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Abstract 

The writing intends to bring out certain inconsistent aspects relating to  the Taylor expansion. The Taylor 

series does not hold for the entire real axis  that leads to a host of problems. 

Introduction 

The Taylor series is well known for its application in mathematics and in physics. The article brings out 

some anomalous features about the Taylor expansion 

Various Inconsistencies 

Case 1. 

We consider 

𝑓(𝑥 + 2ℎ) = 𝑓((𝑥 + ℎ) + ℎ)  (1) 

Expanding about (𝑥 + ℎ) 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (2) 

Expanding about 𝑥 = 𝑥 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥 + ℎ) +

4ℎ2

2!
𝑓′′(𝑥 + ℎ) +

8ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (3) 

From (2) and (3) 

𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … .

= 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥) +

4ℎ2

2!
𝑓′′(𝑥) +

8ℎ3

3!
𝑓′′′(𝑥) + ⋯ …. 
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𝑓(𝑥 + ℎ) − 𝑓(𝑥) + ℎ[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)] +
1

2!
ℎ2[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ3[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ⋯ . . = 0 (4) 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)]

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)] +

1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)]

+ ⋯ . . = 0 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)]

ℎ
−

𝑓′(𝑥)

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ] = 0 (5) 

Equation (5) is considered for ℎ ≠ 0. Even when we go for ℎ → 0, ℎ does not become equal to zero. It is 

in the neighborhood of zero without becoming equal to zero] 

[
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)]

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ] = 0 

𝐿𝑖𝑚ℎ→0 [
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1

ℎ
+ 𝐿𝑖𝑚ℎ→0

[𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)]

ℎ

+
1

2!
𝐿𝑖𝑚ℎ→0[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)] +

1

3!
𝐿𝑖𝑚ℎ→0ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ]

= 0  (6) 

We are considering a function for which 

𝐿𝑖𝑚ℎ→0ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ] = 0 

Then  

𝐿𝑖𝑚ℎ→0 [
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1

ℎ
+ 𝑓′′(𝑥) −

3

2
𝑓′′(𝑥) = 0 

𝐿𝑖𝑚ℎ→0 [
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1

ℎ
=

1

2
𝑓′′(𝑥) 

𝐿𝑖𝑚ℎ→0

[
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

ℎ
=

1

2
𝑓′′(𝑥) (7) 

We apply L’ Hospital’s rule[1`] to obtain  

𝐿𝑖𝑚ℎ→0

𝑑

𝑑ℎ
[

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1
=

1

2
𝑓′′(𝑥) 



3 
 

 

𝐿𝑖𝑚ℎ→0

𝑑

𝑑ℎ
[

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥)]

1
=

1

2
𝑓′′(𝑥) 

𝐿𝑖𝑚ℎ→0 [−
1

ℎ2
(𝑓(𝑥 + ℎ) − 𝑓(𝑥)) +

1

ℎ
(𝑓′(𝑥 + ℎ) − 𝑓′(𝑥))] =

1

2
𝑓′′(𝑥) 

[−𝐿𝑖𝑚ℎ→0

1

ℎ2
(𝑓(𝑥 + ℎ) − 𝑓(𝑥)) + 𝐿𝑖𝑚ℎ→0

1

ℎ
(𝑓′(𝑥 + ℎ) − 𝑓′(𝑥))] =

1

2
𝑓′′(𝑥)(8) 

−∞ + 𝑓′′(𝑥) =
1

2
𝑓′′(𝑥) 

−
1

2
𝑓′′(𝑥) = −∞ 

As claimed we have brought out an aspect of inconsistency with Taylor Series. 

Case 2.Let us have another situation for our analysis. We write the Taylor series  

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +
ℎ

1!
𝑓′(𝑥0) +

ℎ2

2!
𝑓′′(𝑥0) +

ℎ3

3!
𝑓′′′(𝑥0) + ⋯ … (9). 

The increment ℎ may be sufficiently large subject to the fact that the series has to converge. 

 

𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
= 𝑓′(𝑥0) + ℎ𝑓′′(𝑥0) +

ℎ2

2!
𝑓′′′(𝑥0) + ⋯ (10). 

