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Abstract

New physics and models for the most compact astronomical objects - neutron / quark stars

and black holes are proposed. Under the new supersymmetric mirror models, neutron stars at

least heavy ones could be born from hot decon�ned quark matter in the core with a mass limit

less than 2.5M�. Even heavier cores will inevitably collapse into black holes as quark matter with

more decon�ned quark �avors becomes ever softer during the staged restoration of �avor symmetry.

With new understanding of gravity as mean �eld theories emergent from the underlying quantum

theories for providing the smooth background spacetime geometry for quantum particles, the black

hole interior can be described well as a perfect �uid of free massless Majorana fermions and gauge

bosons under the new genuine 2-d model. In particular, the conformal invariance on a 2-d torus for

the black hole gives rise to desired consistent results for the interior microphysics and structures

including its temperature, density, and entropy. Conjectures for further studies of the black hole

and the early universe are also discussed in the new framework.
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I. INTRODUCTION

Supernovae are believed to be the stellar explosions that leave behind the densest compact

objects - neutron stars (NS) and possibly black holes (BH). Neutron stars with masses up

to around 2M� have been observed [1]. Neutron star merger events via gravitational wave

detection have set an NS mass limit of about 2.2M� [2]. A new mirror matter model for

star evolution also requires the same NS mass limit [3].

The neutron degeneracy pressure alone may not be enough to support a neutron star

beyond 0.7M� [4, 5]. With more realistic equation of state for hadronic matter including

likely quark matter, a cold neutron star could meet the observed mass limit [6, 7]. Quark

matter, in particular, strange quark matter could be more stable than the most tightly

bound iron and nickel nuclei, i.e., with energy per baryon . 930 MeV [8�10]. Calculations

have shown that a star made of quark matter has a mass limit of about 2-3 M� before it

turns into a black hole [11]. It is possible that the observed neutron stars may be composed

of sophisticated components including neutron matter in the outer layer and quark matter

in the core (see Refs. [1, 6] for recent reviews). Even a new type of stellar explosion called

Quark-Nova has been proposed for describing the explosive transition of a neutron star to

a quark star [12].

The idea of no light escaping from a su�ciently massive astronomical object like a black

hole was �rst proposed more than two hundred years ago by Michell and Laplace [13, 14].

Shortly after Einstein developed his theory of general relativity (GR), Schwarzschild obtained

the �rst modern black hole solution of Einstein's equations in vacuum [15]. It describes a

static spherically symmetric black hole with the Schwarzschild metric as follows,

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dθ2 − r2 sin2(θ)dϕ2 (1)

where M is the BH mass and we adopt natural units of c = ~ = kB = 1 but keep the

gravitational constant G explicitly. The apparent singularity at the event horizon r = 2GM

does not seem to be physical and can be removed in suitable coordinates. But the singularity

at r = 0 is genuine indicating the breakdown of GR under such extreme conditions. It may

hint that GR under 4-d spacetime does not describe the BH interior within its event horizon.

In 4-d spacetime, Einstein's equations can be written as,

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (2)
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where Λ is the cosmological constant related to vacuum energy and the energy-momentum

tensor Tµν accounts for the other contents of radiation and matter. Its contraction for the

Ricci scalar R can be obtained in 4-d spacetime as,

R+ 4Λ = −8πGT µµ (3)

where T µµ is the trace of Tµν .

In 2-d spacetime, the curvature tensor Rµν has only one independent component and

therefore its geometry structure is determined solely by the Ricci scalar R. From Eq. (3),

we can then infer a possible �eld equation of gravity in 2-d spacetime to be,

R+ 2Λ = −8πGT µµ . (4)

Such an equation can also be derived under the variational principle of an action [16, 17].

Black holes and their properties in 2-d spacetime have also been studied by solving the 2-d

vacuum �eld equation [18].

In the following, we will apply recently developed supersymmetric mirror models (SMM)

and new understanding of gravity to study such extreme celestial objects, in particular,

black holes under a new framework.

II. SUPERSYMMETRIC MIRROR MODELS

The existence of a mirror sector of the Universe has been conjectured since Lee and

Yang published their Nobel Prize-winning work on parity violation [19]. It is conceivable

that there exist two sectors of particles sharing the same gravity but governed by two

separate gauge groups under 4-d spacetime. Some early works on mirror matter theory had

discussed interesting perspectives mainly in cosmology [20�22]. Later attempts to introduce

feeble interactions between the two sectors might be too conservative following conventional

practices [23�25]. Most recent works [3, 26�33] by taking the essence of mirror matter theory

with new understanding of supersymmetry (SUSY) can consistently and quantitatively solve

a variety of puzzles in fundamental physics and cosmology and may indeed lead us to new

physics beyond the Standard Model we have all been looking for.

