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Abstract

Inspired by the application of differential correction to initial-value problems to find pe-
riodic orbits in both the autonomous and non-autonomous dynamical systems, in this
paper we apply differential correction to boundary-value problems. In the numerical
demonstration, the snap-through buckling of arches and shallow spherical shells in struc-
tural mechanics are selected as examples. Due to the complicated geometrical nonlinearity
in such problems, the limit points and turning points might exist. In this case, the typical
Newton-Raphson method commonly used in numerical algorithms will fail to cross such
points. In the current study, an arc-length continuation is introduced to enable the current
algorithm to capture the complicated load-deflection paths. To show the accuracy and
efficiency of differential correction, we will also apply the continuation software package
COCO to get the results as a comparison to those from differential correction. The results
obtained by the proposed algorithm and COCO agree well with each other, suggesting
the validity and robustness of differential correction for boundary-value problems.
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1. Introduction

Nonlinear behaviors can be widely found in both the natural world and engineering
applications. In general, however, it is difficult to get the analytical solutions for nonlinear
systems. The increase of degrees of freedom makes it even harder. In order to efficiently
find more accurate solutions for nonlinear systems, researchers have kept attempting to
develop new numerical algorithms, such as the finite element method (FEM) [1], the
differential quadrature method (DQM) [2], the mesh-free method [3], to name but a few.
Generally, when applying the numerical algorithm the discretization process is needed by
meshing the domain into small elements (e.g., in FEM) or using an appropriate number
of sampling points (e.g., in DQM and the mesh-free method). After the discretization,
the nonlinear differential equations are converted to nonlinear algebraic equations which
need to be solved by an iteration process.

Differential correction [4–8], or simply the shooting method [9], is a widely used nu-
merical method in the analysis of finite-dimensional continuous dynamical systems. One
common application is to obtain the periodic orbits in both the autonomous systems
[10–12] and non-autonomous systems [13, 14]. It uses the state transition matrix, the
solution to the variational equations of the governing ordinary differential equations, to
measure the linear relationship between the perturbation of the initial conditions and the
final displacements of a specific reference trajectory. The initial conditions are adjusted
according to the state transition matrix by iteration so that the final displacements can
be searched to target the desired final state. For periodic orbits, the trajectory will return
to its original state after one period so that the goal is to correct the initial condition to
realize the coincidence of initial and final states. The difference between autonomous and
non-autonomous systems (by which we mean time-periodic systems) is that the period of
periodic orbits for the former case is unknown, while in the later case it is equal to an
integer multiple of the external excitation.

Different from other numerical methods, differential correction does not need any
discretization process so that it will not yield a large matrix even when the dimension of
the system increases. Any integration algorithm for solving the initial-value problem can
work, such as the Runge-Kutta [9] or Newmark method [15]. Considering this advantage,
we seek to extend the application of differential correction to the boundary-value problems.
In this case, we need to regard the boundary-value problems as initial value problems by
considering the boundary conditions at one end as the initial conditions which need to be
adjusted to satisfy the boundary conditions at the other end.

Generally when dealing with nonlinear problems by numerical algorithms, an iteration
process is necessary after the discretization among which the Newton-Raphson method
is a popular one due to its rapid convergence. It keeps parameters constant during the
iteration process, such as the external load applied to plates and shells. However, it
requires a good initial guess to guarantee the convergence. Moreover, problems will appear
when the iteration process is faced with a limit point (the local minimum or maximum of
the equilibrium path, such as points A, B, D, and G as shown in Figure 1) or a turning
point (snap-back point, such as points E and F). For example, curved structures which
have multistability can withstand a certain loading. When subjected to large external
loading or sufficient disturbance, the structures will snap-through to a remote equilibrium
state. This behavior is sudden and associated with a fast dynamic jump which presents
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Figure 1: A qualitative schematic of the load-displacement relation of a plate, a spherical shell, and
a cylindrical shell. The three structures have the same dimensions, loading and boundary conditions,
but different initial curvatures. Of course, the change of parameters for the shells might topologically
change the equilibrium paths. The corresponding quantitative study of such structures is given in [16].
Readers are referred to the paper for details. (a) shows the classic nonlinear bending of a rectangular
plate whose load-displacement relation present a monotonic behavior which can be captured by the classic
Newton-Raphson method under either load-control or displacement-control. (b) gives the classic snap-
through of a spherical shell. The Newton-Raphson method with load-control will fail to capture the whole
path. Once the limit point C on the equilibrium path is reached, a slight increase of load will trigger
a quick snap-through into its inverted position C without capturing curve A-B-C. However, the whole
path can be traced by displacement-control. (c) shows a more complicated snap-through of a cylindrical
shell. Different from the previous two examples, the complexity of the current structure comes from the
existence of turning points E and F. The typical Newton-Raphson method fails in capturing the whole
load-displacement curve.

a decrease in the load along the equilibrium path [17, 18]. The Newton-Raphson method
fails in capturing the branch after the limit point, such as A-B-C in Figure 1(b) and
D-E-F-G-H in Figure 1(c). Although some strategies, such as using the displacement as
the increment parameter, were developed to cross the limit points, they still fail when
the snap-back phenomena appear [19], such as points E and F in Figure 1(c). To allow
numerical continuation safely past the limit point, Risks [20] creatively developed a pseudo
arc-length method. It seeks a new equilibrium point along the normal direction of the
tangent to the current or known equilibrium state at a prescribed distance along the
tangent. Later, other types of arc-length methods were created [19]. To make the current
algorithm capable of passing the limit points and turning points so that the complicated
equilibrium path can be detected, the arc-length continuation will be adopted.

In this paper, we apply differential correction to boundary-value problems using the
snap-through of arches and spherical shells as examples to show the current algorithm.
Since the limit points might exist in these systems, an arc-length method will be used as
the continuation tool. In order to compare the effectiveness and robustness of differential
correction to the state of the art, the software package COCO [21] is also used. In Section
2, we give a detailed derivation of differential correction and the arc-length continuation.
In Section 3, mathematical models of the arches and shallow spherical caps are introduced,
followed by numerical results and discussions.
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2. Numerical method

2.1. Differential correction method

As discussed in the introduction, differential correction or shooting method is com-
monly used to find the periodic orbits in both the autonomous and non-autonomous
systems [10–14]. The idea is to properly select the approximations as the initial seeds
and update the initial conditions in an iterative process so that the final state returns to
the initial state. In this paper, we aim to extend the application of differential correction
from initial-value problems to boundary value problems, using structural mechanics as
examples. In practical applications, limit points or turning points are frequently encoun-
tered. To make the current algorithm more versatile, the arc-length continuation will be
embedded.