 

𝑙𝑖𝑚ℎ→0

𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
= 𝑓′(𝑥0)  (11) 

𝑙𝑖𝑚ℎ→0𝐹ℎ(𝑥0 + ℎ) = 𝑓′(𝑥0) 

The limit 𝑓′(𝑥0) is independent of ℎ.This is an example of uniform convergence . We may analyze as 

follows: 

𝜕𝑓(𝑥)

𝜕ℎ
=

𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
 

is evaluated for different values of ℎ: [
𝜕𝑓(𝑥)

𝜕ℎ
]

ℎ1

, [
𝜕𝑓(𝑥)

𝜕ℎ
]

ℎ2

, [
𝜕𝑓(𝑥)

𝜕ℎ
]

ℎ3

…. 

The limit 𝑓′(𝑥0) is independent of 𝑥 

 

Therefore we can interchange the derivative and the limit[2].  
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𝜕

𝜕ℎ
𝑙𝑖𝑚ℎ→0

𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
= 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕ℎ
[
𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
] = 0  (12) 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕ℎ
[
𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
] = 0 

𝑙𝑖𝑚ℎ→0

𝜕2𝑓(𝑥0 + ℎ)

𝜕ℎ2
= 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕ℎ
[
𝜕𝑓(𝑥0 + ℎ)

𝜕ℎ
] = 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕ℎ
[
𝜕𝑓(𝑥0 + ℎ)

𝜕(𝑥0 + ℎ)

𝜕(𝑥0 + ℎ)

𝜕ℎ
] = 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕ℎ
[
𝜕𝑓(𝑥0 + ℎ)

𝜕(𝑥0 + ℎ)
] = 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕(𝑥0 + ℎ)
[
𝜕𝑓(𝑥0 + ℎ)

𝜕(𝑥0 + ℎ)
]

𝜕(𝑥0 + ℎ)

𝜕ℎ
= 0 

𝑙𝑖𝑚ℎ→0

𝜕

𝜕𝑥
[
𝜕𝑓(𝑥)

𝜕𝑥
] = 0 

where𝑥 = 𝑥0 + ℎ 

We now have, 

𝑙𝑖𝑚ℎ→0

𝜕2𝑓(𝑥)

𝜕𝑥2
= 0 (13) 

[
𝜕2𝑓(𝑥)

𝜕𝑥2
]

𝑥=𝑥0

= 0 

But 𝑥 = 𝑥0 could be any arbitrary point. 

By differentiating (10) we obtain the expected result  

𝜕2𝑓(𝑥0 + ℎ)

𝜕ℎ2
= 𝑓′′(𝑥0)(14) 

which contradicts the earlier result given by (13)unless 𝑓′′(𝑥0) = 0 

Direct Calculations 
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We write the Taylor series  

𝑓(𝑥 + ℎ) = 𝑓(𝑥) +
ℎ

1!
𝑓′(𝑥) +

ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) + ⋯ … (15). 

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ) = 𝑓′(𝑥) +

ℎ

1!
𝑓′′(𝑥) +

ℎ2

2!
𝑓′′′(𝑥) +

ℎ3

3!
𝑓′′′′(𝑥) + ⋯ … (16). 

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ) = 𝑓′(𝑥) +

ℎ

1!
𝑓′′(𝑥) +

ℎ2

2!
𝑓′′′(𝑥) +

ℎ3

3!
𝑓′′′′(𝑥) + ⋯ (17) 

From (10) and (11) we have, 

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ) =

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ)(18) 

Differentiating (10) with respect to 𝑥 + ℎ[holding x as constant] 

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ) =

𝑑

𝑑(𝑥 + ℎ)
𝑓(𝑥 + ℎ) (19) 

[
𝜕

𝜕𝑥
𝑓(𝑦)]

𝑦=𝑥
= [

𝜕

𝜕ℎ
𝑓(𝑦)]

𝑦=𝑦
 (20) 

𝜕

𝜕𝑥
𝑓(𝑦) =

𝑑𝑓(𝑥)

