ON D-SETS, DS-SETS AND DECOMPOSITIONS OF CONTINUOUS, A-CONTINUOUS AND AB-CONTINUOUS FUNCTIONS

Erdal Ekici

Department of Mathematics Canakkale Onsekiz Mart University Terzioglu Campus, 17020 Canakkale Turkey e-mail: eekici@comu.edu.tr

Saeid Jafari

College of Vestsjaelland South Herrestraede 11, 4200 Slagelse Denmark e-mail: jafari@stofanet.dk

Abstract. The main purpose of this paper is to introduce the notions of \mathcal{D} -sets, \mathcal{DS} -sets, \mathcal{D} -continuity and \mathcal{DS} -continuity and to obtain decompositions of continuous functions, \mathcal{A} -continuous functions and \mathcal{AB} -continuous functions. Also, properties of the classes of \mathcal{D} -sets and \mathcal{DS} -sets are discussed.

Key words and phrases: \mathcal{D} -set, \mathcal{DS} -set, \mathcal{D} -continuity, \mathcal{DS} -continuity. MSC: 54C08.

1. Introduction and preliminaries

In [24] Tong, introduced a new class of sets namely \mathcal{A} -sets and established a new decomposition of continuity. Also, in [25] Tong introduced a new class of sets namely \mathcal{B} -sets and established an other decomposition of continuity. In 1998, Dontchev [12] introduced a class of sets called \mathcal{AB} -sets which are weaker than \mathcal{A} -sets and stronger than \mathcal{B} -sets. On the other hand, the class of LC-sets which introduced by Bourbaki [5] play important role when continuous functions are decomposition. In this paper, we introduce two new classes of sets called \mathcal{D} -sets and \mathcal{DS} -sets. The class of \mathcal{D} -sets is properly placed between \mathcal{A} -sets and \mathcal{B} -sets. Also, some new decompositions of continuity, \mathcal{A} -continuity and \mathcal{AB} -continuity via the notions of \mathcal{D} -sets are established.

In this paper (X, τ) and (Y, σ) represent topological spaces. For a subset P of a space X, cl(P) and int(P) denote the closure of P and the interior of P, respectively.

Definition 1. A subset P of a space (X, τ) is called

- (1) semiopen [18] if $P \subset cl(int(P))$,
- (2) semi-regular [8] if it is both semiopen and semiclosed,
- (3) an \mathcal{AB} -set [12] if $P \in \mathcal{AB}(X) = \{A \cap B : A \in \tau \text{ and } B \text{ is semi-regular}\},\$
- (4) an *LC*-set [5] if $P \in LC(X) = \{A \cap B : A \in \tau, cl(B) = B\},\$
- (5) an \mathcal{A} -set [24] if $P \in \mathcal{A}(X) = \{A \cap B : A \in \tau, B = cl(int(B))\},\$
- (6) a \mathcal{B} -set [25] if $P \in \mathcal{B}(X) = \{A \cap B : A \in \tau, int(cl(B)) \subset B\},\$
- (7) α -open [21] if $P \subset int(cl(int(P)))$,
- (8) β -open [1] or semi-preopen [3] if $P \subset cl(int(cl(P)))$,
- (9) b-open [4] or γ -open [14] or sp-open [11] if $P \subset int(cl(P)) \cup cl(int(P))$,
- (10) preopen [19] or locally dense [7] if $P \subset int(cl(P))$.

A subset P of a space X is called regular open (resp regular closed) [23] if P = int(cl(P)) (resp. P = cl(int(P))). If for each $x \in P$, there exists a regular open set A such that $x \in A \subset P$, P is called δ -open [26]. A point $x \in X$ is called a δ -cluster point of P [26] if $P \cap int(cl(U)) \neq \emptyset$ for each open set U containing x. The set of all δ -cluster points of P is called the δ -closure of P and is denoted by δ -cl(P). If δ -cl(P) = P, then P is said to be δ -closed. The set $\{x \in X : x \in U \subset P \text{ for some regular open set } U \text{ of } X\}$ is called the δ -interior of P and is denoted by δ -int(P). A subset P of a topological space X is said to be δ -semicopen [22] if $P \subset cl(\delta \text{-}int(P))$. The complement of a δ -semiopen set is called a δ -semiclosed set. The union (resp. intersection) of all δ -semiopen (resp. δ -semiclosed) sets, each contained in (resp. containing) a set P in a topological space X is called the δ -semiclosed by δ -scl(P) [22].

