങೣ,ೌ
∗ ௗ௫,ೌ

∗
ೌ

ௗ௧
= ∑ ቀ

డ(௧∗,{𝒓𝒂
∗ })

.డ௧∗ 𝑐
ௗ௧∗

ௗ௧
+

డ(௧∗,{𝒓𝒂
∗ })

డ𝒓𝒂
∗

ௗ𝒓𝒂
∗

ௗ௧
ቁ = 

=  ቆ𝛾
𝜕𝑓(𝑡∗, {𝒓𝒂

∗ })

𝜕𝑡

1

𝛾
+

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡
ቇ



= ൭
𝜕𝑓(𝑡∗, {𝒓𝒂

∗ })

𝜕𝑡
+

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൱ 

= ൭
𝑑𝑡∗

𝑑𝑡

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗
+

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൱ = ൭
1

𝛾

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗
+

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൱ 

=>
𝜕

𝜕𝑽𝐂

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
= ൭

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



൱
𝜕

𝜕𝑽𝐂

1

𝛾
= ൭

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



൱
𝜕

𝜕𝑽𝐂

1

𝛾
 

=>
డ

డ𝑽𝐂

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
= ቀ∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ ቁ ቀ−𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
ቁ since డ

డ𝑽𝐂

ଵ

ఊ(𝑽𝐂)
= −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
 

We see that: 

𝑷𝒄 =
𝜕𝐿′ௗ

𝜕𝑽𝐂

=
𝜕𝐿′

𝜕𝑽𝐂

−
𝛾(𝑽𝐂) ൬∑

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗ ൰

𝑐²
𝑽𝐂 = 𝛾(𝑽𝐂) ൭𝑀 −

1

𝑐²


𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



൱ 𝑽𝐂  

Hence, the mass is indeed a priori indeterminate as : 

 the general mass has the form 𝑀ௗ = 𝑀 −
ଵ

𝑐²
∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗  ; 
 with 𝑓(𝑡∗, {𝒓𝒂

∗ })  a function which can be freely chosen. 

Yet, there is a point which we have overlooked so far: the relativistic invariance. 

We can always make the choice, permitted in relativity, to consider only expression in the Lagrangian 
which gives a relativistic invariant. This restrict us to choose (𝑡∗, {𝒓𝒂

∗ }) = 0 , as the only relativistic 
invariant associated to free a particle is the 4D line element 𝑑𝑠.  

൫𝑀ௗ൯
 ೌௗ௧ ௦ ௦ ௧௩௦௧ ௩௧

= 𝑀 −
1

𝑐²


𝜕0

𝜕𝑡∗



= 𝑀 

 

By definition the energy is: 𝐸 ≡ ∑
డᇲ

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డᇲ

డ𝑽𝐂

𝑽𝒄 − 𝐿ᇱ 

𝐸ௗ ≡ 
𝜕𝐿ௗ

ᇱ

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕𝐿ௗ
ᇱ

𝜕𝑽𝐂

𝑽𝒄 − 𝐿ௗ
ᇱ 



= 

𝜕 ൮
𝐿∗ ቀ{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂ቁ

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕 ൮
𝐿∗ ቀ{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂ቁ

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
൲

𝜕𝑽𝐂

𝑽𝒄 − 𝐿ௗ
ᇱ 

= 

𝜕 ൮
𝐿∗ ቀ{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂ቁ

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕 ൮
𝐿∗ ቀ{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂ቁ

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
൲

𝜕𝑽𝐂

𝑽𝒄

− ൮
𝐿∗ ቀ{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡∗ ൠ , 𝑹𝐂, 𝑽𝐂ቁ

𝛾(𝑽𝐂)
+

𝑑𝑓(𝑡∗, {𝒓𝒂
∗ })

𝑑𝑡
൲ 

=

⎣
⎢
⎢
⎢
⎢
⎡

∑

డ൮
ಽ∗ቆ൛𝒓𝒂

∗ ൟ,ቊ
𝒓𝒂

∗

∗ ቋ,𝑹𝐂,𝑽𝐂ቇ

ം൫𝑽𝐂൯
൲

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డ൮
ಽ∗ቆ൛𝒓𝒂

∗ ൟ,ቊ
𝒓𝒂

∗

∗ ቋ,𝑹𝐂,𝑽𝐂ቇ

ം൫𝑽𝐂൯
൲

డ𝑽𝐂
𝑽𝒄 − ൭

∗൬{𝒓𝒂
∗ },൜

𝒓𝒂
∗

∗ ൠ,𝑹𝐂,𝑽𝐂൰

ఊ(𝑽𝐂)
൱

⎦
⎥
⎥
⎥
⎥
⎤

+∑
డ൬

൫∗,൛𝒓𝒂
∗ ൟ൯


൰

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డ൬
൫∗,൛𝒓𝒂

∗ ൟ൯


൰

డ𝑽𝐂
𝑽𝒄 − ቀ

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
ቁ൩ 

= 𝛾𝐸∗+∑
డ൬

൫∗,൛𝒓𝒂
∗ ൟ൯


൰

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డ൬
൫∗,൛𝒓𝒂

∗ ൟ൯


൰

డ𝑽𝐂
𝑽𝒄 − ቀ

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
ቁ 

= 𝛾𝐸∗+∑ ൭
డ൬∑

భ

ം

ങ൫∗,൛𝒓𝒂
∗ ൟ൯

ങ∗ ା
ങ൫∗,൛𝒓𝒂

∗ ൟ൯

ങ𝒓𝒂
∗

𝒓𝒂
∗

ೌ ൰

డ
𝒓𝒂

∗



൱
ௗ𝒓𝒂

∗

ௗ௧
+

డ൬∑
భ

ം

ങ൫∗,൛𝒓𝒂
∗ ൟ൯

ങ∗ ା
ങ൫∗,൛𝒓𝒂

∗ ൟ൯

ങ𝒓𝒂
∗

𝒓𝒂
∗

ೌ ൰

డ𝑽𝐂
𝑽𝒄 − ቀ

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
ቁ 

= 𝛾𝐸∗+∑
డ(௧∗,{𝒓𝒂

∗ })

డ𝒓𝒂
∗

ௗ𝒓𝒂
∗

ௗ௧
+ ∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗

డቀ
భ

ം
ቁ

డ𝑽𝐂
𝑽𝒄 − ቀ

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
ቁ 

= 𝛾𝐸∗+∑
డ(௧∗,{𝒓𝒂

∗ })

డ𝒓𝒂
∗

ௗ𝒓𝒂
∗

ௗ௧
+ ∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ ቀ−𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
ቁ 𝑽𝒄 − ቀ

ௗ(௧∗,{𝒓𝒂
∗ })

ௗ௧
ቁ 

= 𝛾𝐸∗+∑
డ(௧∗,{𝒓𝒂

∗ })

డ𝒓𝒂
∗

ௗ𝒓𝒂
∗

ௗ௧
− ∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ 𝛾(𝑽𝐂)
𝑽𝐂

𝟐

𝒄²
− ቀ∑

ଵ

ఊ

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ +
డ(௧∗,{𝒓𝒂

∗ })

డ𝒓𝒂
∗

ௗ𝒓𝒂
∗

ௗ௧ ቁ 

= 𝛾𝐸∗ − 
𝜕𝑓(𝑡∗, {𝒓𝒂

∗ })

𝜕𝑡∗



𝛾(𝑽𝐂)
𝑽𝐂

𝟐

𝑐²
− ൭

1

𝛾

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



൱ 

= 𝛾𝐸∗ − 
𝜕𝑓(𝑡∗, {𝒓𝒂

∗ })

𝜕𝑡∗



ቈ
1 + 𝛾ଶ𝛽ଶ

𝛾
 = 𝛾𝐸∗ − 

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



൦

1 − 𝛽ଶ + 𝛽ଶ

1 − 𝛽ଶ

𝛾
൪ = 𝛾𝐸∗ − 𝛾 

𝜕𝑓(𝑡∗, {𝒓𝒂
∗ })

𝜕𝑡∗



 

𝐸ௗ = 𝛾 ൭𝐸∗ − 
𝜕𝑓(𝑡∗, {𝒓𝒂

∗ })

𝜕𝑡∗

𝑎

൱ 

But we know that  𝑀ௗ = 𝑀 −
ଵ

²
∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗  

Thus we can also write 
𝐸ௗ = 𝛾𝑀ௗ𝑐² 



We see that the origin of the Energy scale is the mass, even if the mass is modified by the 
indeterminacy of the Lagrangian. 

It results from that, the requirement to working only with relativistic invariant “Lagrangian” L.dt, sets 

the value of the mass (by implying 𝑓(𝑡∗, {𝒓𝒂
∗ }) =

ଵ

²
∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ = 0) and consequently sets the 

origin of the scale of the total Energy, at a non arbitrary value. 

