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https://www.theoremoftheday.org/NumberTheory/Ramanujan/TotDRamanujan.pdf 

 

 
 
https://en.wikipedia.org/wiki/Chaos_theory#/media/File:Lorenz_attractor_yb.svg 
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From: 
 
ℓ-ADIC PROPERTIES OF THE PARTITION FUNCTION 
AMANDA FOLSOM, ZACHARY A. KENT, AND KEN ONO 
(Appendix by Nick Ramsey) - Celebrating the life of A. O. L. Atkin 
 
Ramanujan's famous partition congruences modulo powers of 5; 7; and 11 imply that 
certain sequences of partition generating functions tend  ℓ-adically to 0. little is 
known about the ℓ-adic behaviour of these sequences for primes ℓ ≥13. Using the 
classical theory of “modular forms mod p", as developed by Serre in the 1970s, we 
show that these sequences are governed by “fractal" behavior. 
 

 

 

We have that: 
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From 

                     (1.1) 
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For  q = exp(2Pi),  ℓ = 13, 17, 19, 21, 23, 29, 31   b = 1  and   p = 55 

We obtain the following expression: 

 

sum 55((((13*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..7 

Sum: 

 

Decimal approximation: 

 

3444.212747655… 

 

Partial sums: 

 

Alternate form: 

 

 

From which: 

7 + 1/2 * sum 55((((13*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..7 

Input interpretation: 
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Result: 

 
 

1729.11 

 

Alternate forms: 

 

 

 
 

And: 

((((7 + 1/2 * sum 55((((13*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..7))))^1/15 

Input interpretation: 

 

Result: 

 

1.64382 

Alternate form: 
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((((7 + 1/2 * sum 55((((13*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..7))))^1/15 - 
(21+5)1/10^3 

Input interpretation: 

 

Result: 

 

 

1.61782 

 

Alternate forms: 

 

 

 

 
 

sum 55((((17*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Sum: 
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Decimal approximation: 

 

1632.945585588… 

 
Partial sums: 

 

Alternate form: 

 

 

From which: 

89+5+2 + sum 55((((17*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Input interpretation: 

 
 
Result: 

 
 

1728.95 ≈ 1729 

 
Alternate forms: 
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And: 

((((89+5+2 + sum 55((((17*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15 

Input interpretation: 

 

 
Result: 

 

1.64381 

Alternate form: 

 

 

 

((((89+5+2 + sum 55((((17*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 

Result: 

 

1.61781 

Alternate forms: 
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sum 55((((19*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Sum: 

 

 
Decimal approximation: 

 

1821.623981773… 

 

Partial sums: 

 

Alternate form: 

 

 

From which: 

-(89+3)+sum 55((((19*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Input interpretation: 

 

Result: 
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1729.62 

Alternate forms: 

 

 

 

And: 

((((-(89+3)+sum 55((((19*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15 

Input interpretation: 

 
 
Result: 

 
 

1.64385 

 

Alternate form: 

 
 

((((-(89+3)+sum 55((((19*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 

Result: 

 

1.61785 
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Alternate forms: 

 

 

 
 

sum 55((((21*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Sum: 

 

Decimal approximation: 

 

2010.30237… 

 

Partial sums: 

 

Alternate form: 
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From which: 

(-199-76-4-2) + sum 55((((21*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Input interpretation: 

 

Result: 

 

1729.3 

Alternate forms: 

 

 

 

And: 

(((((-199-76-4-2) + sum 55((((21*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15 

Input interpretation: 

 
 
Result: 

 
 

1.64383 

 

Alternate form: 
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(((((-199-76-4-2) + sum 55((((21*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 
 
Result: 

 
 

1.61783 

 

Alternate forms: 

 

 
 

 

sum 55((((23*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Sum: 

 

Decimal approximation: 

 

2198.98077414… 
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Partial sums: 
 

 

Alternate form: 

 

 

From which: 

(-322-123-18-7) + sum 55((((23*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5 

Input interpretation: 

 

 
Result: 

 

1728.98 ≈ 1729 

Alternate forms: 
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And: 

(((((-322-123-18-7) + sum 55((((23*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15 

Input interpretation: 

 
Result: 

 
 

1.64381 

 

Alternate form: 

 
 

(((((-322-123-18-7) + sum 55((((23*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..5))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 

 
Result: 

 

1.61781 

Alternate forms: 
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sum 55((((29*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4 

Sum: 

 

Decimal approximation: 

 

1526.23520422… 

 

Partial sums: 
 

 

Alternate form: 

 

 

(123+76+4) + sum 55((((29*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4 

Input interpretation: 

 

 
Result: 

 

1729.24 

Alternate forms: 
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And: 

(((((123+76+4) + sum 55((((29*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4))))^1/15 