Under the new framework, quarks of six �avors could undergo phase transitions via staged

quark condensation [28, 30] at temperatures between 102 MeV and 102 GeV, i.e., between
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FIG. 1. The schematic diagram (not to scale) is shown for the dynamic hierarchy of quantum

gravity (QG) and supersymmetric mirror models (SMM) at various phases of the Universe and

spacetime. The superscript number in model name SMM denotes the number of spacetime dimen-

sions while superscript `b' indicates that the model is for the corresponding spontaneous symmetry

breaking process. SMM4b (or a slight variant SMM4ν due to possible neutrino condensation) is the

model that governs the current Universe. See Refs. [31, 32] for more details.

energy scales of QCD and electroweak phase transitions. The spontaneous symmetry break-

ing process results in an N=4 pseudo-SUSY model (SMM4b) with a gauge SUSY multiplet

and three chiral multiplets of chiral neutrinos and six Higgs scalars in each sector [31, 32].

The schematic diagram of these supersymmetric mirror models is presented in Fig.1.

At temperatures in between 102 and 1016 GeV, the exact N=1 gauge SUSY is restored

for SMM4 still in 4-d spacetime with gauge symmetry of Uf (6)× SUc(3)× SUw(2)× UY (1)

for the ordinary sector and Uf (6)′×SUc(3)′×SUw(2)′×UY (1)′ for the mirror sector [31, 32].

At temperatures above 1016 GeV, spacetime itself may undergo dimensional phase tran-

sition, i.e., going from 4-d to 2-d. The underlying model (SMM2) becomes a simple N=1

SUSY model in 2-d spacetime with the Lagrangian,

LSMM2 = −1

4
FµνF

µν +
i

2
(λ†Lσ̄

µ∂µλL + λ†Rσ
µ∂µλR) (5)

where the U(1) gauge tensor Fµν = ∂µAν − ∂νAµ and the Majorana fermion λ has to be

neutral and does not couple to the gauge �eld Aµ. Both λ and Aµ are massless and have
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two components or degrees of freedom. They form the simplest N = 1 abelian gauge SUSY

multiplet (1, 1/2) with the on-shell Lagrangian of Eq. (5).

The phase transition between 2-d and 4-d spacetime is driven by the Majorana conden-

sates or space in�aton scalars φ and φ′ under the N=1 pseudo-SUSY model SMM2b [31].

The phase transition between 1-d and 2-d spacetime or the time in�ation process is induced

by the �timeron� scalar ϕ under the following Lagrangian (SMM1b),

LSMM1b =
1

2
ϕ̇2 +

1

2
m2
ϕϕ

2 − 1

8
ϕ4. (6)

We will apply these models for understanding the most compact stars including black

holes in the following discussions.

III. QUARK STARS

At hot neutron star births in core collapse supernovae or gravitational mergers, temper-

atures can go as high as a few tens of MeV or even ∼ 102 MeV in current models [6]. In

the new theory proposed for evolution of massive stars [3], fusion and neutron enrichment

reactions due to n − n′ oscillations can make the core much hotter and evenly mixed with

both ordinary and mirror particles. In addition, the temperature could be even higher if

quark matter, in particular, strange quark matter is more stable in the core than nuclei [9].

Therefore, a hot massive core could reach high enough temperatures to restore the chiral

SU(2) or even SU(3) symmetry for up, down, and strange quarks. As studied in staged

quark condensation of mirror matter theory [28, 30], such phase transition temperatures

could be around 150 MeV where u-, d-, and even s-quarks become decon�ned and may form

the so-called quark-gluon plasma. For a uniform hot quark-gluon plasma at temperature T ,

its energy density can be written as,

ρ =
π2

30
gT 4 (7)

where g = nb + 7/8nf is the e�ective number of relativistic degrees of freedom for fermions

(e.g., quarks) (nf ) and bosons (e.g., gluons) (nb).

Now we can �nd out the upper mass limit for such a uniform hot quark matter core using

the mirror matter model. For static spherically symmetric solutions to Einstein's equations

without singularities, there exists an upper limit on the mass-to-radius ratio of a star for
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any equation of state [34],

GM

R
<

4

9
. (8)

For a uniform core with ρ = 3M/(4πR3), one can easily derive an upper mass limit for hot

quark matter stars from Eqs. (7-8),

M <
4

9π

√
10

πgG3

1

T 2
' 0.41M�√

gT 2
GeV

(9)

where M� is the solar mass and TGeV is the temperature in GeV. If only chiral SU(2) is

restored for u- and d- quarks, we obtain nb = 16 and nf = 12 for each sector and hence

g = 53 for both ordinary and mirror sectors. Assuming that T = 0.15 GeV similar to the

QCD phase transition temperature, the mass limit becomes M < 2.5M�.