In what follows, we briefly describe the idea of differential correction. When applying
differential correction, the boundary-value problem will be regarded as an initial-value
problem. The boundary conditions at one boundary should be considered as initial con-
ditions which will be modified by differential correction until the boundary conditions at
the other boundary of the domain are satisfied by which the system is solved.

Consider a continuous, autonomous, dynamical system of the form,

du

dt
= f(u, λ, t), where u ∈ Rn, λ ∈ Rp, (1)

where t ∈ R is the independent variable, u is the (dependent) n-dimensional state variable,
λ is a set of p parameters, and the flow field f is an n-dimensional Cr vector field with
respect to u and λ. We will limit our discussion to the case of p = 1 parameter so that
the functional dependence of f is,

f : Rn × R→ Rn, (u, λ) 7→ f(u, λ).

Let the trajectories of the system (1) with initial condition u(t0) = u0 and parameter
λ = λ0 be denoted by the flow map φ(t, t0;u0, λ0) or simply1 φ(t;u0, λ0), with dependence,

φ : R× Rn × R→ Rn, (t, u0, λ0) 7→ φ(t;u0, λ0).

One can easily verify the flow map satisfies the dynamical system (1),

d

dt
φ(t;u0, λ0) = f

(
φ(t;u0, λ0), λ0

)
, with initial condition φ(t0;u0, λ0) = u0. (2)

For a specific time t1, we denote u1 = φ(t1;u0, λ0). A schematic of the flow map is shown
in Figure 2.

Consider a reference trajectory ū(t) with initial condition ū0 at time t0 and parameter
λ̄0. Also select a nearby trajectory with a displaced initial condition ū0+δū0 and perturbed
parameter λ̄0 + δλ̄0, that is, it starts out with the state and parameter displaced by δū0

and δλ̄0, respectively, from that of the reference trajectory. The perturbation of the state

1Since the flow map of an autonomous ordinary differential equation does not depend on the initial
time t0, but only the elapsed time t− t0.
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Figure 2: A schematic of the flow map. We show the reference trajectory φ(t; ū0, λ̄0) and a neighboring
trajectory φ(t; ū0 + δū0, λ̄0) starting from an initial condition displaced by δū0 from the reference initial
condition. No perturbation of λ̄0 is considered for simplicity.

will evolve as the n-dimensional vector displacement of the perturbed trajectory from the
reference trajectory,

δū(t; λ̄0 + δλ̄0) = φ(t; ū0 + δū0, λ̄0 + δλ̄0)− φ(t; ū0, λ̄0). (3)

Measuring the displacement at time t1 and expanding in a Taylor series in δū0 and δλ̄0

yields,

δū(t1; λ̄0+δλ̄0) =
∂φ(t1; ū0, λ̄0)

∂u0

δū0+
∂φ(t1; ū0, λ̄0)

∂λ0

δλ̄0+higher order terms in δū0 and δλ̄0.

(4)
Note that in initial-value problems, t0 and t1 are often considered the initial and final
time, while in the boundary-value problem context considered here, they are the two

boundaries. The n×n matrix, ∂φ(t1;ū0,λ̄0)
∂u0

, which satisfies the above relation to first-order,

when δλ̄0 = 0, is called the state transition matrix, usually denoted by Φ(t1, t0; λ̄0). It
measures the initial and final displacements by the linear relationship

δū(t1; λ̄0) = Φ(t1, t0; λ̄0)δū0, (5)

when there is no perturbation on the parameter. It can be obtained as the fundamental
matrix solution to the linear variational equations of (1),

δ ˙̄u(t; λ̄0) = Df(ū(t), λ̄0)δū, (6)
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which are the linearized equations for the evolution of the ‘variations’, that is, displace-
ments, δū about the reference trajectory ū(t). Here Df(ū(t), λ̄0) = ∂f

∂u
(ū(t), λ̄0) is the

Jacobian matrix of the flow field f evaluated along the reference trajectory ū(t) when
there is no perturbation on the parameter.

The n-dimensional vector ∂φ(t1,ū0,λ̄0)
∂λ0

in (4), denoted by Φλ(t1, t0; λ̄0), measures the
sensitivity of the final displacement with respect to the perturbation of the parameter,
δλ̄0, that is,

δū(t1; λ̄0) = Φ(t1, t0; λ̄0)δλ̄0, (7)

when there is no initial displacement, i.e., when δū0 = 0.

Computation of Φ and Φλ.. To apply the differential correction procedure, one needs to
compute the state transition matrix Φ and the vector Φλ along a reference trajectory.
Since the flow map φ(t; ū0, λ̄0) satisfies (2), we differentiate this equation with respect to
the initial condition u0 and obtain,

d

dt

∂φ(t; ū0, λ̄0)

∂u0

= Df(φ)
∂φ(t; ū0, λ̄0)

∂u0

, with
∂φ(t0; ū0, λ̄0)

∂u0

= In, (8)

where In is the n × n identity matrix. Hence, the state transition matrix Φ solves the
following initial value problem,

Φ̇(t, t0; λ̄0) = Df(ū(t))Φ(t, t0; λ̄0), with initial condition, Φ(t0, t0; λ̄0) = In. (9)

On the other hand, since the flow map φ(t; ū0, λ̄0) also depends on the parameter λ̄0,
we differentiate (2) with respect to λ0 and obtain,

d

dt

∂φ(t; ū0, λ̄0)

∂λ0

= Df(φ)
∂φ(t; ū0, λ̄0)

∂λ0

+
∂f

∂λ0

, with
∂φ(t0; ū0, λ̄0)

∂λ0

= 0, (10)

Denoting fλ = ∂f(t;ū0,λ̄0)
∂λ0

and using Φλ from before, this can be rewritten as another initial
value problem,

Φ̇λ(t, t0; λ̄0) = Df(ū(t))Φλ(t, t0; λ̄0) + fλ, with initial condition, Φλ(t0, t0;λ0) = 0.
(11)

Note that generally (1), and more specifically the flow map (2), cannot be solved analyt-
ically, which means (9) and (11) are also not available analytically. In this case, we need
to simultaneously solve, via numerical integration, n2 + 2n first-order scalar differential
equations in (9), (11), and (2), representing the elements of Φ, Φλ, and φ, associated with
the dynamical system (1).