Input interpretation: 

 

 
Result: 

 

1.64383 

 
Alternate form: 

 

 

And: 

(((((123+76+4) + sum 55((((29*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 

Result: 

 

1.61783 
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Alternate forms: 

 

 
 

 

sum 55((((31*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4 

Sum: 

 

Decimal approximation: 

 

1630.06560325… 

Partial sums: 
 

 

Alternate form: 

 

 

 (76 +18+3+2) + sum 55((((31*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4 

Input interpretation: 
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Result: 

 

1729.07 

 

Alternate forms: 

 

 

 

And: 

(((((76 +18+3+2) + sum 55((((31*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4))))^1/15 

Input interpretation: 

 

 
Result: 

 

1.64382 

 

Alternate form: 
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(((((76 +18+3+2) + sum 55((((31*n+1)/24)))*(exp(2Pi))^(n/24), n = 0..4))))^1/15-
(21+5)1/10^3 

Input interpretation: 

 

 
Result: 

 

1.61782 

Alternate forms: 

 

 

 

We have:   

3444.212747655,  1632.945585588,  1821.623981773,  2010.30237,  
2198.98077414,  1526.23520422,  1630.06560325 

plot(3444.212747655,  1632.945585588,  1821.623981773,  2010.30237,  
2198.98077414,  1526.23520422,  1630.06560325) 

Input interpretation: 
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Plot: 

 
 

Dividing the sum of the results by 6912,  

 

We obtain: 

(3444.212747655+1632.945585588+1821.623981773+2010.30237+2198.98077414+
1526.23520422+1630.06560325)/6912 

Input interpretation: 

 
 
Result: 

 
 
Repeating decimal: 

 
2.063710397....... result very near to the value of the Hausdorff dimension of Lorenz 
attractor 

 

From Wikipedia: 

“Almost all initial points will tend to an invariant set – the Lorenz attractor – 
a strange attractor, a fractal, and a self-excited attractor with respect to all three 
equilibria. Its Hausdorff dimension is estimated to be 2.06 ± 0.01” 
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Now, we have that: 

 

 

 

We obtain: 

11*e^(2Pi)+9*(e^(2Pi))^2+3*(e^(2Pi))^3+6*(e^(2Pi))^4+12*(e^(2Pi))^5+6*(e^(2Pi)
)^6 

Input: 
 

Exact result: 
 

Decimal approximation: 

 

1.419998957028…*1017 

Property: 
 

Alternate forms: 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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From 

 

 

We obtain: 

36(e^(2Pi))+150(e^(2Pi))^2+154(e^(2Pi))^3+100(e^(2Pi))^4+122(e^(2Pi))^5+22(e^(
2Pi))^6+26(e^(2Pi))^7+60(e^(2Pi))^8 

Input: 

 

Exact result: 
 

Decimal approximation: 

 

4.05998820989…*1023 

Property: 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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From 

 

 

We obtain: 

36*(e^(2Pi))^23+17*(e^(2Pi))^47+38*(e^(2Pi))^71+155*(e^(2Pi))^95 

Input: 
 

Exact result: 
 

Decimal approximation: 

 

2.6414289179…*10261 

Property: 
 

Alternate form: 
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Alternative representations: 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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We have also: 

(((11*e^(2Pi)+9*(e^(2Pi))^2+3*(e^(2Pi))^3+6*(e^(2Pi))^4+12*(e^(2Pi))^5+6*(e^(2
Pi))^6)))^1/80-(18+2)1/10^3 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.6183383614586… 

Property: 

 

Alternate forms: 

 

 

 

 

Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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((((36(e^(2Pi))+150(e^(2Pi))^2+154(e^(2Pi))^3+100(e^(2Pi))^4+122(e^(2Pi))^5+22(
e^(2Pi))^6+26(e^(2Pi))^7+60(e^(2Pi))^8))))^1/113 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.617800621743… 

Property: 

 

Alternate forms: 
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All 113th roots of 36 e^(2 π) + 150 e^(4 π) + 154 e^(6 π) + 100 e^(8 π) + 122 
e^(10 π) + 22 e^(12 π) + 26 e^(14 π) + 60 e^(16 π): 
 

 

 

 

 

 

 

Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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((((36*(e^(2Pi))^23+17*(e^(2Pi))^47+38*(e^(2Pi))^71+155*(e^(2Pi))^95))))^1/1250 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.618592304… 

Property: 

 

Alternate form: 

 

 
All 1250th roots of 36 e^(46 π) + 17 e^(94 π) + 38 e^(142 π) + 155 e^(190 π): 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

From: 

Congruence properties of partitions – S. Ramanujan 
Mathematische Zeitschrift, IX, 1921, 147 – 153 
[Extracted from the manuscripts of the author by G. H. Hardy] 