If chiral SU(3) for u-, d-, and s-quarks is restored at the same temperature, we have

nf = 18 for one sector and g = 63.5 for both resulting in M < 2.3M�. In addition, the

topological B-violating �quarkiton� process [28] that converts between strange quarks and

anti-strange quarks may be signi�cant enough to open up more degrees of freedom. In

the extreme scenario, the plasma may include all three types of quarks, e- and µ-leptons

and neutrinos, and their anti-particles. Such an extreme case will lead to g = 116 and

M < 1.7M�. Realistically, the mass limit of a hot neutron/quark star should be somewhere

in between these cases and therefore compatible with the observed limit of ∼ 2.2M�. Once

the newly formed hot compact star cools down, the equation of state for the cold neutron

star can be sti� enough to keep it stable [6, 7]. Therefore, a neutron star especially a massive

one may be born �rst as a hot quark star and then cool down into neutron / hadronic matter

later.

Note that Eq. (9) indicates that more massive cores (e.g., > 2.5M�) can not be sustained

by quark matter as more decon�ned quarks (larger g) and higher temperature T will result

in an even lower mass limit. As a matter of fact, once the mass is over the limit, more

degrees of freedom are set free and the ever softer equation of state will trigger a runaway

collapse. This will quickly heat up the core under symmetric mirror models (SMM4b and

SMM4) in 4-d spacetime to a temperature of ∼ 1016 GeV. At this point, spacetime phase

transition occurs going from 4-d to 2-d with much reduced degrees of freedom [31] resulting

in a 2-d black hole. In other words, the interior of a black hole is 2-d in nature and should

be studied under SMM2 and a suitable 2-d gravity theory.
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IV. EMERGENT GRAVITY IN DIFFERENT SPACETIME DIMENSIONS

A naive inclusion of gravity in quantum �eld theory could be S =
∫
d4x
√
−g(− 1

16πG
R+

Lm+Lφ) in 4-d spacetime, where Lm of the kinetic and mass terms of all fermion and boson

�elds contributes to the energy-momentum tensor and Lφ of the quartic terms of scalar �elds

determines the cosmological constant or vacuum energy.

For the case of a single scalar �eld φ, it gives a non-vanishing cosmological constant as

Λ = πG〈φ〉4. However, for more complicated cases like the supersymmetric mirror models

of SMM2b and SMM4b [31], we have to distinguish the three di�erent vacuum con�gurations

for ordinary and mirror gauge interactions and gravity, respectively. In particular, the

vacuum energy for gravity should be determined by the coherent sum of all scalar �elds

(even from di�erent gauge sectors) since they share the same gravity / spacetime. As such,

the gravitational vacuum energy density is ρΛ = 1
8
〈
∑

j φj〉4, which can explain the observed

dark energy density of (10−3 eV)4 under our new model [30].

An immediate idea following this line of thought is that gravity may be emergent from the

mean �eld e�ects of quantum �uctuations of spacetime after its in�ation. General relativity

can then be treated as a mean �eld theory obtained from the mean �eld action,

Sgrav =

∫
d4x
√
−g(− 1

16πG
R+ 〈Lm〉+ 〈Lφ〉) (10)

where 〈Lφ〉 requires the coherent sum of all scalar �elds for the proper cosmological constant.

Under this scenario, gravity just de�nes the spacetime metric gµν as the smooth mean

geometrical background for quantum particles.

Naturally, gravity emerges during the phase transition of 1-d time to 2-d spacetime.

Under SMM1b as in Eq. (6), the �timeron� mass can be related to the gravity curvature

scalar of the in�ating 2-d spacetime as follows,

Rt = −m2
ϕ = − 1

16πG
(11)

where the curvature scalar Rt or the gravitational constant G is a running constant during

the phase transition going from an initial value of 1/
√
G0 ∼ 1 GeV to its current value of

1/
√
G ∼ 1019 GeV. Afterwards, Rt becomes a �xed constant of −1/(16πG).