Arc-length method.. Once we numerically integrate (2), (9) and (11), we obtain the final
states of the system so that we can use the differential correction procedure to adjust the
initial conditions in order to target the desired final states. In a general case where a
limit point (the local maximum or minimum) exists, Newton-Raphson type continuation
methods which usually fix the load parameter will fail. In order to pass such points,
we will introduce arc-length continuation to find the equilibrium path which allows for
variable parameters.
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Suppose we want to satisfy a specific state at time t1 (or specific boundary conditions
in boundary-value problems) such that,

R(ū0, ū1, λ̄0) = 0, (12)

where for now we let the form of R be general, merely assuming the functional form

R : Rn × Rn × R→ Rn.

To make the problem-set closed, there should be n boundary conditions such that R ∈
Rn. Considering small perturbations in the initial condition δū0 and parameter δλ̄0, and
expanding in a Taylor series, we obtain the following, keeping only terms to first order in
δū0 and δλ̄0,

R(ū0, ū1, λ̄0) +
∂R(ū0, ū1, λ̄0)

∂u0

δū0 +
∂R(ū0, ū1, λ̄0)

∂u1

Φ(t1, t0; λ̄)δū0

+
∂R(ū0, ū1, λ̄0)

∂λ0

δλ̄0 +
∂R(ū0, ū1, λ̄0)

∂u1

Φλ(t1, t0; λ̄)δλ̄0 = 0.

(13)

Here R(ū0, ū1, λ̄0) is the residual vector, or out-of-balance vector [22]. It will gradually
approach zero during the process to convergence. For convenience, we introduce the
following two notations,

KT =
∂R(ū0, ū1, λ̄0)

∂u0

+
∂R(ū0, ū1, λ̄0)

∂u1

Φ(t1, t0; λ̄),

FT =
∂R(ū0, ū1, λ̄0)

∂λ0

+
∂R(ū0, ū1, λ̄0)

∂u1

Φλ(t1, t0; λ̄),

(14)

where KT is the known tangent stiffness matrix. Thus, the iteration process requires
incremental solutions at the ith iteration step of the form,

(δū0)i = −K−1
T

(
R− Fδλ̄0

)
= δuRi + δuF δλ̄i,

(15)

where,
δuR = −K−1

T R, δuF = K−1
T FT . (16)

In this case, at the ith iteration step, the displacement and load parameter are updated
by

(ū0)k = (ū0)k−1 + (∆ū0)i,

(λ̄0)k = (λ̄0)k−1 + (∆λ̄0)i.
(17)

where the subscript k means the kth load step in the continuation process and it has the
same meaning in the following text. Note that (∆ū0)i is,

(∆ū0)i = (∆ū0)i−1 + (δū0)i,

(∆λ̄0)i = (∆λ̄0)i−1 + (δλ̄0)i,
(18)

which we refer to as the cumulative incremental displacement and cumulative incremental
load, respectively. Since the load parameter λ varies during the iteration, we need to
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add an extra constraint to determine how the parameter changes. Riks [20] developed a
pseudo arc-length method which searches the solution along the normal to the tangent
with specific length to the converged equilibrium state. Crisfield [19] suggested a modified
arc-length method which searches the solution along a hyper circular or spherical path. In
this study, we follow the idea in [19]. Denoting the arc-length by ∆S, we use the following
equation as the extra constraint,

(∆ū0)Ti (∆ū0)i =‖(∆ū0)i‖
2= ∆S2. (19)

where ‖ · ‖ denotes the usual norm in Rn. Substituting the cumulative incremental
displacement in (18) to (19), one can obtain the following quadratic algebraic equation in
terms of increment of the load parameter,

a
(
δλ̄i
)2

+ 2b
(
δλ̄i
)

+ c = 0, (20)

where
a = δuTF δuF ,

b =
[
(∆ū0)i−1 + (δuR)i

]T
δuF ,

c =
[
(∆ū0)i−1 + (δuR)i

]T [
(∆ū0)i−1 + (δuF )i

]
− (∆S)2 .

For b2 − ac > 0 in (20), there are two solutions which are given by

(δλ̄i)1,2 =
−b±

√
b2 − ac
a

. (21)

The two solutions of δλ̄i determine two results of (∆ū), i.e. (∆ū)i1 and (∆ū)i2, which in
turn lead to two directions on the equilibrium path, one going to a new path and the other
one returning to the old path. To avoid ‘doubling back’ onto the old equilibrium path, the
cumulative incremental displacement in the current and previous iteration steps, (∆ū)i
and (∆ū)i−1, should be positive which means [23],

cos θ =
(∆ū)Ti−1(∆ū)i

‖(∆ū)i−1‖‖(∆ū)i‖
=

(∆ū)Ti−1(δūR)i
‖(∆ū)i−1‖‖(δūR)i‖

> 0. (22)

If both roots are positive, we choose the one that is closest to the linear solution,

δλ̄L = − c

2b
. (23)

In general, different sizes of arc-length ∆S will result in different numbers of iteration
steps. To make the number of iterations constant, the arc-length can be adjusted by the
following strategy,

∆Sk = ∆Sk−1
Id
Ik−1

, (24)

where Id is the desired number of iterations, usually smaller than 5. Based on our expe-
rience, Id does not have to be an integer and can be varied to make the equilibrium path
smoother. The first arc-length in the first load is computed by,

∆S0 = δλ
√

(δuF )T1 (δuF )1. (25)
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Figure 3: The schematic of a circular arch with length L, cross-sectional area A, span XL and height H.
Its bending stiffness is denoted by EI. The arch is subjected to a vertical concentrated force F with the
position denoted by (SF , XF , YF ).

For subsequent load steps, the initial incremental load parameters are given by [23],

δλ̄0 =
∆Sk√
δuTF δuF

sgn
[
(∆ū)Tk−1δūF

]
. (26)

where sgn[·] is the sign function. After the cumulative incremental displacement converges
to a stable value or the residual converges to a small prescribed tolerance, the iteration
process stops for that load, and proceeds to the next load step.