Relativistic invariance in conjunction with Lagrangian mechanic => 

 =>
ଵ

𝑐2
∑

డ(௧∗,{𝒓𝒂
∗ })

డ௧∗ = 0 

 => 𝐸ௗ = 𝐸  & 𝑀ௗ = 𝑀 
 => 𝐸 = 𝛾(𝑽𝒄)𝑀𝑐² 
 => "The origin of the Energy scale is ϐixed by the mass [1] at a non arbitrary value":  

If we put simply 𝑽𝒄 = 𝟎 we have 𝐸 = 𝑀𝑐². 

Indeed, like Landau-Lifchitz [01] we can effectively say that in Special Relativity, the origin of the 
Energy scale is fixed by the mass (at least for free material system): If we put simply 𝑽𝒄 = 𝟎 we have 
𝐸 = 𝑀𝑐². 

Another important point. In textbook we give easily to proof for the formula 𝐸 = 𝛾(𝑽𝒄)𝑀𝑐². Starting 
from this : 

 we compute what we call the rest energy 𝐸 ≡ (𝐸)𝑽𝒄ୀ = 𝑀𝑐².  

 Then we say “The mass is the Energy at rest”, having actually in mind that this rest energy 𝐸 

is the internal energy 𝐸∗ ≡ ∑
డ∗

డ
𝒓𝒂

∗

∗


ௗ𝒓𝒂
∗

ௗ௧∗ − 𝐿∗ᇱ  

 But...where is the proof of 𝐸 = 𝐸∗? Without an analysis à la Landau-Lifchitz [1] using the 
momentum tensor this affirmation has no fondation. In this article I have given another 
equivalent proof and I think more easy to understand (Einstein himself was helped by Klein in 
order to improve his proof using the momentum tensor, indeed he failed to give a totally 
general one, cf. [7], despite his intuitively convincing different demonstrations). 

It is not at all a trivial statement as the way to prove it was not so easy, even if the elementary 
relativistic formula permit us indeed to guess it. But to guess is not to prove, that is to say to totally 
understand.  

6.2. A material system in an external Electromagnetic field 
 

 The momentum & the mass for material system in an external Electromagnetic field 
 

Although the relativistic invariance gives a clear criteria to set the mass of a free material system, the 
same material system seen an external field (electromagnetic field, gravitational field) has its origin 
broken by other kind of invariance of physics law (in point of view of the least action principle): gauge 
invariance in Electromagnetism & al, transformation of coordinate system in General Relativity. 

In the case of electromagnetism the action of a particle in a given 4-potential is ([1]): 



𝑆[{𝒓𝒂(𝑡)}, 𝑡] = න  ቂ−𝑚. 𝑐𝑑𝑠 −
𝑒

𝑐
. 𝐴(𝑥)𝑑𝑥ቃ



௦మ

௦భ

 

= න  −𝑚. 𝑐
𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
. 𝐴(𝑥)

𝑑𝑥

𝑑𝑡
൨



௧మ

௧భ

𝑑𝑡 

=> 𝐿 ൬{𝒓𝒂(𝑡)}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑡൰ =  −𝑚. 𝑐

𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
. 𝐴(𝑥)

𝑑𝑥

𝑑𝑡
൨



 

Like above, we have also: 

𝑆[{𝒓𝒂
∗ (𝑡)}, 𝑹𝐂(𝑡)] = න ൮

∑ −𝑚. 𝑐
𝑑𝑠

∗

𝑑𝑡∗ −
𝑒
𝑐

. 𝐴∗
(𝑥

∗ )
𝑑𝑥

∗

𝑑𝑡∗ ൨

𝛾(𝑽𝐂)
൲

௧భ

௧భ

𝑑𝑡 

=> 𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ −𝑚. 𝑐
𝑑𝑠

∗

𝑑𝑡∗ −
𝑒
𝑐

. 𝐴∗
(𝑥

∗ )
𝑑𝑥

∗

𝑑𝑡∗ ൨

𝛾(𝑽𝐂)
 

If we develop the expression 

𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ −𝑚 . 𝑐ଶ 𝑑𝜏
∗

𝑑𝑡∗ −
𝑒
𝑐

. ൬𝜑∗(𝒓𝒂
∗ , 𝑡∗)𝑐

𝑑𝑡∗

𝑑𝑡∗ − 𝑨∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝒓𝒂
∗

𝑑𝑡∗ ൰൨

𝛾(𝑽𝐂)
 

=
∑ −𝛾

∗. 𝑚 . 𝑐ଶ −
𝑒
𝑐

. ൬𝜑∗(𝒓𝒂
∗ , 𝑡∗)𝑐 − 𝑨∗. 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
൰൨

𝛾(𝑽𝐂)

=
∑ −൫𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒. 𝜑∗(𝒓𝒂
∗ , 𝑡∗)൯ +

𝑒
𝑐

𝑨∗(𝒓𝒂
∗ , 𝑡∗). 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
൨

𝛾(𝑽𝐂)
 

= −
∑ [𝛾

∗. 𝑚. 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]

𝛾(𝑽𝐂)
+ 

𝑒

𝑐
𝑨∗(𝒓𝒂

∗ , 𝑡∗).
𝑑𝒓𝒂

∗

𝑑𝑡


 

=>𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

∑ [𝛾
∗. 𝑚 . 𝑐ଶ + 𝑒. 𝜑∗(𝒓𝒂

∗ , 𝑡∗)]

𝛾(𝑽𝐂)
+ 

𝑒

𝑐
𝑨∗(𝒓𝒂

∗ , 𝑡∗).
𝑑𝒓𝒂

∗

𝑑𝑡


 

=>𝑷𝒄 =
𝜕𝐿′

𝜕𝑽𝐂

= 𝛾(𝑽𝐂) ቆ
∑ [𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]

𝑐ଶ ቇ 𝑽𝐂  

Which gives a mass: 

𝑀 =
∑ [𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒. 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]

𝑐²
= 𝑀 + 𝑀௧௧ 

With 𝑀 ≡
∑ ఊೌ

∗.ೌ.మ
ೌ

²
= ∑ 𝛾

∗. 𝑚  

𝑀௧௧ ≡
∑ [𝑒 . 𝜑∗(𝒓𝒂

∗ , 𝑡∗)]

𝑐²
 



The gauge invariance permits us to write with the equivalent physical action: 

𝐿ௗ ൬{𝒓𝒂(𝑡)}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑡൰ =  ቈ−𝑚. 𝑐

𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
. ቈ𝐴(𝑥) +

𝜕𝑓൫𝑥൯

𝜕𝑥


𝑑𝑥

𝑑𝑡




 

If we now take account the possibility to change of the gauge 

𝐿′ௗ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ −𝑚. 𝑐
𝑑𝑠

∗

𝑑𝑡∗ −
𝑒
𝑐

. 𝐴ௗ
∗

൫𝑥
∗ ൯

𝑑𝑥
∗

𝑑𝑡∗ ൨

𝛾(𝑽𝐂)
 

=

∑ ቈ−𝑚. 𝑐
𝑑𝑠

∗

𝑑𝑡∗ −
𝑒
𝑐

. ቈ𝐴∗
൫𝑥

∗ ൯ +
𝜕𝑓൫𝑥

∗ ൯

𝜕𝑥
∗ 

𝑑𝑥
∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)
 

=

∑ ቈ൬−𝑚. 𝑐
𝑑𝑠

∗

𝑑𝑡∗ −
𝑒
𝑐

. 𝐴∗
൫𝑥

∗ ൯
𝑑𝑥

∗

𝑑𝑡∗ ൰ −
𝑒
𝑐

.
𝜕𝑓൫𝑥

∗ ൯

𝜕𝑥
∗

𝑑𝑥
∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)
 

=

∑ ቈ൬−൫𝛾
∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂

∗ , 𝑡∗)൯ +
𝑒
𝑐

𝑨∗(𝒓𝒂
∗ , 𝑡∗). 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
൰ −

𝑒
𝑐

.
𝜕𝑓൫𝑥

∗ ൯

𝜕𝑥
∗

𝑑𝑥
∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)
 

= −
∑ [𝛾

∗. 𝑚. 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]

𝛾(𝑽𝐂)
+ 

𝑒

𝑐
𝑨∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝒓𝒂

∗

𝑑𝑡
−



∑
𝑒
𝑐

. ൬
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ −

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡∗ ൰

𝛾(𝑽𝐂)
 

= −
∑ 𝛾

∗. 𝑚. 𝑐ଶ + 𝑒. 𝜑∗(𝒓𝒂
∗ , 𝑡∗) +

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐
𝑨∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝒓𝒂

∗

𝑑𝑡
+




𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


 

𝑇ℎ𝑢𝑠 

𝐿′ௗ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

∑ 𝛾
∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂

∗ , 𝑡∗) +
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐
𝑨∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝒓𝒂

∗

𝑑𝑡
+




𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


 

=>𝑷𝒄 =
𝜕𝐿′ௗ

𝜕𝑽𝐂

= 𝛾(𝑽𝐂) ቌ
∑ [𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)] +

𝑒
𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗

𝑐ଶ
ቍ 𝑽𝐂  

Which gives a mass: 