𝑑𝑥
is a constant on (𝑥, 𝑥 + ℎ). This notion may be considered to show that

𝑑𝑓(𝑥)

𝑑𝑥
 is constant 

everywhere.[we take (𝑥, 𝑥 + ℎ), (𝑥 + ℎ, 𝑥 + 2ℎ), (𝑥 + 2ℎ, 𝑥 + 3ℎ) ….and consider the proof given over 

and over again] 

𝜕

𝜕𝑥
𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡 ⇒

𝜕2

𝜕𝑥2
𝑓(𝑥) = 0 

which we got earlier 

Now [treating f as a function of  x and h we may write 

𝑑𝑓(𝑥 + ℎ) =
𝜕

𝜕𝑥
𝑓(𝑥 + ℎ)𝑑𝑥 +

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ)𝑑ℎ (21) 

Again 

𝑑𝑓(𝑥 + ℎ) =
𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ)𝑑(𝑥 + ℎ)  (22) 

⇒ 𝑑𝑓(𝑥 + ℎ) =
𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ)𝑑𝑥 +

𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ)𝑑ℎ  (23) 

From (21) and (22) we have, 
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[
𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ) −

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ)] 𝑑𝑥 + [

𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ) −

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ)] 𝑑ℎ = 0 

𝜕

𝜕(𝑥 + ℎ)
𝑓(𝑥 + ℎ) =

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ) =

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ)  (24) 

We clearly see that the function 
𝑑𝑓

𝑑𝑥
is a constant function that is 

𝑑2𝑓

𝑑𝑥2 = 0 

Further Considerations 

We recall (9) 

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +
ℎ

1!
𝑓′(𝑥0) +

ℎ2

2!
𝑓′′(𝑥0) +

ℎ3

3!
𝑓′′′(𝑥0) + ⋯ … (9) 

We differentiate the above with respect to 𝑥 = 𝑥0 + ℎ′; ℎ′ < ℎ 

[
𝑑𝑓(𝑥0 + ℎ)

𝑑ℎ
]

ℎ=ℎ′

= 𝑓′(𝑥0) + ℎ′𝑓′′(𝑥0) +
ℎ′2

2!
𝑓′′′(𝑥0) + ⋯ . . = 𝑓′(𝑥0 + ℎ′) (25) 

𝑑𝑓(𝑥0 + ℎ)

𝑑(𝑥0 + ℎ)
=

𝑑𝑓(𝑥0 + ℎ)

𝑑ℎ

𝑑ℎ

𝑑(𝑥0 + ℎ)
=

𝑑𝑓(𝑥0 + ℎ)

𝑑ℎ
 

𝑑𝑓(𝑥0 + ℎ)

𝑑(𝑥0 + ℎ)
=

𝑑𝑓(𝑥0 + ℎ)

𝑑ℎ
 (26) 

We obtain an indication of constancy of 
𝑑𝑓(𝑥0+ℎ)

𝑑ℎ
 from (26) and keeping in mind equation (18) we have  

𝜕

𝜕𝑥
𝑓(𝑥 + ℎ) =

𝜕

𝜕ℎ
𝑓(𝑥 + ℎ) =

𝑑𝑓(𝑥 + ℎ)

𝑑(𝑥 + ℎ)
 

Next we consider a truncated Taylor series which has been approximated with ‘n’ terms. Now we have 

an equation and not an identity and there are discrete solutions for h. Since  we have taken an 

approximation to the Taylor series it is least likely the corresponding roots will cause a divergence of the 

infinite series in the Taylor expansion.  It would be better to take a  truncation which is not an 

approximation but the infinite Taylor series  is convergent for it. These solutions for ‘h’ will not satisfy 

the entire Taylor series with an infinite number of terms. Suppose one solution of ‘h’ from approximated 

equation[equation with finite number of terms] satisfied the infinite Taylor series, we will have (9) as 

well as a truncated (9)[approximated up to ‘n’ terms. The situation has been delineated below 

We no0wcconsider the Maclaurin expansion for 𝑒𝑥  

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯ .. 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
+ 𝜖𝑛(𝑥)  (26) 
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𝜖𝑛(𝑥): Remainder after the nth term count starting from zero: n=0,1,2……. 