3. Numerical results

After we clarified the principles of differential correction and arc-length continuation,
we apply the algorithm to the structural mechanics, using the snap-through of arches and
shallow spherical shells as examples. In order to compare the accuracy and convergence
rate of the current algorithm, the continuation software package COCO will be used.

3.1. Snap-through of circular arches

As the first example, we study the snap-through of a circular arch with length L, span
XL, height H, cross-sectional area A and bending stiffness EI, as shown in Figure 3. From
the left end of the arch, we use S, X(S), Y (S) to denote the arc length, horizontal and
vertical coordinates. The angle in radians, measured counterclockwise from the horizontal,
is denoted by θ(S). The internal forces along horizontal and vertical directions are denoted
by P (S), Q(S), respectively, and the bending moment denoted by M(S). The arch
is subjected to a vertical concentrated force F with initial position (SF , XF , YF ). In
this study, we assume the arch is slender so that the planar Euler elastica, which deals
with uniform, thin, flexible and unshearable rod, is applicable to establish the governing
differential equations. Based on the geometry, constitutive relation and equilibrium, the
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differential equations are given by [24, 25],

X,S = cos θ,

Y,S = sin θ,

EI (θ,S − θ0,S) = M,

M,S = Q cos θ − P sin θ,

P,S = 0,

Q,S = 0,

(27)

where θ0(S) is the initial shape of the arch. The comma in the subscript denotes the
derivative with respect to the following coordinate. To make it more general, the following
non-dimensional parameters are introduced

(s, x, y, sF , xF , yF , xL) =
1

L
(S,X, Y, SF , XF , YF , XL) , m =

ML

EI
, (p, q, f) =

L2

EI
(P,Q, F ) ,

(28)
where the arc-length of the arch is normalized to unity, i.e., s ∈ [0, 1]. The resulting
non-dimensional differential equations are given by

x,s = cos θ,

y,s = sin θ,

θ,s = m+ θ0,s,

m,s = q cos θ − p sin θ.

p,s = 0,

q,s = 0.

(29)

In this study, we consider a circular arch whose initial shape in the non-dimensional form
is given by

θ0(s) = (1− 2s)β, θ′0(s) = −2β, (30)

where β is the angle of the left end. In this study, two types of boundary conditions with
in-plane immovable ends, i.e, pinned end and clamped end, are considered. The in-plane
immovable boundary conditions are given by,

x(0) = y(0) = y(1) = 0, x(1) = xL. (31)

Additional boundary conditions for the pinned or clamped ends are needed,

m = 0, for pinned ends,

θ = ±β, for clamped ends.
(32)

The sign of θ depends on which end of the arch is clamped. If the left end is clamped,
θ = +β, otherwise we have θ = −β.

For the concentrated force considered here, we decompose the arch into two parts
at where the force is applied. Each sub-arch is governed by its differential equations
and connected with the other by continuity conditions. Before we give the continuity
relations, we rescale the domain of each sub-arch by its respective arc-length, sF and
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1− sF , respectively, so that each arch has unit arc-length measuring from the left end of
each arch. In this study, we apply the concentrated force at a fixed point on the arch.
Thus, the horizontal coordinate might change during the deformation. The continuity
conditions of the two sub-arches are written by,

x1(1) = x2(0), y1(1) = y2(0), θ1(1) = θ2(0),

m1(1) = m2(0), p1(1) = p2(0), q1(1)− f = q2(0).
(33)

where the subscript ‘1’ and ‘2’ denote the left and right sub-archs, respectively. Now the
12 first-order differential equations, along with 6 boundary conditions and 6 continuity
conditions together are closed to be solved. It should be noted that in the non-dimensional
governing differential equations of a circular arch based on elastica theory, the only ap-
pearing parameters are the end angle β and the boundary conditions. Other geometric
and material parameters, such as the width and thickness of the cross-section, the Young’s
modulus, do not appear. Another factor that affects the deformation is the location of
the vertical concentrated force.

In fact, the force can also be applied at a fixed horizontal coordinate. In this case, the
arc-length of each sub-arch might change in the loading history. Before the implementa-
tion of differential correction, we need to rescale the domain of sub-arches to unity so that
the true arc-length of each arch will explicitly appear in the governing equations behaving
as a parameter. Here we also consider the arc-length of each arch as a state variable whose
derivative with respect to s is zero. In this case, we have an extra differential equation
written by, sF,s = 0. On this condition, the continuity condition x1(1) = x2(0) should be
corrected to be x1(1) = x2(0) = xF . Again, xF is the fixed horizontal coordinate of the lo-
cation of the applied vertical force. A similar situation exists when differential correction
is applied to compute the periodic orbits in an autonomous system [4, 11, 12]. In such
problems, the period is unknown beforehand which will be corrected during iteration. We
can consider the period as a parameter or a state variable [26, 27].

Comparison.. We start the numerical results by giving a comparison with published re-
sults [28–30] of a pinned-clamped deep circular arch subjected to a vertical concentrated
force at the crown . The central angle of the arch is 215◦. In thise case, β = 107.5◦ which
is the only parameter we need to assign to the non-dimensional governing equations. This
example was first studied in [31] and then attracted tremendous study using different
beam or arch models. Abundant data can be obtained so that it is easy to compare
the results obtained by differential correction with references among which we select Refs.
[28–30]. Figure 4 gives the load-displacement relations, where both horizontal and vertical
displacements are included. From the comparison, excellent agreement between current
results and references is observed, which demonstrates our manipulation is reasonable
and numerical computation is accurate. More good comparisons can be found in [32–37]
which are not given here for simplicity. It should be mentioned that along the equilibrium
path, self-contact was observed which cannot physically occur in practical experiments,
as also reported in [28]. For comparison, we ignore this impossibility and give the whole
equilibrium path.