𝑀ௗ =
∑ ൣ𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑ௗ
∗(𝒓𝒂

∗ , 𝑡∗)൧

𝑐ଶ
=

∑ 𝛾
∗. 𝑚 . 𝑐ଶ + 𝑒. 𝜑∗(𝒓𝒂

∗ , 𝑡∗) +
𝑒
𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗ ൨

𝑐ଶ
 

= 𝑀 + 𝑀௧௧,ௗ 

= 𝑀 + 𝑀௧௧ + 𝑀௨ 



With 𝑀 ≡
∑ ఊೌ

∗.ೌ.మ
ೌ

²
 ;  𝑀௧௧ ≡

∑ ೌ.ఝ∗(𝒓𝒂
∗ ,௧∗)ೌ

²
 ;  𝑀௨ ≡

ೌ


ങ൫𝒓𝒂
∗ ,∗൯

ങ∗

²
 

In this case we cannot evacuate the mass 𝑀௨ by using the relativistic invariance argument since 

the additive gauge term  
డቀ௫ೌೕ

∗ ቁ

డ௫ೌ
∗ 𝑑𝑥

∗  is an existing relativistic invariant. Indeed, contrary to the case 

of the free material system (where we cannot express the additive term due to the non-existence of 
other relativistic expression than the one for the line element ds) the addidive gauge term is not a 
material term but a field term whose the expression or the existence is guarantee by the field 
equation of the Electromagnetism: 𝑓൫𝑥

∗ ൯ is a dynamical variable, a scalar field, a direct invariant 
which is not needed to be express via other material terms invariant. 

The arbitrariness of the value of the mass is here of course not a physical problem since the least 
action principle ensure us that the modification of the mass in this way do not modify the equation 
of the dynamic, at least in a observable way. 

However, we see that the mass is in general affected by the gauge chosen...but: 

o This is only proven here for the specific case where the system considered is in an external 
field;  

o The value of the mass is well define for a free (material) system thanks to the relativistic 
invariant requirement. 
 

 The origin of the Energy scale for material system in an external Electromagnetic field 

By definition the energy is: 

 𝐸′ ≡ ∑
డᇲ

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డᇲ

డ𝑽𝐂

𝑽𝒄 − 𝐿ᇱ 

𝐸ௗ ≡ 
𝜕𝐿ௗ

ᇱ

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕𝐿ௗ
ᇱ

𝜕𝑽𝐂

𝑽𝒄 − 𝐿ௗ
ᇱ 

𝐿′ௗ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

∑ 𝛾
∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂

∗ , 𝑡∗) +
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐

𝑑𝒓𝒂
∗

𝑑𝑡
+




𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


 

= 𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ −

∑ 
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


 

𝐸ௗ ≡ 

𝜕 ൮𝐿′ ቀ{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡ቁ −

∑ 
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ ∑

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝒓𝒂

∗
𝑑𝒓𝒂

∗

𝑑𝑡 ൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡

+ ቌ𝛾(𝑽𝐂) ቌ
∑ [𝛾

∗. 𝑚 . 𝑐ଶ + 𝑒 . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)] +

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗

𝑐2
ቍ 𝑽𝐂ቍ 𝑽𝒄

− ൮𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ −

∑ 
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൲ 



= 𝐸 + 

𝜕 ൮−
∑ 

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ ∑

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝒓𝒂

∗
𝑑𝒓𝒂

∗

𝑑𝑡 ൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+ ቌ𝛾(𝑽𝐂) ቌ

∑
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗

𝑐2
ቍ 𝑽𝐂ቍ 𝑽𝒄

− ൮−
∑ 

𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൲ 

 

= 𝐸 + 
𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗



𝑑𝒓𝒂
∗

𝑑𝑡
+ ቌ𝛾(𝑽𝐂) ቌ

∑
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗

𝑐2
ቍ 𝑽𝐂ቍ 𝑽𝒄 − ൮−

∑ 
𝑒

𝑐
𝜕𝑓(𝒓𝒂

∗ , 𝑡∗)
𝜕𝑡∗ ൨

𝛾(𝑽𝐂)
+ 

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝒓𝒂
∗

𝑑𝒓𝒂
∗

𝑑𝑡


൲ 

= 𝐸 + ൭
𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗



൱ 𝛾(𝑽𝐂)𝛽ଶ +
1

𝛾(𝑽𝐂)
൨ = 𝐸 + ൭

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗



൱ ቈ
𝛾(𝑽𝐂)ଶ𝛽ଶ + 1

𝛾(𝑽𝐂)
 = 𝐸 + ൭

𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗



൱ 𝛾 

= 𝛾 ൭𝐸∗ + 
𝑒

𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗



൱ 

=>𝐸ௗ = 𝛾 ൭𝐸𝑓𝑟𝑒𝑒
∗ + 𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

∗ + 
𝑒𝑎

𝑐

𝜕𝑓(𝒓𝒂
∗

, 𝑡
∗)

𝜕𝑡∗

𝑎

൱ 

But we know that  

𝑀ௗ = 𝑀 + 𝑀௧௧ +

𝑒
𝑐

𝜕𝑓(𝒓𝒂
∗ , 𝑡∗)

𝜕𝑡∗

𝑐²
 

Thus we can also write 
𝐸ௗ = 𝛾𝑀ௗ𝑐² 

As above, the value of the mass sets the origin of the Energy scale even if : 
o The system is in an external field;  
o And the gauge was modified. 

 
We are again in accordance with Landau-Lifchitz [1]. 
If one decides to define the mass only for free system we have 

𝐸ௗ = 𝛾𝑀𝑐² + 𝛾 ൭𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
∗ + 

𝑒𝑎

𝑐

𝜕𝑓(𝒓𝒂
∗

, 𝑡
∗)

𝜕𝑡∗

𝑎

൱ 

In this case the origin of the Energy scale is 

𝐸ௗ, = 𝑀𝑐² + 𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
∗ + 

𝑒𝑎

𝑐

𝜕𝑓(𝒓𝒂
∗

, 𝑡
∗)

𝜕𝑡∗

𝑎

 

We see that with this definition of the mass, the origin of the Energy scale 𝐸ௗ, is no more the 
mass. So : 

o Either we set the origin of the Energy scale by the mass but we work with a mass dependent of 
the gauge; 

o Either we don’t set the origin of the Energy scale by the mass in order to keep a fixed value for 
the mass. 



6.3. A material system in a non-Minkowskian space-time (General Relativity) 
 

 The momentum & the mass for material system in a non-Minkowskian space-time 

The variability of the mass value appears also if we take account General relativity. But, contrary of 
the Electromagnetism & al, the gravitational field is always present. Indeed there is no sense to talk 
about space time without gravitation since we cannot put the metric equal to zero (even in 
Minkowsky space-time which is a particular gravitational field). This point is for me the fundamental 
idea of General Relativity, without that, any (directly) unobservable frame of reference would be 
considered as a possible cause  for the acceleration of a body: it would be a come-back to the “ugly” 
pre-Machian (as understood by Einstein) privileged frame of reference... 

So in general the mass of a material system in General Relativity always depends on the gravitational 
field, as stated by Einstein in his first article on cosmology  in1917 [8]. Fundamentally, there is only a 
very particular case where we can define the mass in a systematic way in GR (independently  to the 
context): the case where the system is infinitesimally small...since the Equivalence principle certifies 
us that the gravitation field is always sufficiently smooth to be sure to encounter in any infinitesimal 
space-time a quasi-Minskowskian space-time. However, in practice, we can also have a finite volume 
Minkowskian space-time (“Galilean domain”) where we can set the mass. But again, it is 
fundamentally accidental (=not at all necessary) in the spirit of GR. 

𝑆[{𝒓𝒂(𝑡)}, 𝑡] = න [−𝑚 . 𝑐𝑑𝑠] = න  ቈ−𝑚 . 𝑐ට𝑔൫𝑥

൯𝑑𝑥

 𝑑𝑥




௧మ

௧భ

௦మ

௦భ

 

= න  −𝑚. 𝑐ඨ𝑔൫𝑥

൯

𝑑𝑥


𝑑𝑡

𝑑𝑥


𝑑𝑡




௧మ

௧భ

𝑑𝑡 

=> 𝐿 ൬{𝒓𝒂(𝑡)}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑡൰ =  −𝑚. 𝑐ඨ𝑔൫𝑥


൯

𝑑𝑥


𝑑𝑡

𝑑𝑥


𝑑𝑡




 

Like above, we have also: 

𝑆[{𝒓𝒂
∗ (𝑡)}, 𝑹𝐂(𝑡)] = න

⎝

⎜
⎛

∑ ቈ−𝑚 . 𝑐ට𝑔
∗൫𝑥

∗
൯

𝑑𝑥
∗

𝑑𝑡∗
𝑑𝑥

∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)

⎠

⎟
⎞௧భ

௧భ

𝑑𝑡 

=> 𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ ቈ−𝑚. 𝑐ට𝑔
∗൫𝑥

∗
൯

𝑑𝑥
∗

𝑑𝑡∗
𝑑𝑥

∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)
 

If we develop the expression 



𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰

=

∑ ൦−𝑚. 𝑐ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡∗ 𝑐 + 𝑔ఈఉ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡∗
𝑑𝑥