We have that: 
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Now, we have that: 

(20736  +  3456  +  6912  + 1728 + 1728 + 1728 + 720 + 1008  +  720  + 288) =  

= 39024;   (39024 * 12) / 271 = 1728;   (271 * 1728) / 12 = 39024 

(we note that 1008 + 720 = 1728) 

With regard: 

 

We note that: 

764412173217+5323905468000+1621003400000 = 7709321041217 
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Thence, considering P = Q = R = 1, we obtain: 

7709321041217 + 32640Φ0,31(x) = 7709321041217 

7709321041217-7709321041217+32640Φ0,31(x) =  

= 32640Φ0,31(x) 

Now: 

20736  +  3456  +  6912  +  1008  +  288  +  240 =  32640  

Where  

20736 = 1728*12;   3456 = 1728*2;  6912 = 1728*4;  1008 = 504*2 = 63*1728 / 
108;  288 = 1728 / 6 ;  720 = 1728 / 36 * 15 ;  240 =  1728 / 72 * 10 

We note also that: 

39024 – 32640 – 3456 – 1728 – 1008 = 192;   

1728 / 9 = 192;   89 + 55 + 34 + 13 + 1 = 192 

32640 / 960 = 3264 / 96 = 34 = (3264/24) / (96/24) = 136 / 4 = 34;  21 + 8 + 5 = 34 

 

We have also: 
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504-240+24 = 288;  288+720 = 1008; 1008+720 = 1728; 1728+1728 = 3456; 
3456+1728+1728 = 6912; 6912 + 3456 + 3456 + 1728 + 1728 + 1728 + 1728 = 
20736 

We have that:  20736 = 1442;  144 = 89 + 34 + 13 + 5 + 3 

plot (504-240+24), (288+720), (1008+720), (1728+1728),  (3456+1728+1728), 
(6912 + 3456 + 3456 + 1728 + 1728 + 1728 + 1728) 

 

Input interpretation: 

 
 
Plot: 

 
 

 ((504-240+24+720+720)+1728+1728+1728+3456+3456+1728+1728+1728+1728) 

Input: 

 
 
Result: 

 
20736 

 

(504-240+24+720+720) 

Input: 
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Result: 
 

1728 

 

Number line: 

 
 

(1728+1728+1728+1728+2*1728+2*1728+1728+1728+1728+1728) 

Input: 
 

 
Result: 

 
20736 

 

(1728+1728+1728+1728+1728+1728+1728+1728+1728+1728+1728+1728) 

Input: 
 

 
Result: 

 
20736 

 

Number line: 

 
 

 

 

12(1728) 

Input: 
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Result: 
 

20736 

 

We note that: 

 

sqrt(12(1728)) 

 

Input: 

 
 
Result: 

 
144 

 

(((504-240+24)-55)) / ((sqrt(12(1728)))) 

 

Input: 

 
 
Exact result: 

 
Decimal approximation: 

 
1.618055555… 

 

Note that: 

 

1728/20736 

 

Input: 

 
 
Exact result: 
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Decimal approximation: 

 
0.083333…  

 
Prime factorization: 

 
 
Occurrence in convergents: 
 

 
 

 

In Superstring Theory we have 1/12 in various expressions. For example: 

 

From: 

 

CERN-TH/97-218 hep-th/9709062 
INTRODUCTION TO SUPERSTRING THEORY 
Elias Kiritsis 
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We see that in eq.(14.9.8) there is -1/12 
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Observations  

 

 
From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8mpSjRs1BDeremA 

 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
Note that: 
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Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, called 
the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 
0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses 
the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two 
consecutive Fibonacci numbers tends to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas 
numbers form a complementary pair of Lucas sequences  
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The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 

3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and 
the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form 
complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each 
term is the sum of the two previous terms, but with different starting values. This produces a 
sequence where the ratios of successive terms approach the golden ratio, and in fact the terms 
themselves are roundings of integer powers of the golden ratio.[1] The sequence also has a variety 
of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers 
two terms apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the 
Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all 
Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to 
the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... 
(sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden 
ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every 
quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms 
of spiral galaxies[3] - golden spirals are one special case of these logarithmic spirals 
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From Wikipedia 

The Rössler attractor is the attractor for the Rössler system, a system of three non-
linear ordinary differential equations originally studied by Otto Rössler. These 
differential equations define a continuous-time dynamical system that exhibits  
chaotic dynamics associated with the fractal properties of the attractor.  

The Lorenz attractor was the first example of a low-dimensional differential 
equations system capable of generating chaotic behavior.(fractal) 

In conclusion we obtain also many results that are very good approximations to the 
value of the golden ratio 1.618033988749..., that is also a Hausdorff dimension and 

to ζ(2) = 
గమ


= 1.644934… 
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