Lemma 2. ([6]) Let X be a topological space and $P \subset X$. The following hold:

- (1) δ -cl(δ -cl(P)) = δ -cl(P).
- (2) δ -cl(P) is δ -closed.

2. \mathcal{D} -sets and \mathcal{DS} -sets in topological spaces

Definition 3. A subset P of a topological space (X, τ) is called

- (1) a \mathcal{D} -set if $P = A \cap B$, where A is open and B is δ -closed.
- (2) a \mathcal{DS} -set if $P = A \cap B$, where A is open and B is δ -semiclosed.

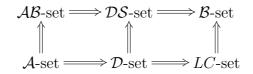
Remark 4.

- (1) Every open and every δ -closed set is a \mathcal{D} -set.
- (2) Every open and every δ -semiclosed set is a \mathcal{DS} -set.

The following example shows that these implications are not reversible.

Example 5. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. The set $\{a, d\}$ is a \mathcal{D} -set and so it is a \mathcal{DS} -set but it is neither δ -semiclosed nor an open set.

Remark 6. The following diagram holds for a subset *P* of a space *X*:



The following examples show that these implications are not reversible.

Example 7. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. The set $\{b, c, d\}$ is an *LC*-set and so a *B*-set but it is neither a *D*-set nor a *DS*-set. The set $\{d\}$ is a *D*-set and so a *DS*-set but it is neither an *A*-set nor an *AB*-set.

Example 8. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. The set $\{b, d\}$ is an \mathcal{AB} -set and so it is a \mathcal{DS} -set but it is neither a \mathcal{D} -set nor an LC-set.

The family of all \mathcal{D} -sets (resp. \mathcal{DS} -sets) of a topological space (X, τ) will be denoted by $\mathcal{D}(X)$ (resp. $\mathcal{DS}(X)$).

Theorem 9. The following are equivalent for a subset P of a space X:

- (1) $P \in \mathcal{D}(X)$,
- (2) $P = A \cap \delta$ -cl(P) for some open set A.

Proof. (\Longrightarrow) : Let $P \in \mathcal{D}(X)$. This implies that $P = A \cap B$, where A is open and B is δ -closed. Since $P \subset B$, δ -cl $(P) \subset \delta$ -cl(B) = B. Moreover, $A \cap \delta$ cl $(P) \subset A \cap B = P \subset A \cap \delta$ -cl(P) and hence $P = A \cap \delta$ -cl(P).

 (\Leftarrow) : Let $P = A \cap \delta - cl(P)$ for some open set A. Since $\delta - cl(P)$ is δ -closed, $P \in \mathcal{D}(X)$.

Theorem 10. The following are equivalent for a subset P of a space X:

- (1) $P \in \mathcal{DS}(X),$
- (2) $P = A \cap \delta$ -scl(P) for some open set A.

Proof. Similar to that of Theorem 9.

Theorem 11. The following are equivalent for a subset P of a space X:

- (1) P is an \mathcal{AB} -set,
- (2) P is semiopen and a DS-set,
- (3) P is b-open and a DS-set,
- (4) P is β -open and a DS-set.

Proof. (1) \Longrightarrow (2) : Since every \mathcal{AB} -set is both semiopen and \mathcal{DS} -set, the proof is completed.

 $(2) \Longrightarrow (3) \Longrightarrow (4)$: Obvious.

 $(4) \Longrightarrow (1)$: Let P be β -open and a \mathcal{DS} -set. Since P is a \mathcal{B} -set, by Theorem 2.4 [12] P is an \mathcal{AB} -set.

Definition 12. Let (X, τ) be a topological space and $A \subset X$. Then A is called interior-closed [16] if int(A) is closed in A.

Theorem 13. The following are equivalent for a subset P of a space X:

- (1) P is open,
- (2) P is α -open and an AB-set,
- (3) P is α -open and a \mathcal{D} -set,
- (4) P is α -open and a DS-set,
- (5) P is preopen and an \mathcal{AB} -set,
- (6) P is preopen and a \mathcal{D} -set,
- (7) P is preopen and a DS-set,
- (8) P is a semiopen \mathcal{D} -set and P is either preopen or interior-closed,
- (9) P is a semiopen \mathcal{DS} -set and P is either preopen or interior-closed.