ఉ∗

𝑑𝑡∗ ൪

𝛾(𝑽𝐂)
 

=

∑ ൦−𝑚 . 𝑐ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൪

𝛾(𝑽𝐂)
 

=

∑ ൦−𝑚. 𝑐ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗𝑐
𝑑𝑡

+ 𝛾(𝑽𝐂)ଶ𝑔ఈఉ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൪

𝛾(𝑽𝐂)
 

=>𝐿′ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ ൦−𝑚 . 𝑐ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൪

𝛾(𝑽𝐂)
 

 

𝑷𝒄 =
𝜕𝐿′

𝜕𝑽𝐂

=  −𝑚𝑎. 𝑐
𝜕

𝜕𝑽𝐂

ඨ
𝑔

00
∗(𝒓𝒂

∗ , 𝑡∗)

𝛾(𝑽𝐂)2
𝑐² +

1

𝛾(𝑽𝐂)
2𝑔

0𝛼
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡
𝑐 + 𝑔

𝛼𝛽
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡

𝑑𝑥𝑎
𝛽∗

𝑑𝑡


𝑎

 

= 

⎣
⎢
⎢
⎢
⎢
⎡

−𝑚𝑎 . 𝑐
1

2

൬𝑔
00

∗(𝒓𝒂
∗

, 𝑡
∗)𝑐²

𝜕
𝜕𝑽𝐂

1

𝛾(𝑽𝐂)2
+ 2𝑔

0𝛼

∗(𝒓𝒂
∗

, 𝑡
∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡
𝑐

𝜕
𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
൰

ඨ
𝑔

00
∗(𝒓𝒂

∗ , 𝑡∗)

𝛾(𝑽𝐂)2
𝑐² +

1

𝛾(𝑽𝐂)
2𝑔

0𝛼
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡
𝑐 + 𝑔

𝛼𝛽
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡

𝑑𝑥𝑎
𝛽∗

𝑑𝑡
⎦
⎥
⎥
⎥
⎥
⎤

𝑎

 

 
డ

డ𝑽𝐂

ଵ

ఊ(𝑽𝐂)
=

డ

డ𝑽𝐂

ට1 −
𝑽𝐂

𝟐

𝒄²
=

ି
భ

మ
ଶ

𝑽𝐂

𝒄²

ටଵି
𝑽𝐂

𝟐

𝒄²

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
 

 డ

డ𝑽𝐂

ଵ

ఊ(𝑽𝐂)మ =
డ൬ଵି

𝑽𝐂
𝟐

𝒄²
൰

డ𝑽𝐂

= −2
𝑽𝐂

𝒄²
 

𝑷𝒄 =
𝜕𝐿′

𝜕𝑽𝐂

= 

⎣
⎢
⎢
⎢
⎡

−𝑚𝑎 . 𝑐
1

2

ቆ𝑔
00

∗(𝒓𝒂
∗

, 𝑡
∗) ቀ−2

𝑽𝐂

𝒄²
ቁ 𝑐² + 2𝑔

0𝛼

∗(𝒓𝒂
∗

, 𝑡
∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡
𝑐 ቀ−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
ቁቇ

1

𝛾(𝑽𝐂)
ට𝑔

00
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔
0𝛼

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)2𝑔

𝛼𝛽
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡

𝑑𝑥𝑎
𝛽∗

𝑑𝑡 ⎦
⎥
⎥
⎥
⎤

𝑎

 

=
𝑽𝐂

𝑐²
𝛾(𝑽𝐂) 

⎣
⎢
⎢
⎡

𝑚𝑎 . 𝑐

𝑔
00

∗(𝒓𝒂
∗

, 𝑡
∗)𝑐² + 𝑔

0𝛼

∗(𝒓𝒂
∗

, 𝑡
∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡
𝛾(𝑽𝐂)𝑐

ට𝑔
00

∗(𝒓𝒂
∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔

0𝛼
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)2𝑔

𝛼𝛽
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡

𝑑𝑥𝑎
𝛽∗

𝑑𝑡 ⎦
⎥
⎥
⎤

𝑎

 



=
𝑽𝐂

𝑐²
𝛾(𝑽𝐂)  𝑚𝑎. 𝑐

𝑔
00

∗(𝒓𝒂
∗

, 𝑡
∗)𝑐² + 𝑔

0𝛼

∗(𝒓𝒂
∗

, 𝑡
∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡
𝛾(𝑽𝐂)𝑐

𝑑𝑠

𝑑𝑡∗



𝑎

 

=
𝑽𝐂

𝑐²
𝛾(𝑽𝐂)  𝑚𝑎. 𝑐²

𝑔
00

∗(𝒓𝒂
∗

, 𝑡
∗)𝑐

𝑑𝑡
∗

𝑑𝑡∗ + 𝑔
0𝛼

∗(𝒓𝒂
∗

, 𝑡
∗)

𝑑𝑥𝑎
𝛼∗

𝑑𝑡∗

𝑑𝑠

𝑑𝑡∗



𝑎

 

=
𝑽𝐂

𝑐2
𝛾(𝑽𝐂) 

⎣
⎢
⎢
⎡

𝑚𝑎 . 𝑐

2

𝑔
0𝑖

∗(𝒓𝒂
∗

,𝑡
∗)

𝑑𝑥𝑎
𝑖∗

𝑑𝑡∗

𝑑𝑠

𝑑𝑡∗

⎦
⎥
⎥
⎤

𝑎

=
𝑽𝐂

𝑐2
𝛾(𝑽𝐂)  𝑚𝑎 . 𝑐

2𝑔
0𝑖

∗(𝒓𝒂
∗

,𝑡
∗)

𝑑𝑥𝑎
𝑖∗

𝑑𝑠 ൨

𝑎

 

=
𝑽𝐂

𝑐²
𝛾(𝑽𝐂)  𝑚𝑎 . 𝑐²𝑔

0𝑖

∗(𝒓𝒂
∗

, 𝑡
∗)𝑢𝑎

𝑖∗

𝑎

 

𝑷𝒄 =
𝜕𝐿ᇱ

𝜕𝑽𝐂
= 𝛾(𝑽𝐂)

𝐸∗

𝑐ଶ
𝑽𝐂 

With 

𝐸∗ =  𝐸
∗



=  𝑚 . 𝑐²𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑢
∗



 

According to Landau-Lifchitz in [1] in the paragraph 88: 

o if we take correctly account the a priori de-synchronization between the temporal 
coordinates  of different points of a coordinate system in a stationary metric field, 

o the expression   𝐸
∗ = 𝑚 . 𝑐²𝑔

∗(𝒓𝒂
∗ , 𝑡∗)𝑢

∗ can be express also 

𝐸
∗ = 𝑚 . 𝑐²𝑔

∗(𝒓𝒂
∗ , 𝑡∗)𝑢

∗ =
𝑚 . 𝑐²ඥ𝑔

00
∗(𝒓𝒂

∗ )

ට1 − ቀ
𝑑𝒓𝒂

∗

𝑑𝑠𝑎

ቁ
2

 

Which gives a mass: 

𝑀 =
∑ 𝑚 . 𝑐²𝑔

∗(𝒓𝒂
∗ , 𝑡∗)𝑢

∗


𝑐²
=

⎝

⎜
⎜
⎛


𝑚 . ඥ𝑔

∗(𝒓𝒂
∗ )

ඨ1 − ൬
𝑑𝒓𝒂

∗

𝑑𝑠
൰

ଶ

⎠

⎟
⎟
⎞

 ௦௧௧௬

= ൭ 𝛾 ൬
𝑑𝒓𝒂

∗

𝑑𝑠
൰

∗

𝑚 . 𝑐²ඥ𝑔
∗(𝒓𝒂

∗ )



൱

 ௦௧௧௬

 

 
 
 
 
 



 The origin of the Energy scale for material system in non-Minkowskian space-time 

By definition the energy is: 

𝐸 ≡ 
𝜕𝐿ᇱ

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+

𝜕𝐿ᇱ

𝜕𝑽𝐂

𝑽𝒄 − 𝐿ᇱ 

𝐿ᇱ ൬{𝒓𝒂
∗ (𝑡)}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂, 𝑡൰ =

∑ ቈ−𝑚. 𝑐ට𝑔
∗൫𝑥

∗
൯

𝑑𝑥
∗

𝑑𝑡∗
𝑑𝑥

∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)

=

∑ ቈ−𝑚𝑎 . 𝑐ට𝑔
00

∗(𝒓𝒂
∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔

0𝛼
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)2𝑔

𝛼𝛽
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥𝑎

𝛼∗

𝑑𝑡

𝑑𝑥𝑎
𝛽∗

𝑑𝑡
𝑎

𝛾(𝑽𝐂)
 

𝐸 ≡ 

𝜕

⎝

⎜
⎜
⎜
⎛∑ −𝑚𝑎. 𝑐ඨ𝑔𝑖𝑘

∗ ቀ𝑥𝑎
𝑗∗

ቁ
𝑑𝑥𝑎

𝑖∗

𝑑𝑡
∗

𝑑𝑥𝑎
𝑘∗

𝑑𝑡
∗ 𝑎

𝛾(𝑽𝐂)