𝜖0(𝑥) = 𝑒𝑥 − 1 

Differentiating (26) with respect  to ‘x’ for a fixed ‘n’we  obtain 

𝑑𝑒𝑥

𝑑𝑥
= 1 +

𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛−1

(𝑛 − 1)!
+

𝑑𝜖𝑛(𝑥)

𝑑𝑥
  (27) 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛−1

(𝑛 − 1)!
+

𝑑𝜖𝑛(𝑥)

𝑑𝑥
  (28) 

𝑑𝜖𝑛(𝑥)

𝑑𝑥
− 𝜖𝑛(𝑥)  =

𝑥𝑛

𝑛!
(29) 

𝑑2𝑒𝑥

𝑑𝑥2
=

𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛−2

(𝑛 − 1)!
+

𝑑2𝜖𝑛(𝑥)

𝑑𝑥2
 

We consider a positive interval (𝑥1, 𝑥2)and make 𝑛 → ∞.For such an interval  

𝑙𝑖𝑚𝑛→∞

𝑥𝑛

𝑛!
= 0 

𝑙𝑖𝑚𝑛→∞ [
𝑑𝜖𝑛(𝑥)

𝑑𝑥
− 𝜖𝑛(𝑥)]  = 𝑙𝑖𝑚𝑛→∞

𝑥𝑛

𝑛!
 

𝑙𝑖𝑚𝑛→∞ [
𝑑𝜖𝑛(𝑥)

𝑑𝑥
− 𝜖𝑛(𝑥)] = 0 

For sufficiently large ,n|
𝑑𝜖𝑛(𝑥)

𝑑𝑥
− 𝜖𝑛(𝑥)| can be made arbitrarily close to zero 

For the concerned interval we have in the limit n tending to infinity [for the interval (𝑥1, 𝑥2)]the  

following[rigorous]equation 

𝑑𝜖∞(𝑥)

𝑑𝑥
− 𝜖∞(𝑥) = 0 (30.1) 

𝑙𝑛𝜖∞(𝑥) = x +𝐶′ (30.2) 

If C’=0 

𝜖∞(𝑥) = 𝑒𝑥  (31.1) 

If 𝐶′ ≠ 0,𝐶′ = 𝑙𝑛𝐶 

𝜖∞(𝑥) = 𝐶𝑒𝑥(31.2) 

Again  
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𝐶 = 0 ⇒ 𝐶′ = −∞ (32) 

That means we used −∞ as the constant of integration in equation (30.2).Suppose we take |𝐶′| ≫

0; 𝐶′ < 0 so that C  is a very small fraction: 

𝐶𝑒𝑥1 < 𝜖∞(𝑥) < 𝐶𝑒𝑥2  

But the point is that once we decide on the value of C[C cannot be minus infinityby  itself if a value is 

considered] we cannot vary it. Though 𝜖∞(𝑥) will be very small we cannot take it arbitrarily close to zero  

Next we consider a much larger  the interval (𝑥1 , 𝑥2′) which contains the interval (𝑥1, 𝑥2); 𝑥2′ ≫ 𝑥2[𝑥2′ 

remaining finite. We have the same equation as given by (30.1) and the same solution 𝜖∞(𝑥) =

𝐶𝑒𝑥 .This time we cannot change the value of the constant. If we changed it to 𝐶𝑛𝑒𝑤then we have 

untenable results li8ke 𝜖∞(𝑥1) = 𝐶𝑛𝑒𝑤𝑒𝑥1 and𝜖∞(𝑥2) = 𝐶𝑛𝑒𝑤𝑒𝑥2. But with the old constant 𝜖∞(𝑥2′) =

𝐶𝑒𝑥2′ ≫ 0  since 𝑥2
′ ≫ 𝑥2 

It is not possible to cover the entire x axisor the semi x axis:(0, ∞) by a single constant having a 

numerical value. 