Numerical results of semicircular arches.. In this part, we give the numerical results of
snap-through buckling of semicircular arches [38, 39] as shown in Figure 5. The vertical
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Figure 4: Comparison of the load-displacement relation of a pinned-clamped circular arch obtained by
differential correction with references [28–30]. The arch with central angle equal to 215◦ is subjected to
a vertical concentrated load at the apex. Here R is the radius of the circular arch. Notice that in this
figure the load is rescaled, while the displacements keep consistent as before.
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Figure 5: Schematic of a semicircular arch subjected to a vertical concentrated force. In the corresponding
numerical examples, the force will be applied at two locations: the first one is a symmetric case where the
force is applied at the crown of the arch; the second one is an asymmetric case where the force is applied
with an offset angle (π/50) from crown. Moreover, different boundary conditions will be considered,
including pinned and clamped ends.

concentrated force will be applied in two cases: the symmetric and asymmetric forces.
The symmetric force is applied at the crown of the arch, while the asymmetric force is
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Figure 6: Example of a clamped-clamped semicircular arch subjected to an asymmetric force. In (a) it
gives the load-displacement relation. The results obtained by differential correction agree well with those
obtained by COCO. Along the equilibrium path, We select 11 points, denoted by circles, to show the
corresponding configurations. In (b) the configuration of each point selected along the equilibrium path
is shown, where the blacks dot denote the location of the force during the deformation process.

applied at slightly offset location to the crown with offset angle valued at π/50. For
comparison, the results obtained by COCO will also be given.

Figure 6 gives the force-displacement relation and some configurations on the equi-
librium path of a clamped-clamped arch subjected to an asymmetric force. Here and in
the following, the displacements in the load-deflection relation are measured at the point
where the force is applied. The horizontal and vertical displacements at that point are
denoted by u and w, respectively. Figure 6(a) is a typical snap-through scenario in curved
structures. In the force-displacement relation, initially the vertical displacement increases
with the increment of the applied force until it reaches the local maximum. Then the dis-
placement keeps increasing, while the load decreases until it reaches the local minimum.
Finally, the displacement increases again with the continued application of force. On this
equilibrium path, the local maximum and minimum are usually called limit points. If the
force is applied via a displacement-controlled device, the full equilibrium path can be de-
tected [40, 41]. However, if the force is applied via a load-controlled device, the situation
is different. The force can be increased until it reaches the upper limit point. Once the
load is further increased, no matter how small it is, the arch will directly snap-through
with a sudden and fast dynamic jump to its inverted configuration, since there is no longer
any locally available stable equilibrium state. In Figure 6(a), 11 points marked as circles
are selected on the equilibrium path. Each point represents a possible equilibrium path.
The corresponding configuration is shown in Figure 6(b) from which we can notice the
deformation is asymmetric.

Figure 7(a) shows the force-displacement relation of a pinned-clamped semicircular
arch. It can be seen from the figure that this equilibrium path is more complicated than
that in Figure 6(a). Here, the snap-back behavior occurs and, moreover, the looping type
equilibrium path appears. Two more limit points exist, compared with the previous case,

13
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Figure 7: Example of a semicircular arch with pinned-clamped boundary subjected to a symmetrical
force. (a) and (b) are the force-displacement relation and configurations of equilibrium states on the
equilibrium path, respectively. [42] also predicted close results for force-displacement relation, but in
different scaling.

which separate the equilibrium into five branches among which two remote equilibrium
states are stable, and the other three in the middle are unstable. Close results were
predicted by [42], but were given in a different scaling. To show the configurations on
the equilibrium path, 11 points denoted by circles are selected on the force-displacement
relation and the corresponding configurations are shown in Figure 7(b). From the con-
figurations, we notice that once the load is applied, the apex begins to deflect and the
left end of the arch rotates in a counterclockwise direction. However, the arch cannot
directly snap-through to the inverted configuration just by continuing to rotate along the
counterclockwise direction due to physical and geometrical constraints. After the force-
displacement relation reaches the first snap-back point, the reconfiguration begins which
makes the left end rotate in a clockwise direction and pushes the center to the upper
right direction. When the equilibrium path arrives at the second turning point, the whole
structure gradually moves downward to the inverted configuration. As anticipated, the
asymmetric boundary conditions induce asymmetric deformation.

The examples given in Figures 6 and 7 show asymmetric deformation, induced by
the asymmetric loading and boundary conditions, respectively. COCO does not find any
bifurcation point (the intersection of two or more equilibrium paths) in these simulations,
indicating both snap-throughs occur at a limit point. Similar conclusions were given in
[43]. In the next example we will present the semicircular arch with symmetric boundary
constraints subjected to symmetric force at the crown. As pointed out in [17], in the
deflection of a deep arch, the pitchfork bifurcation may appear before the limit point. The
asymmetric deformation [44] might exist which is another type of asymmetric deformation.

It should be noted that the current algorithm cannot predict the bifurcation point so
that only the primary branch of the equilibrium paths can be followed. Thus, we first
present the symmetric snap-through of a pinned-pinned semicircular arch subjected to a
symmetric force at the crown, as shown in Figure 8. The force-displacement relation shows

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

1 2
3

4

56

7 8

9
10

11

12

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1

2

3

4

5

6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

7

8

9

10

11

12

Differential correction
COCO

Initial configuration Initial configuration

(a)

(b) (c)

Figure 8: Example of the primary equilibrium path of a semicircular arch with pinned-pinned boundary
subjected to symmetric concentrated force at the crown. (a) is the force-displacement relation. The curve
presents a looping path with increment of flexuosity in configurations. (b) and (c) show the configurations
on the equilibrium path where all configurations are symmetric.

a looping type of curve with multiple snap-back points which is much more complicated
than Figure 7(a). From the configurations of 12 points selected on the equilibrium path,
as shown in Figure 8(b) and Figure 8(c), symmetric deformation patterns are observed.
The increment of the loop is accompanied with the increase of the wave number and the
configurations become more flexuous, as also pointed out by [45, 46]. On the equilibrium
path shown in the figure, COCO detects 8 bifurcation points, marked as stars, among
which the first one appears before the first limit point. It implies asymmetric branch
might occur at the bifurcation point. Other bifurcation points are the bifurcations at
higher order modes. Ref. [45] predicts close results. Readers are referred to the paper for
details.
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Figure 9: Example of the bifurcated equilibrium path of a semicircular arch with pinned-pinned ends
subjected to concentrated force at the crown. (a) gives the primary and bifurcated equilibrium paths.
The two stars on the secondary equilibrium path are the two bifurcation points, diving the bifurcated
path into three parts where the left and right parts are symmetrical deformation, while the middle part
is asymmetrical deformation. The two panels at the bottom show the the zoom-in view around the
bifurcations points. (b) shows the configurations of the equilibrium states on the secondary equilibrium
path. (c) gives the comparisons with [47, 48] which shows a good agreement.