⎠

⎟
⎟
⎟
⎞

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+ ൭𝛾൫𝑽𝐂൯

𝐸
∗

𝑐2
𝑽𝐂൱ 𝑽𝒄 −

⎝

⎜
⎜
⎜
⎛∑ −𝑚𝑎. 𝑐ඨ𝑔𝑖𝑘

∗ ቀ𝑥𝑎
𝑗∗

ቁ
𝑑𝑥𝑎

𝑖∗

𝑑𝑡
∗

𝑑𝑥𝑎
𝑘∗

𝑑𝑡
∗ 𝑎

𝛾(𝑽𝐂)

⎠

⎟
⎟
⎟
⎞

 

 

𝜕

⎝

⎜
⎜
⎜
⎛−𝑚𝑎. 𝑐ඨ𝑔𝑖𝑘

∗ ቀ𝑥𝑎
𝑗∗

ቁ
𝑑𝑥𝑎

𝑖∗

𝑑𝑡
∗

𝑑𝑥𝑎
𝑘∗

𝑑𝑡
∗ 

𝛾(𝑽𝐂)

⎠

⎟
⎟
⎟
⎞

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

=

𝜕

⎝

⎜
⎜
⎛−𝑚 . 𝑐ඨ𝑔

∗(𝒓𝒂
∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡

𝛾(𝑽𝐂)

⎠

⎟
⎟
⎞

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

 

=
−𝑚 . 𝑐

𝛾(𝑽𝐂)

𝜕 ൮ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

 

𝜕 ൮ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൲

𝜕
𝑑𝑥

ఊ∗

𝑑𝑡

 

=
1

2

𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)𝛿ఈఊ𝑐 + 2𝛾(𝑽𝐂)ଶ𝑔ఈఉ
∗(𝒓𝒂

∗ , 𝑡∗)𝛿ఈఊ
𝑑𝑥

ఉ∗

𝑑𝑡

ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡

 



=
𝛾(𝑽𝐂)𝑔ఊ

∗(𝒓𝒂
∗ , 𝑡∗)𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఊఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఉ∗

𝑑𝑡
𝑑𝑠
𝑑𝑡∗

 

𝜕

⎝

⎜
⎜
⎜
⎛

∑

−𝑚𝑎. 𝑐ඨ𝑔𝑖𝑘
∗ ቀ𝑥𝑎

𝑗∗
ቁ

𝑑𝑥𝑎
𝑖∗

𝑑𝑡
∗

𝑑𝑥𝑎
𝑘∗

𝑑𝑡
∗ 

𝛾(𝑽𝐂)𝑎

⎠

⎟
⎟
⎟
⎞

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)

𝜕 ൮ඨ𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑐² + 𝛾(𝑽𝐂)2𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡
𝑑𝑥

ఉ∗

𝑑𝑡
൲

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡𝑎

 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
𝑑𝑠
𝑑𝑡∗

⎝

⎜
⎜
⎜
⎛

𝛾(𝑽𝐂)𝑔ଵ
∗(𝒓𝒂

∗ , 𝑡∗)𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ଵఉ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఉ∗

𝑑𝑡

𝛾(𝑽𝐂)𝑔ଶ
∗(𝒓𝒂

∗ , 𝑡∗)𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ଶఉ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఉ∗

𝑑𝑡

𝛾(𝑽𝐂)𝑔ଷ
∗(𝒓𝒂

∗ , 𝑡∗)𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ଷఉ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఉ∗

𝑑𝑡 ⎠

⎟
⎟
⎟
⎞

𝑎

 

𝐸 = 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
𝑑𝑠
𝑑𝑡∗

ቆ𝛾(𝑽𝐂)𝑔ఈ
∗(𝒓𝒂

∗ , 𝑡∗)
𝑑𝑥

ఈ∗

𝑑𝑡
𝑐 + 𝛾(𝑽𝐂)ଶ𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఉ∗

𝑑𝑡

𝑑𝑥
ఈ∗

𝑑𝑡
ቇ



+ ൬𝛾(𝑽𝐂)
𝐸∗

𝑐ଶ
𝑽𝐂൰ 𝑽𝒄

−

⎝

⎜
⎛

∑ ቈ−𝑚 . 𝑐ට𝑔
∗൫𝑥

∗
൯

𝑑𝑥
∗

𝑑𝑡∗
𝑑𝑥

∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)

⎠

⎟
⎞

 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
ቆ𝑔ఈ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑠
𝑐 + 𝑔ఈఉ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఉ∗

𝑑𝑡∗

𝑑𝑥
ఈ∗

𝑑𝑠
ቇ



+ ൬𝛾(𝑽𝐂)
𝐸∗

𝑐ଶ
𝑽𝐂൰ 𝑽𝒄 −

⎝

⎜
⎛

∑ ቈ−𝑚 . 𝑐ට𝑔
∗൫𝑥

∗
൯

𝑑𝑥
∗

𝑑𝑡∗
𝑑𝑥

∗

𝑑𝑡∗ 

𝛾(𝑽𝐂)

⎠

⎟
⎞

 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
ቆ𝑔ఈ

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
ఈ∗

𝑑𝑡∗

𝑑𝑥
∗

𝑑𝑠
ቇ



+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ − ቆ
∑ [−𝑚 . 𝑐𝑑𝑠]

𝛾(𝑽𝐂)𝑑𝑡∗
ቇ 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
ቆ𝑔

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
∗

𝑑𝑡∗

𝑑𝑥
∗

𝑑𝑠
− 𝑔

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
∗

𝑑𝑠

𝑑𝑥
∗

𝑑𝑡∗
ቇ



+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ − ቆ
∑ [−𝑚 . 𝑐𝑑𝑠]

𝛾(𝑽𝐂)𝑑𝑡∗
ቇ 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
ቆ

𝑑𝑠

𝑑𝑡∗
− 𝑢

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
∗

𝑑𝑡∗
ቇ



+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ − ቆ
∑ [−𝑚 . 𝑐𝑑𝑠]

𝛾(𝑽𝐂)𝑑𝑡∗
ቇ 

= 
−𝑚 . 𝑐

𝛾(𝑽𝐂)
ቆ−𝑢

∗(𝒓𝒂
∗ , 𝑡∗)

𝑑𝑥
∗

𝑑𝑡∗
ቇ



+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ 

= 
𝑚 . 𝑐𝑢

∗(𝒓𝒂
∗ , 𝑡∗)

𝛾(𝑽𝐂)


+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ =
𝐸∗

𝛾(𝑽𝐂)
+ 𝛾(𝑽𝐂)𝐸∗𝛽ଶ = 𝛾(𝑽𝐂)𝐸∗ ൬

1

𝛾(𝑽𝐂)ଶ
+ 𝛽ଶ൰ = 𝛾(𝑽𝐂)𝐸∗(1 − 𝛽ଶ + 𝛽ଶ) = 𝛾(𝑽𝐂)𝐸∗ 

𝐸 = 𝛾𝐸∗ 

With 

𝐸∗ =  𝐸
∗



=  𝑚 . 𝑐²𝑔
∗(𝒓𝒂

∗ , 𝑡∗)𝑢
∗



= ൭ 𝛾 ൬
𝑑𝒓𝒂

∗

𝑑𝑠
൰

∗

𝑚. 𝑐²ඥ𝑔
∗(𝒓𝒂

∗ )



൱

 ௦௧௧௬

 



Thus we can also again write 
𝐸 = 𝛾𝑀𝑐² 

 
We can see here that : 

 as the Gauge field theory, if we change the coordinate system, M is modified but not the role 
of the mass as again an origin of the Energy scale (accordance with Landau-Lifchitz [1]), 
which remain: 

o for every gravitational field;  
o for every coordinate space-time. 

 But contrary to the Gauge field theory, the mass is not a sum of : 
o a free part; 
o plus an interacting part ; 
o plus an gauge part. 

Indeed as the system is always and necessary in the space-time there is no way to separate it from 
the gravitational field: there is no free term relative to the gravitation, only interacting terms. This is 
in accordance with the fundamental and particular role of gravitation in physics.  Otherwise any 
terms in the action would lose its signification due to the arbitrariness of the coordinate system: the 
truly role of the gravitation (via the metric) is the one of a filter which absorbs any effect of the 
coordinate transformation in the action.  