Proof. (1) \Longrightarrow (2) : It follows from the fact that every open set is both α -open and an \mathcal{AB} -set.

 $(2) \Longrightarrow (5) \Longrightarrow (7)$: Obvious.

 $(1) \Longrightarrow (3)$: Since every open set is both α -open and a \mathcal{D} -set, the proof is completed.

- $(3) \Longrightarrow (4) \Longrightarrow (7)$: Obvious.
- $(3) \Longrightarrow (6) \Longrightarrow (7)$: Obvious.

 $(7) \implies (1)$: Let *P* be preopen and a \mathcal{DS} -set. Then *P* is a \mathcal{B} -set. By Proposition 9 [25], *P* is open.

 $(1) \Longrightarrow (8)$: It follows from the fact that every open set is a semiopen \mathcal{D} -set and preopen.

 $(8) \Longrightarrow (9)$: It follows from Remark 6.

 $(9) \Longrightarrow (1)$: Let *P* be a semiopen \mathcal{DS} -set and *P* be either preopen or interiorclosed. By Remark 6, *P* is a \mathcal{B} -set. So, by Proposition 9 [25], *P* is open since *P* is preopen and a \mathcal{B} -set. On the other hand, by Theorem 1 [16], *P* is open since *P* is interior-closed and semiopen.

Theorem 14. The following are equivalent for a subset P of a space X:

- (1) P is an A-set,
- (2) P is semiopen and a \mathcal{D} -set,
- (3) P is b-open and a \mathcal{D} -set,
- (4) P is β -open and a \mathcal{D} -set.

Proof. (1) \Longrightarrow (2) : By Remark 6, every \mathcal{A} -set is a \mathcal{D} -set. Also by Theorem 3.1 [24], every \mathcal{A} -set is semiopen.

 $(2) \Longrightarrow (3) \Longrightarrow (4)$: Obvious.

 $(4) \Longrightarrow (1)$: Let *P* be β -open and a \mathcal{D} -set. Then by Remark 6, it is also an *LC*-set. Hence by Theorem 2.4 [9], *P* is an \mathcal{A} -set.

A topological space X is called a partition space or locally indiscrete [13] if every open subset of X is closed.

Theorem 15. The following are equivalent for a space X:

- (1) X is a partition space,
- (2) every \mathcal{DS} -set is clopen,
- (3) every \mathcal{D} -set is clopen,
- (4) every \mathcal{DS} -set is closed,
- (5) every \mathcal{D} -set is closed.

Proof. (1) \implies (2) : Let *P* be a \mathcal{DS} -set. Then there exist an open set *A* and a δ -semiclosed set *B* such that $P = A \cap B$. By (1), *A* is clopen and then *P* is semiclosed. Since *X* is a partition space, by [2] *P* is clopen.

 $(2) \Longrightarrow (3)$: It follows from the fact that every \mathcal{D} -set set is a \mathcal{DS} -set.

- $(2) \Longrightarrow (4)$: Obvious.
- $(3) \Longrightarrow (5)$: Obvious.

 $(4) \Longrightarrow (1)$: Let $P \subset X$ be an open set. By Remark 4, P is a \mathcal{DS} -set. By (4), P is closed. Thus, X is a partition space.

 $(5) \Longrightarrow (1)$: It is similar to that of $(4) \Longrightarrow (1)$.

Theorem 16. For a space X, the following are equivalent:

- (1) X is indiscrete,
- (2) the \mathcal{DS} -sets in X are only the trivial ones,
- (3) the \mathcal{D} -sets in X are only the trivial ones.

Proof. (1) \implies (2) : Let A be a \mathcal{DS} -set in X. Then there exist an open set V and a δ -semiclosed set B such that $A = V \cap B$. Suppose $A \neq \emptyset$. Then $V \neq \emptyset$. By (1), we have V = X and A = B. Thus, $X = \delta$ -scl $(A) \subset A$ and hence, A = X.

 $(2) \Longrightarrow (3)$: Obvious.

 $(3) \Longrightarrow (1)$: Since every open set is a \mathcal{D} -set, then open sets in X are only the trivial ones. Thus, X is indiscrete.