The discrepancy we have found should not surprise us in view of the earlier discrepancies , for example 

those notified through case1 and case2. 

Further Investigation 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
+ 𝜖𝑛(𝑥) 

We define 𝑓(𝑥, 𝑛) as follows: 

𝑓(𝑥, 𝑛) = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
 (33) 

𝑓(𝑥, 𝑛) − 𝑓(𝑥, 𝑛 − 1) =
𝑥𝑛

𝑛!
 

We make r 𝑓(𝑥, 𝑛) a smooth[obviously continuous) by interpolation  with a suitable curve where n 

isposotive everywhere .  

𝜕𝑓(𝑥, 𝑛)

𝜕𝑛
−

𝜕𝑓(𝑥, 𝑛 − 1)

𝜕𝑛
=

𝑥𝑛𝑙𝑛𝑥

𝑛!
+ 𝑥𝑛

𝑑

𝑑𝑛
(

1

𝑛!
) (34) 

𝜕𝑓(𝑥, 𝑛)

𝜕𝑛
−

𝜕𝑓(𝑥, 𝑛 − 1)

𝜕𝑛
=

𝑥𝑛𝑙𝑛𝑥

𝑛!
− 𝑥𝑛

1

𝑛!
[
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ 1] (35) 

In the above 𝑛! = 𝑛(𝑛 − 1) … . 𝑢𝑝 𝑡𝑜 |𝑛| terms . The equation considers right handed derivatives 

exclusively. 

For large ‘n’ the left side of (35) is zero: 𝑓(𝑥, 𝑛) ≈ 𝑓(𝑥, 𝑛 − 1) ≈ 𝑒𝑥  
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Therefore, 

𝑙𝑖𝑚𝑛→∞ [
𝑥𝑛𝑙𝑛𝑥

𝑛!
− 𝑥𝑛

1

𝑛!
[
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ 1]] = 0 

That is to say that in the limit irrespective of the value of x---x very large or very small 

𝑙𝑛𝑥

𝑛!
≈

1

𝑛!
[
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ 1] 

ln 𝑥 ≈ [
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ 1] 

We have a strange result  

𝑥 ≈ 𝑒
[

1

𝑛
+

1

𝑛−1
+

1

𝑛−2
+⋯1]

; 𝑛: 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒 𝑏𝑢𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒  

NB: For testing ,in the above, w have taken a very large but fixed value of 𝑥 so as to ensure that on the 

left side of (35) we have an approximately. 

Looking Directly into Sources of Error 

Assume that the formula for 𝑒𝑥  holds simultaneously over the entire real axis 𝑥 ∈ (−∞, ∞). We4 

partition he real axis into accountably infinite number of closed intervals indexed by the natural 

numbers. The remainder term[Cauchy form],𝑅𝑛 =
𝑥𝑛

𝑛!
𝑒𝜃𝑥 should tend to zero for all intervals we have in 

the partition. For any preassigned 𝜖 > 0 no matter how small we have for 

Interval 1: 𝑁1 > 0 such that for all 𝑛 >  𝑁1 we have |𝑅𝑛| < 𝜖  

Interval 2: 𝑁2 > 0 such that for all 𝑛 >  𝑁2 we have |𝑅𝑛| < 𝜖 

Interval 3: 𝑁3 > 0 such that for all 𝑛 >  𝑁3 we have |𝑅𝑛| < 𝜖 

Interval k: 𝑁𝑘 > 0 such that for all 𝑛 >  𝑁𝑘 we have |𝑅𝑛| < 𝜖 

…………………………………………………………………………………………….. 

…………………………………………………………………………………………….. 

Fort the largest 𝑁𝑘, |𝑅𝑛| < 𝜖 for all intervals. There is no such largest 𝑁𝑘[we cannot denote it 

numerically] 

Therefore our usual formula for 𝑒𝑥  will not hold for the entire real axis at one stroke.. 

Analogous conclusions may follow from all non terminating instances  of the Taylor series. 
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Conclusions 

As claimed we have arrived at some inconsistent aspects of the Taylor expansion 
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