Although the mass depend of the context (Einstein-Mach idea), in practice we work in a cosmological 
context where for quasi-every system, if we move sufficiently away from it, the space-time tends to 
be approximatively Minkowskian. Thus, in paragraph 96 of [1], Landau-Lifchitz have given the proof 
that the momentum-tensor, and so the mass, are independent of the frame of reference if the 
system studied is free. So the total mass in an internal volume surround by a Galilean domain are 
well defined. It is again a “cosmological” accident in the RG spirit. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7. Why the Einstein law (the mass as internal energy) does not appear in Newtonian mechanics? 
The crucial role of the Einstein non-universality of time law  

If we put from the start of the theory the Newtonian law that time is universal, 𝑑𝑡 = 𝑑𝑡∗, that is to 
say 𝛾(𝑽𝐂) = 1, we have: 

𝑷𝒄 ≡
𝜕𝐿ᇱ

𝜕𝑽𝐂

=
𝜕𝐿ᇱ ൬{𝒓𝒂

∗ }, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)
=

𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ },

𝑑𝒓𝒂
∗

𝑑𝑡
൰ = 0 

Which is of course wrong, so why we cannot use the Lagrangian 𝐿ᇱ ቀ{𝒓𝒂
∗ }, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ ? 

Actually this Lagrangian is correct...the problem is the passage to the limit: 

o 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛𝑖𝑎𝑛 non universality of time 𝑑𝑡 ≠ 𝑑𝑡∗, 
o To the 𝑁𝑒𝑤𝑡𝑜𝑛𝑖𝑎𝑛 universality of time 𝑑𝑡 = 𝑑𝑡∗, 
o Before the derivation and not after. 

Indeed, if keep the non universality of time during the derivation process we have necessary directly 

𝑷𝒄,𝑬𝒊𝒏𝒔𝒕𝒆𝒊𝒏 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)

𝐸∗

𝑐ଶ
 

And then, the passage to the limit of universality of time gives  

𝑷𝒄,𝑵𝒆𝒘𝒕𝒐𝒏 = 𝐥𝐢𝐦
ఊ(𝑽𝐂

𝟐)→ଵ
𝑽𝐂. 𝛾(𝑽𝐂

𝟐)
𝐸∗

𝑐ଶ
= 𝑽𝐂.

𝐸∗

𝑐ଶ
 

Which keep the link between the mass and the energy in the Newtonian limit since the 

proportionality coefficient is again ா
∗

మ. 

Therefore, we are faced to a (famous) mathematical non equivalence (non-commutativity of 
derivative and the limit operation): 

൦
𝜕 ൬ lim

ఊ(𝑽𝐂)→ଵ
𝐿′൰

𝜕𝑽𝐂
=

𝜕

𝜕𝑽𝐂
൮ lim

ఊ(𝑽𝐂)→ଵ

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)
൲൪ ≠ ൦ lim

ఊ(𝑽𝐂)→ଵ
ቆ

𝜕𝐿′

𝜕𝑽𝐂
ቇ = lim

ఊ(𝑽𝐂)→ଵ
൮

𝜕

𝜕𝑽𝐂

𝐿∗ ൬{𝒓𝒂
∗ }, ൜𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ൰

𝛾(𝑽𝐂)
൲൪ 

So, what is the procedure used in the Newtonian theory, and why the procedure doesn’t show the 
link between the mass and the internal energy? 

Like explain in Landau-Lifchitz [2]: 

o we start from a Lagrangian 𝐿 ቀ{𝒓𝒂}, ቄ
ௗ𝒓𝒂

ௗ௧
ቅ , 𝑡ቁ  

o we pose the principle of the additivity  of the Lagrangian for independent system (as in 
Einstein Special Relativity) 

𝐿 ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ , 𝑡൰ =  𝐿 ൬𝒓𝒂,

𝑑𝒓𝒂

𝑑𝑡
, 𝑡൰ 

o we pose the principle of the homogeneity of space and for time 

𝐿 ൬𝒓𝒂,
𝑑𝒓𝒂

𝑑𝑡
, 𝑡൰ = 𝐿 ൬

𝑑𝒓𝒂

𝑑𝑡
൰ 



o we pose the principle of the isotropy of space 

𝐿 ൬
𝑑𝒓𝒂

𝑑𝑡
൰ = 𝐿 ൬ቀ

𝑑𝒓𝒂

𝑑𝑡
ቁ

2

൰ 

o we pose the principle of Galileo-Newtonian kinematic between to Galilean frame K & K’ 

⎝

⎛

𝑡 = 𝑡′ (𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡𝑖𝑚𝑒)

𝑥 = 𝑥ᇱ + 𝑉ᇲ/ . 𝑡′

𝑦 = 𝑦ᇱ

𝑧 = 𝑧′ ⎠

⎞ 𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 ቆ
𝑑𝒓𝒂

𝑑𝑡
=

𝑑𝒓𝒂
ᇱ

𝑑𝑡
+ 𝑽𝑲ᇲ/𝑲ቇ 

Therefore we can compute the momentum where K’=K* and 𝑽𝑲ᇲ/𝑲 = 𝑽𝒄  

𝑷𝒄,𝑵𝒆𝒘𝒕𝒐𝒏 =
𝜕

𝜕𝑽𝐂
𝐿 ൬{𝒓𝒂}, ൜

𝑑𝒓𝒂

𝑑𝑡
ൠ൰ =

𝜕

𝜕𝑽𝐂
 𝐿 ቆ

𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ = 
𝜕

𝜕𝑽𝐂
𝐿 ቆ൬

𝑑𝒓𝒂
∗

𝑑𝑡
+ 𝑽𝐂൰

ଶ

ቇ 

= 
𝜕 ൬

𝑑𝒓𝒂
∗

𝑑𝑡
+ 𝑽𝐂൰

ଶ

𝜕𝑽𝐂

𝜕

𝜕
𝑑𝒓𝒂
𝑑𝑡

ଶ 𝐿 ቆ
𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ =  2 ൬
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝑽𝐂൰

𝜕

𝜕
𝑑𝒓𝒂
𝑑𝑡

ଶ 𝐿 ቆ
𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ 

= ∑ 2 ቀ
ௗ𝒓𝒂

∗

ௗ௧
ቁ

డ

డ
𝒓𝒂


మ 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ + 2𝑽𝐂 ∑

డ

డ
𝒓𝒂


మ 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ = ∑ ቀ

ௗ𝒓𝒂
∗

ௗ௧
ቁ 𝜆 + 𝑽𝐂 ∑ 𝜆  

 if we define K* such that ∑ ቀ
ௗ𝒓𝒂

∗

ௗ௧
ቁ 𝜆 ≡ 0  

 and the quantities 𝜆 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ ≡ 2

డ

డ
𝒓𝒂


మ 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ a priori not constant (the future mass). 

In conclusion with first Galileo-Newtonian principles we have, without any other hypothesis: 

 Homogeneity & isotropy of space and homogeneity of time  
 &  Kinematic Galileo-Newtonian (Galilean transformation ) 
 &  Additivity of the Lagrangian (for independent system) 

=> 𝑷𝒄,𝑵𝒆𝒘𝒕𝒐𝒏 =
𝜕

𝜕𝑽𝐂

𝐿 ൬൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰ = ቀ 𝜆ቁ 𝑽𝐂 

With  

o 𝜆 ≡ 2
డ

డ
𝒓𝒂


మ 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ 

o ቀ∑ ቀ
ௗ𝒓𝒂

∗

ௗ௧
ቁ 𝜆 ≡ 0ቁ

௬ ௗ௧   ∗
  

In order to complete the mechanical description, we have to express the Lagrangian a  particule 

𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ more explicitly. For that we will call (following again [2]) another principle: the Galilean 

principle of relativity which affirm that the mechanical law have to be the same for any Galilean 
frame  K, K’,K*... 

But, there is a problem, the only Galilean invariants are: 

 The action 𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] by construction (the quantity, not necessary the function!) 

 The Newtonian time 𝑑𝑡 = 𝑑𝑡′ 
 And....nothing else 



We cannot construct an invariant with the basic kinematic quantities of a particle 𝒓𝒂, ௗ𝒓𝒂

ௗ௧
 and so we 

cannot construct an invariant quantity ൬ௗ𝒓𝒂

ௗ௧

ଶ
൰ . 𝑑𝑡 . 

So we are a priori blocked. In fact, the only possibility is to use the “Gauge invariance” associated to 
the least action principle, 

 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ =  𝐿∗ ൬

ௗ𝒓𝒂
∗

ௗ௧

ଶ
൰ +

ௗ(𝒓𝒂
∗,𝒕)

ௗ௧
 

 that we complete by the Galilean principle of relativity 𝐿∗ ൬
ௗ𝒓𝒂

∗

ௗ௧

ଶ
൰ = 𝐿 ൬

ௗ𝒓𝒂
∗

ௗ௧

ଶ
൰ 

(Remark: Einstein tells us that this Galilean principles contains also “the principle of Galileo-
Newtonian kinematic” defined above).  

