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Abstract

In our publications we have proposed an approach called finite quantum
theory (FQT) when quantum theory is based not on complex numbers but on
finite mathematics. We have proved that FQT is more general than standard
quantum theory because the latter is a special degenerate case of the former
in the formal limit p → ∞ where p is the characteristic of the ring or field in
finite mathematics. Moreover, finite mathematics itself is more general than
classical mathematics (involving the notions of infinitely small/large and conti-
nuity) because the latter is a special degenerate case of the former in the same
limit. As a consequence, mathematics describing nature at the most
fundamental level involves only a finite number of numbers while the
notions of limit and infinitely small/large and the notions constructed
from them (e.g. continuity, derivative and integral) are needed only
in calculations describing nature approximately. However, physicists
typically are reluctant to accept those results although they are natural and
simple. We argue without formulas that there is a simple analogy between the
above facts and the fact that special relativity is more general than nonrela-
tivistic mechanics because the latter is a special degenerate case of the former
in the formal limit c→∞.
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In our publications [1] we have proposed an approach called finite quantum
theory (FQT) when quantum theory is based not on complex numbers but on finite
mathematics involving a ring or field of characteristic p. As argued in Refs. [2,
3] and others, FQT is more natural than standard quantum theory not only from
mathematical but also from obvious physical considerations.

Indeed, the notions of infinitely small, continuity etc. were proposed by
Newton and Leibniz more than 300 years ago. At that times people did not know
about atoms and elementary particles. On the basis of everyday experience they
believed that any macroscopic object can be divided into arbitrarily large number of
arbitrarily small parts. However, from the point of view of the present knowledge
those notions are problematic. For example, a glass of water contains approximately
1025 molecules. We can divide this water by ten, million, etc. but when we reach the
level of atoms and elementary particles the division operation loses its usual meaning
and we cannot obtain arbitrarily small parts.
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The discovery of atoms and elementary particles indicates that at the very
basic level nature is discrete. As a consequence, any description of macroscopic phe-
nomena using continuity and differentiability can be only approximate. For example,
in macroscopic physics it is assumed that spatial coordinates and time are continuous
measurable variables. However, this is obviously an approximation because coordi-
nates cannot be directly measured with the accuracy better than atomic sizes and
time cannot be measured with the accuracy better than 10−18s, which is of the order
of atomic size over c.

As a consequence, distances less than atomic ones do not have a direct
physical meaning and in real life there are no continuous lines and surfaces. As an
example, water in the ocean can be described by differential equations of hydrody-
namics but this is only an approximation since matter is discrete. Another example
is that if we draw a line on a sheet of paper and look at this line by a microscope
then we will see that the line is strongly discontinuous because it consists of atoms.

Note that even the name ”quantum theory” reflects a belief that nature is
quantized, i.e. discrete. Nevertheless, when quantum theory was created it was based
on classical mathematics developed mainly in the 19th century. One of the greatest
successes of the early quantum theory was the discovery that energy levels of the
hydrogen atom can be described in the framework of classical mathematics because
the Schrödinger differential operator has a discrete spectrum. This and many other
successes of quantum theory were treated as indications that all problems of the
theory can be solved by using classical mathematics.

As a consequence, even after 90+ years of the existence of quantum theory
it is still based on classical mathematics. Although the theory contains divergences
and other inconsistencies, physicists persistently try to resolve them in the framework
of classical mathematics. This situation is not natural but it is probably a consequence
of historical reasons. The founders of quantum theory were highly educated scientists
but they used only classical mathematics, and even now discrete and finite math-
ematics is not a part of standard mathematical education at physics departments.
Note that even regardless of applications in physics, classical mathematics has its
own foundational problems which cannot be resolved (as follows, in particular, from
Gödel’s incompleteness theorems) and therefore the ultimate physical theory cannot
be based on that mathematics.

In Refs. [4, 5] we have proved mathematically that FQT is more general
than standard quantum theory because the the latter is a special degenerate case of
the former in the formal limit p → ∞ where p is the characteristic of the ring or
field in finite mathematics. Moreover, finite mathematics itself is more general than
classical one (involving the notions of infinitely small/large and continuity) because
the latter is a special degenerate case of the former in the same limit. As a con-
sequence, mathematics describing nature at the most fundamental level
involves only a finite number of numbers while the notions of limit and
infinitely small/large and the notions constructed from them (e.g. conti-
nuity, derivative and integral) are needed only in calculations describing
nature approximately.
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Although the proofs of those facts are rather simple, in my discussions with
physicists they gave different objections against the approach when quantum theory is
based on finite mathematics. I believe that before discussing those objections it would
be instructive to consider typical objections against special relativity (SR). Although
SR is now accepted by majority of physicists, some of them still have doubts that (if
tahyons are not considered) speed of light c is the maximum possible speed for any
particle. Typical objections are as follows.