Although the current algorithm cannot predict the bifurcations, it is possible to trace
the asymmetric deformation. A commonly adopted way is to break the symmetry in
the system (as already indicated in the previous two examples): either the symmetries
of initial configuration or those of the applied load. In the buckling of flat plates, small
imperfections [49] can be added so that the geometric symmetry can be broken, while
in the snap-through of curved structures, small horizontal loads can be added so that
the symmetry in the load can be destroyed [47, 50]. For proper imperfections, the bifur-
cated equilibrium path can be well approximated. However, extremely large values might
produce a significant difference from the true equilibrium path of asymmetric deforma-
tion, while extremely small values can prevent the equilibrium path from switching to
the asymmetric deformation. Moreover, based on our experience, the desired iteration
step Id will also affect the selection of initial imperfection. Here in the current problem,
we add a very small horizontal load at the crown of the arch, i.e., 0.07%f . Figure 9
gives the bifurcated branch of a pinned-pinned semicircular arch subjected to symmetric
loading. From the force-displacement relation in Figure 9(a), at the beginning of the

16



loading process, the displacement increases with the increment of the external force and
the deformation is symmetric. When it reaches the area around the first bifurcation point,
the asymmetric deformation gradually becomes obvious. Before the first limit point, the
equilibrium state is still stable. The displacement and force both increase. After the first
limit point, the force decreases while the displacement keeps increasing. This process
is unstable. Finally after the second bifurcation point, the arch deflects to its inverted
symmetric configuration. The two panels at the bottom of Figure 9(a) give the close-up
around the bifurcation points. From the configurations in 9(b), we find the configurations
of points 1, 2, 12, and 13 are symmetric, while other configurations are asymmetric. We
also notice COCO exactly predicts the bifurcation points which are cusps connecting the
symmetric and asymmetric branches of the equilibrium path. However, since the small
horizontal external force is applied at the crown in differential correction, the bifurcation
point disappears making the equilibrium path smooth. Nevertheless, the results obtained
by differential correction and COCO match well with each other. Figure 9(c) gives an
additional comparison with [47, 48]. Good agreement is observed which demonstrates the
validation of the current results.

After we investigate the symmetric case of the pinned-pinned semicircular arch, we
analyze the asymmetric case. Figure 10 gives the asymmetric deformation of a pinned-
pinned semicircular arch subjected to an asymmetric force. The equilibrium path shows
a looping curve. Due to the asymmetric loading position, the configuration during the
deformation process is asymmetric. The wave number increases with the increment of
the loop, as shown in Figures 10(b) and 10(c). In the current asymmetric case, the offset
angle is merely π/50 ≈ 0.0628, but it makes the equilibrium path quite different from the
symmetric case shown in Figure 8. Combining with the example to obtain the secondary
equilibrium path in Figure 9, we find that the process of computing the equilibrium path
for the deep circular arch is very sensitive to perturbations, such as the offset distance
from the apex and the disturbance in the horizontal force. The small disturbance can
transfer the equilibrium path to different branches. Ref. [45] presents close results with
a good agreement with the current algorithm; readers are referred to it for the details.

3.2. Snap-through of shallow spherical caps

In this section, we present another example of the axisymmetric deformation of a
shallow spherical shell. The thickness, radius, span, and height of the spherical shell are
denoted by h, R, L and H, respectively. Due to the special geometry of the spherical
shell, the polar coordinate system is used to describe the deformation in which r and
θ are the axial and circumferential directions, and z is the vertical direction pointing
downward. In the axisymmetric case, the in-plane shear stresses and the displacement
along the circumferential direction vanish and we only need to consider the displacements
along axial and vertical directions, denoted by u(r) and w(r), respectively. In the polar
coordinate system, the governing equations for shallow shells [51] are given by,

(rNr),r −Nθ = 0, (34a)

(rQr),r + (rw,rNr),r +
r

R
(Nr +Nθ) + qr = 0, (34b)

(rMr),r −Mθ − rQr = 0, (34c)
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Figure 10: Example of a semicircular arch with pinned-pinned boundary subjected to an asymmetrical
force. (a) gives the force-displacement relation, which presents a looping type of curve with multiple snap-
back points. In the results, no bifurcations are detected by COCO. (b) and (c) show the configurations of
different equilibrium states on the equilibrium path. In the current case study, asymmetric deformation
is observed. With the increment of the loops, the wave number of the configuration increases.

where Nr and Nθ are the radial and circumferential stress resultants; Mr and Mθ are the
radial and circumferential bending moment resultants; Qr is the transverse shear force; q
is the applied transverse force. From the constitutive equations, the forces and moments
are given by (

Nr

Nθ

)
= A

(
1 ν
ν 1

)(
ε0r
ε0θ

)
,

(
Mr

Mθ

)
= −D

(
1 ν
ν 1

)(
κr
κθ

)
, (35)

where A = Eh/(1− ν2) and D = Eh3/[12(1− ν2)] are the tensile and bending stiffnesses;
ν denotes the Poisson’s ratio; ε0 and κ are the strains and curvatures on the mid-plane
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given by,

ε0r = u,r −
w

R
+

1

2
w2
,r, ε0θ =

u

r
− w

R
,

κr = w,rr, κθ =
w,r
r
.

(36)

By using (34a), we rewrite (34b) as

(rQr),r + (rw,rNr),r +
(r2Nr),r

R
+ qr = 0. (37)

Integrating (37) yields

rQr + rw,rNr +
r2Nr

R
+

∫ r

0

qxdx = 0. (38)

Substituting (34c) into (34b), and applying the constitutive relations in (35) and
the nonlinear strain-displacement relations in (36) to (34a) and (34b), we obtain the
equilibrium equations in terms of the displacements as

u,rr +
u,r
r
− u

r2
− 1 + ν

R
w,r +

1− ν
2r

w2
,r + w,rw,rr = 0,

w,rrr +
w,rr
r
− w,r

r2
− 1

Dr

∫ r

0

qrdr − 12w,r
h2

(
u,r −

w

R
+

1

2
w2
,r +

νu

r
− νw

R

)
− 12r

Rh2

(
u,r −

w

R
+

1

2
w2
,r +

νu

r
− νw

R

)
= 0.