Thanks to this “Gauge invariance”, we can make the following calculation: 

𝐿 ቆ
𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ = 𝐿 ቆ൬
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝑽𝐂൰

ଶ

ቇ = 𝐿 ቆ{𝒓𝒂
∗ }, ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

ଶ

+ (𝑽𝐂)ଶ + 2
𝑑𝒓𝒂

∗

𝑑𝑡
𝑽𝐂ቇ 

The expression, should be valid for any 𝑽𝐂 , and so even for infinitesimal value 𝜺: 

𝐿 ቆ
𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ = 𝐿 ቆ൬
𝑑𝒓𝒂

∗

𝑑𝑡
൰

ଶ

+ 𝜺ଶ + 2
𝑑𝒓𝒂

∗

𝑑𝑡
𝜺ቇ 

≈ 𝐿 ቆ
𝑑𝒓𝒂

∗

𝑑𝑡

ଶ

ቇ +
𝑑𝒓𝒂

∗

𝑑𝑡
𝜺2

𝜕𝐿

𝜕 ቀ
𝑑𝒓𝒂

∗

𝑑𝑡
ቁ

ଶ ቆ൬
𝑑𝒓𝒂

∗

𝑑𝑡
൰

ଶ

ቇ 

=  𝐿 ቆ
𝑑𝒓𝒂

∗

𝑑𝑡

ଶ

ቇ +
𝑑𝜺. 𝒓𝒂

∗

𝑑𝑡
2

𝜕𝐿

𝜕 ቀ
𝑑𝒓𝒂

∗

𝑑𝑡
ቁ

ଶ ቆ൬
𝑑𝒓𝒂

∗

𝑑𝑡
൰

ଶ

ቇ 

= 𝐿 ൬
ௗ𝒓𝒂

∗

ௗ௧

ଶ
൰ + 𝜆

ௗ𝜺.𝒓𝒂
∗

ௗ௧
 with 𝜆 = 𝜆 ൬ቀ

ௗ𝒓𝒂
∗

ௗ௧
ቁ

ଶ
൰ 

Galilean relativity principle =>  𝐿 ൬
ௗ𝒓𝒂

∗

ௗ௧

ଶ
൰ = 𝐿∗ ൬

ௗ𝒓𝒂
∗

ௗ௧

ଶ
൰ =>   𝐿∗ ൬

ௗ𝒓𝒂

ௗ௧

ଶ
൰ = 𝐿∗ ൬

ௗ𝒓𝒂
∗

ௗ௧

ଶ
൰ + 𝜆

∗ ௗ𝜺.𝒓𝒂
∗

ௗ௧
 

And the “Gauge invariance”=> 𝐿∗ ൬
ௗ𝒓𝒂

∗

ௗ௧

ଶ
൰ + 𝜆

∗ ௗ𝜺.𝒓𝒂
∗

ௗ௧
= 𝐿∗ ൬

ௗ𝒓𝒂
∗

ௗ௧

ଶ
൰ +

ௗ(𝒓𝒂
∗)

ௗ௧
 

=> ௗ(𝒓𝒂
∗)

ௗ௧
= 𝜆

∗ ௗ𝜺.𝒓𝒂
∗

ௗ௧
= 𝜆

∗ ௗ(𝒓𝒂
∗)

ௗ௧
=> డ(𝒓𝒂

∗)

డ𝒓𝒂
∗ = 𝜆

∗ డ𝜺.𝒓𝒂
∗

డ𝒓𝒂
∗ =>𝜆

∗ = 𝑓(𝒓𝒂
∗) 

But at the same time 𝜆
∗ = 𝜆

∗ ൬ቀ
ௗ𝒓𝒂

∗

ௗ௧
ቁ

ଶ
൰ , 𝑡ℎ𝑒𝑛  𝜆

∗ = 𝑐𝑡𝑒, ∀𝒓𝒂
∗  ∀ ௗ𝒓𝒂

∗

ௗ௧
  ∀𝑡 

The constant Lagrangian characteristic coefficents 𝜆
∗ ≡ 2

డ

డ
𝒓𝒂

∗



𝐿∗ ൬
ௗ𝒓𝒂

∗

ௗ௧

ଶ
൰ = 2

డ

డ
𝒓𝒂


మ 𝐿 ൬
ௗ𝒓𝒂

ௗ௧

ଶ
൰ = 𝜆 

are what we call the mass 𝑚 of a particule. 

It results from that, the expression of the momentum of the center of mass. 



𝑷𝒄,𝑵𝒆𝒘𝒕𝒐𝒏 = ቀ 𝜆ቁ 𝑽𝐂 = ቀ 𝑚ቁ 𝑽𝐂 = 𝑀. 𝑽𝐂 

This result à la Landau [2] shows us: 

o the crucial role playing by the indeterminacy of the Lagrangian (the “Gauge invariance”); 
o And no more the existence of an invariant L.dt in the action. 

This is the complete opposite of the Einsteinian case where:  

o the invariant of the action was used in the start of the reasoning;  
o and the indeterminacy of the Lagrangian was kept away.  

Moreover the latter “Gauge invariance”, when taking account after in relativity, was responsible of 
the undesirable change of the expression of the mass (although the link between the mass and the 
origin of the energy scale still remains). The consequence of this Newtonian inversion of the role 
between the “Gauge invariance” and the invariance of the action has 2 impacts in the description of 
the Newtonian mechanic. 

a. The loss of connexion of the mass and the energy scale 

Ineed, from above, we calcultate the Lagrangian and we find 

𝐿 ൬{𝒓𝒂}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ൰

= 
1

2
𝑚 ቆ

𝑑𝒓𝒂

𝑑𝑡

ଶ

ቇ = 
1

2
𝑚 ൬

𝑑𝒓𝒂
∗

𝑑𝑡
+ 𝑽𝐂൰

ଶ

= 
1

2
𝑚 ቆ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

ଶ

+ 𝑽𝐂
ଶ + 2

𝑑𝒓𝒂
∗

𝑑𝑡
𝑽𝐂ቇ 

= 
1

2
𝑚 ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

ଶ

+
1

2
𝑀𝑽𝐂

ଶ 

𝐿′ ൬{𝒓𝒂
∗}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ = 

1

2
𝑚 ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

ଶ

+
1

2
𝑀𝑽𝐂

ଶ  

The resulting energy expression is: 

𝐸′ ≡ ∑
డᇲ

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డᇲ

డ𝑽𝐂
𝑽𝒄 − 𝐿ᇱ=∑ 𝑚 ቀ

ௗ𝒓𝒂
∗

ௗ௧
ቁ

ଶ
+ 𝑀. 𝑽𝐂𝑽𝒄 − ∑

ଵ

ଶ
𝑚 ቀ

ௗ𝒓𝒂
∗

ௗ௧
ቁ

ଶ
−

ଵ

ଶ
𝑀𝑽𝐂

ଶ 

=>𝐸′ = 
1

2
𝑚 ൬

𝑑𝒓𝒂
∗

𝑑𝑡
൰

ଶ

+
1

2
𝑀𝑽𝐂

ଶ  

The mass no longer defines the origin of the energy scale. 

b. the non natural fixation of the origin of the energy scale by the relativistic invariance   

Since, we do not used relativistic invariance quantities, in order to express the Lagrangian, we cannot 
of course use it to the fixation of the Lagrangian expression with the invariance relativist. 

Thus the Lagrangian is only relative to a gauge, therefore also the origin of the energy scale. 



𝐿ௗ
ᇱ ൬{𝒓𝒂

∗}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ = 𝐿′ ൬{𝒓𝒂

∗}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ + 

𝑑𝑓(𝒓𝒂
∗, 𝑡)

𝑑𝑡


 

This indeterminacy contaminates the one of the origin of the energy scale: 

 𝐸′ௗ ≡ ∑
డ

ᇲ

డ
𝒓𝒂

∗




ௗ𝒓𝒂

∗

ௗ௧
+

డ
ᇲ

డ𝑽𝐂
𝑽𝒄 − 𝐿ௗ

ᇱ  

= 
𝜕 ൬𝐿′ ቀ{𝒓𝒂

∗}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂ቁ +

𝑑𝑓(𝒓𝒂
∗, 𝑡)

𝑑𝑡
൰

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+ 𝑀. 𝑽𝐂𝑽𝒄 − 𝐿′ ൬{𝒓𝒂

∗}, ൜
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ −

𝑑𝑓(𝒓𝒂
∗, 𝑡)

𝑑𝑡
 

=  𝑚



൬
𝑑𝒓𝒂

∗

𝑑𝑡
൰

ଶ

+ 
𝜕𝑓(𝒓𝒂

∗, 𝑡)

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
+ 𝑀. 𝑽𝐂𝑽𝒄

𝟐 − 𝐿′ ൬{𝒓𝒂
∗}, ൜

𝑑𝒓𝒂
∗

𝑑𝑡
ൠ , 𝑹𝐂, 𝑽𝐂൰ − 

𝑑𝑓(𝒓𝒂
∗, 𝑡)

𝑑𝑡


 

= 𝐸ᇱ + 
𝜕𝑓(𝒓𝒂

∗, 𝑡)

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

𝑑𝑡
− 

𝑑𝑓(𝒓𝒂
∗, 𝑡)

𝑑𝑡


= 𝐸ᇱ − 
𝜕𝑓(𝒓𝒂

∗, 𝑡)

𝜕𝑡


 

𝐸′ௗ = 𝐸′ − 
𝜕𝑓(𝒓𝒂

∗, 𝑡)

𝜕𝑡


 

Summary: 

The Einstein energy-mass equivalence law comes from Einsteinian non-universality of time law by 
the fact it gives the existence of invariants in the action, this has also 2 others consequences, the 
fixation of the energy scale by the mass and the fixation of the value of the mass (in free system) by 
the natural demand of the Lagrangian L.dt invariant expression in the action (by saying that the 
“Gauge invariance” although permit, is “not natural”).  