Consequently, the gravitational action for Einstein's general relativity in 4-d spacetime

can be rewritten as,

S4d
grav =

∫
d4x
√
−g(Rt(R+ 2Λ) + 〈Lm〉). (12)
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Similarly, the gravity theory for 2-d spacetime can be inferred as,

S2d
grav =

∫
d2xf(φ, φ′)

√
−g(Rt(R+ 2Λ) + 〈Lm〉). (13)

where f(φ, φ′) is a function of the two in�aton scalar �elds after integrating out the two

unextended space dimensions (which are in�ated in the early dynamic universe). The varia-

tional principle of the action with respect to the metric gµν yields no constraint on the Ricci

curvature R but does require that the trace of the energy-momentum tensor T µµ = 0. On

the contrary, varying �eld φ or φ′ gives the same equation on the Ricci scalar R as Eq. (4)

[16]. Therefore, the eventual gravitational equation for 2-d spacetime is,

R+ 2Λ = −8πGT µµ = 0. (14)

In 2-d quantum �eld theory of SMM2 as in Eq. (5), massless Majorana fermions and

U(1) gauge bosons make a perfect �uid resulting in the vanishing trace of Tµν and therefore

obey the 2-d gravity / spacetime model of Eq. (14). Next we will see how the interior of a

black hole is described in these 2-d models.

V. GENUINE 2-D BLACK HOLES

For a static spherically symmetric black hole, the Schwarzschild metric of Eq. 1) provides

the solution of its exterior (r > R = 2GM) 4-d spacetime. But the BH interior has to be

studied with the genuine 2-d models of Eq. (5) for quantum SMM2 and Eq. (14) for gravity.

Such a new framework, as shown below, presents the BH interior as a perfect �uid of free

massless Majorana fermions and gauge bosons in 2-d conformal �eld theory (CFT) on a

torus [35].

SMM2 of Eq. (5) and the gravity model of Eq. (14) together describe a conformally

invariant 2-d quantum and spacetime theory. Its e�ective number of relativistic degrees of

freedom g = 3 is identically the central charge c of the Virasoro symmetry algebra in 2-d

CFT. The corresponding Weyl anomaly in 2-d CFT [36] can produce a non-vanishing trace of

2ρΛ = −c/(24πG)R due to nontrivial metric, where ρΛ can be interpreted as vacuum energy

density and related to the cosmological constant via Λ = 8πGρΛ in comparison with Eq.

(14). The integration of this trace anomaly, introduced dynamically by the in�aton scalars

φ and φ′ [31], is related to a topological invariant - the Euler characteristic [37], which may

be important for studying nontrivial spacetime topology during the space in�ation process.

8



However, the static BH interior should be Ricci-�at, i.e, R = 0 and can then be studied

in 2-d CFT on a torus. The Euler characteristic of a torus vanishes and makes it consistent

that the black hole interior should be static and free of the trace anomaly or Λ = 0. In this

case, the general solution of the 2-d metric can be written as,

ds2 = e2ω(x)(dt2 − dx2) (15)

where ω(x) de�nes the conformal transformations of the metric.

We will present the views of the BH interior by both a distant exterior observer and

an interior one. The two reference frames are connected by the global scale transformation

under 2-d CFT. There are two quantities that the two observers see the same: proper energy

density ρ and total entropy SBH.

The picture seen by the exterior observer is fairly simple for a Schwarzschild black hole

with mass M and radius R = 2GM . The BH interior can be regarded as a 2-d torus with

two circumferences of 2R (space) and 2πR (time), which can also be viewed externally as

a dual of the event horizon surface, notably with the same area A = 4πR2. Its conformally

invariant 2-d energy density is,

ρ =
M

2R
=

1

4G
(16)

which is the same as the CFT Casimir energy density ρc = Ec/(2R) = c/(12G) with no

negative sign under the condition of c = g = 3. This 2-d structure with a constant energy

density provides a natural explanation of the linear relation between mass and radius of the

black hole.

The entropy of an n+ 1 dimensional CFT on R×Sn can be given by the Cardy-Verlinde

formula [38, 39],

S =
2πR

n

√
Ec(2E − Ec) (17)

where Ec = 2Rc/(12G) is the Casimir energy in 2-d CFT (i.e., n = 1) and the total energy

E = 2Rρ is exactly the same as Ec if the central charge c = g = 3. Under the BH conditions

of n = 1 and c = g = 3, Eq. (17) becomes the well-known Bekenstein-Hawking entropy

[40, 41],

SBH =
A

4G
. (18)

Based on Maldacena's AdS/CFT correspondence [42] and Witten's arguments [43], Ver-
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linde proposed a more general entropy formula for the same CFT on R× Sn as [39],

S =
cA

12nG
(19)

which again gives the same entropy as Eq. (18) for n = 1 and c = g = 3.

The BH entropy can also have an equivalent thermodynamic explanation. Namely, the

exterior observer sees no free energy from the black hole, i.e., its partition function Z = 1.