(39)

When the radius of the spherical caps grows to infinity, we can degenerate (39) to obtain
the equations of motion for circular plates [52]. For different types of constraints at the
edge, the boundary conditions are written by

Nr(L) = w(L) = Mr(L) = 0, for a movable simply-supported edge,

u(L) = w(L) = Mr(L) = 0, for an immovable simply-supported edge,

Nr(L) = w(L) = w,r(L) = 0, for a movable clamped edge,

u(L) = w(L) = w,r(L) = 0, for an immovable clamped edge.

(40)

We still need two boundary conditions, the symmetric conditions at the apex or the origin,
which are

u(0) = w,r(0) = 0. (41)

In this case, the system consists of one second-order and one third-order differential equa-
tions associated with five boundary conditions which are complete and ready to be solved.
We introduce the following non-dimensional parameters,

r̄ =
r

L
, w̄ =

w

h
, ū =

uL

h2
, α =

L2

Rh
, γ = 6

(
1− ν2

)
, q̄ =

qL4

Eh4
. (42)

and consider uniformly distributed pressure so that the governing equations are written
in non-dimensional form as

u,rr +
u,r
r
− u

r2
− (1 + ν)αw,r +

1− ν
2r

w2
,r + w,rw,rr = 0,

w,rrr +
w,rr
r
− w,r

r2
− 12(w,r + αr)

(
u,r − αw +

1

2
w2
,r +

νu

r
− ναw

)
− γqr = 0.

(43)
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where the bars over certain variables are ignored for convenience. The boundary condi-
tions in (40) now are measured at r = 1. In order to apply differential correction, we
introduce the following notations

u0 = u, u1 = u̇0, w0 = w, w1 = ẇ0, w2 = ẇ1,

which puts the equations in (43) into a first order form, with column vector z = (u0, u1, w0, w1, w2)T ,
written by

ż = f, (44)

where f is,

f =


u1

−u1
r

+ u0
r2

+ (1 + ν)αw1 − 1−ν
2r
w2

1 − w1w2

w1

w2

−w2

r
+ w1

r2
+ 12(w1 + αr)

(
u1 − αw0 + 1

2
w2

1 + νu0
r
− ναw0

)
+ γqr

 . (45)

When applying differential correction, we need to expand the boundary conditions at
r = 1. Using the simply supported edge as an example, we have

u0(1) + Φ11δu0 + Φ12δu1 + Φ13δw0 + Φ14δw1 + Φ15δw2 + Φλ1δλ = 0,

w0(1) + Φ31δu0 + Φ32δu1 + Φ33δw0 + Φ34δw1 + Φ35δw2 + Φλ3δλ = 0,

w2(1) + Φ51δu0 + Φ52δu1 + Φ53δw0 + Φ54δw1 + Φ55δw2 + Φλ5δλ = 0.

(46)

Since u0(0) = w1(0) = 0 can be exactly satisfied, we set δu0 = δw1 = 0. In this case, we
have

R =

u0(1)
w0(1)
w2(1)

 , F =

Φλ1

Φλ3

Φλ5

 , KT =

Φ12 Φ13 Φ15

Φ32 Φ33 Φ35

Φ52 Φ53 Φ55

 , (47)

which are the residual vector, tangent force vector, and tangent stiffness matrix, respec-
tively, which can be obtained by simultaneous numerical integration. The state transition
matrix for the current problem can be obtained from the variational equations

Φ̇ = Df(z)Φ with Φ(0; z0, q) = I5, (48)

where z0 = z(0) are the boundary conditions at the origin which is used as the initial
conditions in the differential correction process. Df(z) is the Jacobian matrix of the flow
field f in (45) evaluated along the reference trajectory written by,

Df(z) =


0 1 0 0 0
1
r2

−1
r

0 Df24 −w1

0 0 0 1 0
0 0 0 0 1

12ν(w1+αr)
r

12(w1 + αr) Df53 Df54 −1
r

 . (49)

where
Df24 = (1 + ν)α− 1−ν

r
w1 − w2, Df53 = −12α(w1 + αr)(1 + ν),

Df54 =
1

r2
+ 12(u1 − αw0 +

1

2
w2

1 +
νu0

r
− ναw0) + 12w1(w1 + αr).
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Figure 11: Comparison between the results obtained by differential correction and [53, 54]. (a) shows
the comparison of an immovable clamped shallow spherical shell [53]. The geometrical parameter µ2 is
defined by µ2 =

√
12(1− ν2)L2/(Rh) and the load is rescaled by qL4m6/(4Eh4), where m4 = 12(1−ν2).

The Poisson’s ratio is taken as ν = 0.32. Current results are consistent with [53]. Good results are also
given in [55] which are not shown here for simplicity. (b) shows the comparison of shallow spherical shells
with different boundary conditions (α = 1, ν = 0.3) [54].

On the other hand, Φλ can be obtained by solving the following equations,

Φ̇λ = DfΦλ +Dλf, with Φλ(0; z0, q) = 0, (50)

where
Dλf = (0, 0, 0, 0, γr)T . (51)

Now we are ready to implement differential correction and the arc-length continuation
to get the equilibrium path of the snap-through of the shallow spherical shell. Integrating
(44), (48) and (50) along the length of the arch, we can obtain the z(1), Φ(1) and Φλ(1)
which will be assigned to (47). Note that when applying the integration, the origin is
a singular point. To avoid the singularity there, we should integrate the equations from
a small perturbation ∆r to the origin, like 10−5, so that the integration time will be
r ∈ (∆r, 1).

Comparisons.. The numerical results begin with giving comparisons with [53, 54]. Figure
11(a) gives the comparison of an immovable clamped shallow spherical shell of different
geometrical sizes with [53]. The equilibrium equations in [53] are given by momenta
equation and compatibility equation in terms of the deflection and stress function. For
the case µ2 = 0, it is the nonlinear axisymmetric bending of a flat circular plate. Figure
11(b) shows the comparison of shallow shells with different boundary conditions with
[54]. In this comparison the parameters are selected as α = 1 and ν = 0.3. From the
comparisons, good consistency between current results and [53, 54] is observed, indicating
the validity of the current model and algorithm.