The Newonian universality of time reverses completely the situation. There is no more sufficiently 
invariant quantities, this oblige us to use the “not natural Gauge invariance” of the action, which 
hides the Einstein law and suppress the role of the mass as the origin of the energy scale. Moreover, 
this necessary use of “gauge invariance” does not permit us to talk about (and even think of) a 
natural invariant L.dt expression which was so necessary to set the origin of the energy scale in a 
“natural” way. 

Worst, this frequent use of “gauge invariance” in Newtonian mechanic accustomed us to consider 
that energy scale has “no natural” fixed value (in free system). Therefore when Einstein discovered 
the Special Relativity in 1905 and the mass-energy equivalence, he was again conditioned by this 
habit and so hesitated to set a fixed value of the energy scale origin by the mass. He waits several 
years before to fix it (cf. [7] or the original Einstein articles where he talked about difference of 
energy, instead of the “absolute” energy). But he set the origin of the energy scale via an intuition of 
the naturalness than a Lagrangian explanation. The latter was not the only formal expression of 
physics law, it was surely not as mature as today (in electromagnetism, gravitation...etc, and even in 
the future quantum mechanics as Feynman showed us) and so a priori not the unique convincing 
road to physics. I suppose that, if my proof of his law was not derived by himself is surely due to the 
lack of confidence of this way of thinking even if he used it after many time in General Relativity and 
his others modifications of his theory. 

 

 



8. The momentum tensor and the mass as a scalar 

A simple Lorentz transformation, shows that the 3-momentum is actually the one associated to the 

4-vector defined above 𝑃(𝐾∗) = ଵ


∫ ∭ 𝑇𝛿൫𝑛𝑥𝑥൯. 𝑑𝜂(𝐾∗)
௦ି௧

𝑑ସ𝑥.  

Thus, among all the 4-momentum  𝑃(𝐾), 𝑃(𝐾′), 𝑃(𝐾∗)... the Lagrangian method selects 𝑃(𝐾∗). 

Moreover, thanks to this association we can naturally affirm that the mass, and so the internal 
energy, is a scalar: this is the well known norm of the 4-momentum. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9. Conclusion 

We have a way to demonstrate the famous Einstein formula E*=Mc² directly from an appropriate 
Lagrangian function selecting the correct variable. 

Instead of 𝐿 ቀ{𝒓𝒂}, ቄ
ௗ𝒓𝒂

ௗ௧
ቅቁ, we use  𝐿ᇱ ቀ{𝒓𝒂

∗ }, ቄ
ௗ𝒓𝒂

∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ =

∗൬{𝒓𝒂
∗ },൜ఊ(𝑽𝐂)

𝒓𝒂
∗


ൠ,𝑹𝐂,𝑽𝐂൰

ఊ(𝑽𝐂)
.  

Instead of 𝐿′ ቂ{𝜑}, ቄ
డఝ

డ𝒓
ቅ , ቄ

డఝ

డ௧
ቅቃ, we use 𝐿′ ቂ{𝜑∗}, ቄ

డఝ∗

డ𝒓∗
ቅ , ቄ

డఝ∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ =

∭ ௸∗ቀఝ∗,
ങക∗

ങ𝒓∗ ,ఊ
ങക∗

ങ
,𝑹𝐂 ,𝑽𝐂ቁௗ∗

ఊ
.  

In the two cases we’ve calculated directly that  𝑷𝒄 ≡
డᇲ

డ𝑽𝐂

= 𝛾
ா∗

²
𝑽𝐂 

 
In this article, we have also showed: 

 The strong link with this law and the dilatation of time formula which highlight the crucial 
role of the Einstein demand of non universality of time;  

 A discussion on the meaning of the new set of variable chosen with an amusing  modified 
speed addition formula which do not contradict the one of Einstein-Poincaré; 

 A discussion on the origin of the energy scale and the link with the mass as stated by Landau-
Lifchitz. 

 Why in Newtonian mechanic the Einstein law is hidden. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10. Annex 
10.1. Annex calculation 

We want to draw the K* axis seen by K, that is to say the different axis in function of the x axis. 

൝
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧

. ൫c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
. 𝑥

∗൯

𝑥 − 𝑥(𝑡) = 𝛾௧
. ቀ𝑥

∗ + 𝛽௧
. ൫𝑡

∗ − 𝑡(௧)
∗ ൯ቁ

  

o In K, the equation of a static point in K* (𝑥
∗=cte) in function of x , that is to say 

𝑐. 𝑡(௫಼
∗ୀ௧)(𝑥) is 

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧
. ൫𝑐൫𝑡

∗ − 𝑡(௧)
∗ ൯ + 𝛽௧

. 𝑥
∗൯ = 𝛾௧

. ቆ
𝑥 − 𝑥(𝑡)

𝛽௧
. 𝛾௧

−
𝑥

∗

𝛽௧

+ 𝛽௧
. 𝑥

∗ቇ 

=
𝑥 − 𝑥(𝑡)

𝛽௧

− 𝑥
∗ . 𝛾௧

1

𝛽௧

൫1 − 𝛽௧

ଶ. ൯ =
𝑥 − 𝑥(𝑡)

𝛽௧

−
𝑥

∗

𝛾௧
. 𝛽௧

 

𝑐. 𝑡 = 𝑐. 𝑡 +
𝑥 − 𝑥(𝑡)

𝛽௧

−
𝑥

∗

𝛾௧
. 𝛽௧

 

=>𝑐. 𝑡(௫಼
∗ୀ)(𝑥) = 𝑐. 𝑡 +

௫ି௫(௧)

ఉ

−


ఊ
.ఉ

 at time  t=𝑡  

So the equation of 𝑥
∗=0 is  𝑐. 𝑡

ቀ௫಼
∗ୀቁ

(𝑥) = 𝑐. 𝑡 +
௫ି௫(௧)

ఉ

  at time  t=𝑡  

Between 𝑥(𝑡ଵ) and 𝑥(𝑡ଶ), the variation is at should: 

 𝑐. 𝑡
ቀ௫಼భ

∗ ୀቁ
(𝑥(𝑡ଶ)) − 𝑐. 𝑡

ቀ௫಼
∗ୀቁ

(𝑥(𝑡ଵ)) =
௫(௧మ)ି௫(௧భ)

ఉభ

=
(௧భ).(௧మି௧భ)

ఉభ

= 𝑐. (𝑡ଶ − 𝑡ଵ) 

 
o In K, the equation of (t*=cte) in function of x , that is to say 𝑐. 𝑡(௧∗ୀ௧)(𝑥) is 

൝
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧

. ൫c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
. 𝑥

∗൯

𝑥 − 𝑥(𝑡) = 𝛾௧
. ቀ𝑥

∗ + 𝛽௧
. ൫𝑡

∗ − 𝑡(௧)
∗ ൯ቁ

  

 
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧

. ൫c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
. 𝑥

∗൯

= 𝛾௧
. ቌc൫𝑡

∗ − 𝑡(௧)
∗ ൯ + 𝛽௧

. ൭
𝑥 − 𝑥(𝑡)

𝛾௧

− 𝛽௧
. c൫𝑡

∗ − 𝑡(௧)
∗ ൯൱ቍ 

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾௧
. ൭c൫𝑡

∗ − 𝑡(௧)
∗ ൯ + 𝛽௧

.
𝑥 − 𝑥(𝑡)

𝛾௧

− 𝛽௧

ଶ. c൫𝑡
∗ − 𝑡(௧)

∗ ൯൱ 

= 𝛾௧
. ൭൫1 − 𝛽௧

ଶ൯c൫𝑡
∗ − 𝑡(௧)

∗ ൯ + 𝛽௧
.
𝑥 − 𝑥(𝑡)

𝛾௧

൱ =
c൫𝑡

∗ − 𝑡(௧)
∗ ൯

𝛾௧

+ 𝛽௧
. (𝑥 − 𝑥(𝑡)) 

𝑐. 𝑡 = 𝑐. 𝑡 + 𝛽௧
. (𝑥 − 𝑥(𝑡)) +

c൫𝑡
∗ − 𝑡(௧)

∗ ൯

𝛾௧

 



=>𝑐. 𝑡(௧಼
∗ୀ)(𝑥) = 𝑐. 𝑡 + 𝛽௧

. (𝑥 − 𝑥(𝑡)) +
ୡቀି௧

൫൯
∗ ቁ

ఊ

 

And in particular 

𝑐. 𝑡(௧಼
∗ୀ௧

൫൯
∗ )(𝑥) = 𝑐. 𝑡 + 𝛽௧

. (𝑥 − 𝑥(𝑡)) 

 

10.2. Application: the toy model of the electron 
10.3. Application: the effective description of a particle in an external electromagnetic 

field 
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