As such, the entropy is solely determined by its total energy / massM and temperature 1/β

where β = 2πR is the Euclidean time period or the time circumference of the torus. Then,

the same BH entropy can be easily calculated from

SBH = ln(Z) + βM = βM =
A

4G
(20)

where, notably, the interior BH temperature of 1/β viewed by the exterior observer is twice

as high as the surface temperature that is responsible for Hawking radiation [41, 44].

Before we present the interior view, it is worth stressing that in this work the BH interior

resides in genuine two-dimensional spacetime unlike other toy 2-d model studies. The BH

interior is composed of a perfect �uid of free Majorana fermions and gauge bosons governed

by SMM2 of Eq. (5). As viewed by the interior observer, its energy and entropy densities

in 2-d spacetime after momentum space integration can be written as,

ρ =
π

6
gT 2

in =
π

2
T 2
in (21)

s =
ρ

Tin
=
π

2
Tin (22)

where g = nb + 1/2nf = 3 is the e�ective number of relativistic degrees of freedom for

Majorana fermions (nf = 2) and gauge bosons (nb = 2) and Tin is the interior temperature.

Such an expression of 2-d entropy density in Eq. (22) has also been obtained in general 2-d

conformal �eld theory in the high temperature limit [38, 45].

Using the two views of the energy density in Eqs. (16,21), we can obtain the temperature

of the BH interior,

Tin =
1√
2πG

' 0.4√
G

(23)

which is constant and just below the Planck energy of 1/
√
G ∼ 1019 GeV but well above the

space in�ation energy scale of 1016 GeV. This means that the interior temperature does meet

the criteria for SMM2 in 2-d spacetime and this BH model is self-consistent. The constant
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energy density and temperature also indicate that no further collapse is possible and there

is no upper limit for the BH mass under this model.

Now we need to �nd the interior size of the black hole in order to calculate the total

entropy from the entropy density of Eq. (22). From the view of the interior observer, the

torus is conformally dilated as follows,

2R→ Ls ≡ eω2R, 2πR→ Lt ≡ e−ω2πR (24)

where Ls and Lt are the di�erent space and time scales (or sizes of the torus) for the interior

observer under the global dilation or scale transformation. From Lt = 1/Tin, we can obtain

the dilation factor as,

eω =

√
2π

G
R ' 4.58× 1038 M

M�
. (25)

It is now easy to calculate the entropy from the point of view of the interior observer,

SBH = eω2Rs =
A

4G
(26)

which is the same Bekenstein�Hawking entropy. To demonstrate the enormous BH size seen

by the interior observer, we can calculate it for one solar mass to be eω2R ∼ 1042 m in

contrast to the size of the observable universe (1027 m).

VI. OUTLOOK AND FURTHER DISCUSSIONS

Under this work, the thermodynamic properties of a black hole originate from the quan-

tum nature in 2-d spacetime. More studies could be stimulated for further understanding

of the black hole and the universe. For example, Eq. (19) shows a very intriguing feature:

in order to conserve the entropy, the central charge c = g has to increase linearly with the

space dimension number n. This indicates that three generations of quantum particles in

4-d spacetime may be tied to the three space dimensions they reside in. To apply it to

the dynamic evolution of the universe [31, 32], we need to consider that global and gauge

symmetries can reduce the e�ective volume or surface area. Therefore, n should be replaced

with the dimension n(T ) of unbroken gauge groups and the factorm(T ) = 2 when the mirror

symmetry is unbroken for the entropy of the universe,

S =
g(T )

n(T )m(T )

A

12G
∼ A

4G
(27)
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where the e�ective number of relativistic degrees of freedom g(T ) is slightly above 3 in

the current universe and n(T ) ∼ 1 for the only unbroken and uncon�ned UEM(1) interaction

(SU(2) is broken and SU(3) is con�ned). In the early universe at T & 102 GeV, the observed

gauge symmetry of Uf (6)×SUc(3)×SUw(2)×UY (1) [30] leads to n(T ) = 48 and g(T ) = 144.

The eventual constant factor in Eq. (27) or conservation of entropy is tied to supersymmetry

that matches the degrees of freedom between fermions and bosons.

Another example is on the apparent singularity at the event horizon r = 2GM that is

most likely a topological singularity describing a transition from the exterior 4-d spacetime

to the interior 2-d spacetime. A successful solution of the horizon under this model could be

a realization of the so-called black hole �rewall for the information paradox [46]. Techniques

especially topological ones developed in studies of CFT, string theory, loop quantum gravity,

and other quantum gravity approaches could be applied here and possibly elsewhere such as

the space in�ation process of the early universe - phase transition from 2-d to 4-d spacetime.
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