A1) It seems unnatural that velocity 0.999c is allowed while velocity 1.001c
is not. This objection arises as a consequence of the fact that it is not consistent to
extrapolate the everyday experience with velocities much less than c to the area where
they are comparable to c.

B1) Let the reference frame K is moving relative to the observer O along
the positive direction of the x axis with the speed V = 0.6c. Suppose also that, in this
reference frame a particle is moving in the same direction with the speed vK = 0.6c.
Then, from the point of view of standard experience, one might think that the particle
is moving relative to O with the speed v = V + vK = 1.2c while the formula of SR for
addition of velocities gives v ≈ 0.882c. Analogously, if V = 0.99c and vK = 0.99c then
SR gives not v = 1.98c but v ≈ 0.9999495c. The reason of the fictitious inconsistency
of SR is again that it is not correct to extrapolate our experience with velocities much
less than c to the area where they are comparable to c.

C1) It is not clear why c ≈ 3 · 108m/s and not say c = 109m/s. However,
as explained e.g. in Ref. [5], relativistic quantum theory itself does not need the
value of c at all. The value of c in m/s arises because people’s choice is to measure
velocities in such units, and the question why c is as is does not arise. In the modern
system of units it is postulated that the value of c in m/s does not change with time.
However, as discussed in Ref. [4], this postulate is not based on rigorous physical
principles.

As shown in Refs. [4, 5], SR is more general than classical mechanics
(CM) for the following reasons. The latter is a special degenerate case of the former
in the formal limit c → ∞. This means that SR can reproduce any result of CM if
c is chosen to be sufficiently large. On the other hand, since c is finite, in SR there
are phenomena which cannot be reproduced by CM, i.e. they cannot be reproduced
when the limit c→∞ is already taken.

Consider now the relationship between finite mathematics and classical one
(involving the notions of infinitely small/large and continuity). In FQT all physical
quantities are elements of a ring or field with characteristic p. This means that all
operations are modulo p and no physical quantity can be greater or equal than p. So
there is an analogy with SR where speed of any particle cannot be greater than c. If
we accept that FQT describes nature, a problem arises what the value of p is. In Ref.
[4] we have derived the approximate expression for the gravitational constant which
depends on p as 1/lnp. By comparing this expression with the experimental value
we get that lnp is of the order of 1080 or more, i.e. p is a huge number of the order
of exp(1080) or more. However, since lnp is ”only” of the order of 1080 or more, the
existence of p is observable while in the formal limit p→∞ gravity disappears.
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In my discussions with physicists, they gave objections against FQT anal-
ogous to those in A1)− C1). Those objections are as follows.

A2) By analogy with A1) one might think that it is unnatural that a value
of a quantity can be p − 1 but cannot be p + 1. However, it is not consistent to
extrapolate our experience with numbers much less than p to the area where the
numbers are comparable to p.

B2) If n1 = n2 = p/2 + 10 then one might think that (n1 + n2) exceeds p.
However, in finite rings or fields of characteristic p, all operations are modulo p, and
therefore the result of any operation cannot exceed p.

C2) By analogy with C1) one might pose a question why p is as is. Ac-
cording to FQT, nature is described by finite mathematics with some value of p. A
problem whether p is a fundamental quantity which is always the same during the
whole history of the Universe or this quantity can be different at different periods of
the history. The first possibility seems unrealistic because it is not clear what was
the reason for nature to prefer a particular value of p. Note that the problem of time
is one of the most fundamental problems in quantum theory. In Ref. [3] we discussed
a conjecture that not p changes with time because time is only a classical notion but
vice versa the manifestation of time is a consequence of the fact that p changes.

The facts that FQT is more general than standard quantum theory and
finite mathematics is more general than classical one have been proved in Refs. [4, 5].
Finite mathematics can reproduce description of phenomena obtained in classical
mathematics because p is huge and for those phenomena it is not important whether
p is finite or infinite. On the other hand, there are phenomena where it is important
that p is finite. Those phenomena are discussed in Refs. [4], and, as noted above, one
of those phenomena is gravity.

In summary, the facts that FQT is more general than standard quantum
theory and finite mathematics is more general than classical one are analogous to the
fact that SR is more general than CM.
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