Numerical results.. In the numerical results, we discuss the effects of boundary conditions
and geometrical parameters on the snap-through of shallow spherical shells. Figure 12
shows the force-displacement relation of shells with different boundary conditions: (a)
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immovable clamped edge, (b) movable clamped edge, (c) immovable simply-supported
edge, (d) movable simply-supported edge. It can be seen from the figure that if the
shell is too shallow, such as α = 1, the shell behaves similarly to a flat plate, that the
lateral deflection increases monotonously with the increment of the uniform pressure,
whatever the boundary condition is. For such geometrical parameters, no snap-through
occurs. When the height of the shell increases, the shell with an immovable simply-
supported boundary is most likely to have snap-through buckling, while the shell with
a movable clamped boundary is least likely. For α varying from 1 to 4, only the shell
with an immovable simply-supported edge has bistable equilibria; they are indicated by
the negative pressure in the force-displacement relation. Compared with other types of
boundary conditions, the movable simply-supported shell is the easiest to deform. Even
small pressure can induce much larger deflection than the shells with other boundary
conditions, which means it has the lowest overall stiffness. Note that in the current case
studying the shallow spherical shells, no snap-back behavior or looping type of force-
displacement relation exists. Since we only consider the axisymmetric deformation of the
shallow spherical shell, no bifurcation points are expected. Good agreement of results
between the current algorithm and COCO is observed which shows the accurancy and
robustness of the current approach.

3.3. Discussions

After presenting the snap-through behaviors of arches and shallow spherical shells, we
have a clear picture about differential correction. In the process of the implementation of
differential correction to solve boundary-value problems, we need to know the conditions
at one boundary that we want to target, including the final state of the trajectory and
the state transition matrix, which can be obtained by simultaneously integrating the gov-
erning equations and variational equations. By giving the initial guesses of the boundary
conditions, we can begin the continuation process to update the boundary conditions at
the other end used as the initial conditions in the differential correction process. Since the
iteration process aims to search for the correct boundary conditions, the dimension of the
matrix is at most equal to the number of the state variables (or the boundary conditions).
Because some of the boundary conditions can be automatically satisfied, generally the
dimension of the matrix is lower than the state variables.

However, in discretization methods, such as the finite element method, orthogonal
collocation method, and mesh-free method, et al., the dimension of the matrix will be
the number of the state variables multiplied by the number of nodes or sampling points
in the domain. The huge storage of node information slows down the iteration process
and increases the computational time. The more sampling points we mesh, the worse
the situation will be. Due to the large dimension of the tangent stiffness matrix in such
algorithms, the tangent stiffness matrix is only updated at a certain preselected steps of
the iteration in order to cut down the computation cost. Although it needs more iteration
steps for convergence, the computation time should be less. However, the dimension of the
tangent stiffness matrix in differential correction is constant and is much lower than that
of the discretization methods. It can be updated at every iteration step, making it fast to
converge. The only factor that slows down the computation is the numerical integration
of the equations of motion and variational equations. Another advantage of differential
correction is its easy implementation. No matter what the problems are, we use the same
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Figure 12: Force-displacement relation of shallow spherical caps with different boundary conditions and
geometry: (a) an immovable clamped edge, (b) a movable clamped edge, (c) an immovable simply-
supported edge, and (d) a movable simply-supported edge. In this figure, the Poisson’s ration is ν = 0.3.
The results obtained by differential correction and COCO agree well with each other. Close results for
the four types of boundary conditions of shallow spherical shells with α = 2 were also predicted by [54].

core of the arc-length continuation. Once it is established, it does not need to be updated.
For different boundary value problems, we only need to work on the governing equations
and variable equations to prepare the tangent stiffness matrix, tangent force vector and
the residual vector which will be used in the arc-length continuation.

Based on our experience, the implementation of differential correction is as simple as
COCO, and they predict consistent results. However, one unavoidable flaw of differential
correction, compared with COCO, is its inability to detect bifurcations. Fortunately, a so-
phisticated strategy of breaking the symmetry in the initial configuration and load makes
it possible to get the bifurcated branches of the equilibrium paths. Another shortcoming
of differential correction, which cannot be avoided, is its inability to solve partial differ-
ential equations with respect to two dimensional spatial coordinates. As for the partial
differential equations with respect to one dimensional spatial derivative and one dimen-
sional time derivative, differential correction is applicable disposing of the time derivative
by using the Newmark method.
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4. Conclusions

In this paper, we extend the application of differential correction along with arc-length
continuation to structural mechanics, the examples of the boundary-value problems. The
detailed derivations of the present algorithm are given. Two examples about the snap-
through of arches and shallow spherical shells are given to show the process of the imple-
mentation of differential correction and arc-length continuation. This method is capable
of passing the limit points and turning points, enabling the computation of complicated
equilibrium paths. Compared with other discretization schemes, the current algorithm
involves a low dimensional matrix calculation, saving storage space and speeding up com-
putation. In the meantime, the off-the-shelf continuation tool COCO was adopted to
compare with our scheme. The results obtained by the present algorithm and COCO are
consistent, showing the accuracy and robustness of the current algorithm.

From the numerical examples, we find that a small asymmetry in boundary condi-
tions and loading, such as a slight offset of location or tiny off-axis-of-symmetry force
component, can destroy the symmetrical deformation of the structures. This gives us a
strategy, breaking the symmetry of the system by introducing the small imperfection of
the configuration and load, to trace the existing bifurcated branches of the equilibrium
path which commonly exist in symmetrical deep curved structures. On the other hand,
snap-through does not exist in structures which are too shallow. Boundary conditions
will significantly affect the snap-through behavior. Deep structures might have a looping
type of equilibrium path with multiple turning points, while shallow structures present
much a simpler equilibrium path.

In the current study, we just considered the axisymmetric shallow shell model so that
only limited mechanical behavior can be predicted. However, the shell-type structures are
sensitive to boundary conditions, geometrical parameters, and initial geometrical imper-
fection. Only a more general asymmetric model can detect more complicated deformation
patterns. In future work, we will use a general shell model to study the deformation, which
will reveal more interesting phenomena. Additionally, the ability to predict bifurcation
in differential correction should also be considered.
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