A topological space X is called submaximal [5] if every dense subset of X is open. $\hfill\blacksquare$

Theorem 17. For a space X the following are equivalent:

- (1) X is submaximal,
- (2) every dense subset of X is a \mathcal{D} -set,
- (3) every dense subset of X is a \mathcal{DS} -set.

Proof. (1) \Longrightarrow (2) : Let $M \subset X$ be a dense subset. Since X submaximal, then M is open and hence M is a \mathcal{D} -set.

 $(2) \Longrightarrow (3)$: By Remark 6, the proof is obvious.

 $(3) \Longrightarrow (1)$: Let $M \subset X$ be a dense subset. Then M is a \mathcal{DS} -set. Also M is preopen since M is dense. By Theorem 13, M is open. Thus, X is submaximal.

Definition 18. A subset A of a space X is called δ -generalized closed [10] in X if δ -cl(A) \subset W whenever $A \subset W$ and W is open in X.

Theorem 19. Let M be a subset of a space X. Then M is δ -closed if and only if M is a \mathcal{D} -set and δ -generalized closed.

Proof. Let M be δ -closed. Then it is a \mathcal{D} -set and δ -generalized closed. Conversely, let M be a \mathcal{D} -set and δ -generalized closed. Then there exists an open set P such that $M = P \cap \delta$ -cl(M). Since M is δ -generalized closed and $M \subset P$, then δ - $cl(M) \subset P$. We have δ - $cl(M) \subset P \cap \delta$ -cl(M) = M. Hence, M is δ -closed.

3. Decompositions of continuity, A-continuity and AB-continuity

Definition 20. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called

(1) \mathcal{D} -continuous if $f^{-1}(N) \in \mathcal{D}(X)$ for each $N \in \sigma$.

(2) \mathcal{DS} -continuous if $f^{-1}(N) \in \mathcal{DS}(X)$ for each $N \in \sigma$.

Definition 21. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called

- (1) β -continuous [1] if $f^{-1}(N)$ is β -open for each $N \in \sigma$.
- (2) α -continuous [20] if $f^{-1}(N)$ is α -open for each $N \in \sigma$.
- (3) γ -continuous [14] if $f^{-1}(N)$ is γ -open for each $N \in \sigma$.
- (4) quasi-continuous [17] if $f^{-1}(N)$ is semiopen for each $N \in \sigma$.
- (5) precontinuous [19] if $f^{-1}(N)$ is preopen for each $N \in \sigma$.

Definition 22. A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is called \mathcal{A} -continuous [24] (resp. \mathcal{AB} -continuous [12], \mathcal{B} -continuous [25], LC-continuous [15]) if $f^{-1}(N) \in \mathcal{A}(X)$ (resp. $f^{-1}(N) \in \mathcal{AB}(X), f^{-1}(N) \in \mathcal{B}(X), f^{-1}(N) \in LC(X)$) for each $N \in \sigma$.

Remark 23. The following diagram holds for a function $f: X \longrightarrow Y$:

 $LC\text{-continuous} \Longrightarrow \mathcal{B}\text{-continuous}$ $\square D\text{-continuous} \Longrightarrow \mathcal{DS}\text{-continuous}$ $\square \square D\text{-continuous} \Longrightarrow \mathcal{AB}\text{-continuous}$

None of these implications is reversible as shown in the following examples:

Example 24. Let $X = Y = \{a, b, c, d\}$ and $\tau = \sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then

- (1) the function $f: (X, \tau) \longrightarrow (Y, \sigma)$, defined as: f(a) = b, f(b) = a, f(c) = c, f(d)=d, is *LC*-continuous and so \mathcal{B} -continuous but it is neither \mathcal{D} -continuous nor \mathcal{DS} -continuous.
- (2) the function $g: (X, \tau) \longrightarrow (Y, \sigma)$, defined as: g(a) = c, g(b) = d, g(c) = b, g(d)=a, is \mathcal{D} -continuous and so \mathcal{DS} -continuous but it is neither \mathcal{A} -continuous nor \mathcal{AB} -continuous.

Example 25. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then the function $f : (X, \tau) \longrightarrow (X, \tau)$, defined as: f(a) = c, f(b) = a, f(c) = c, f(d) = a, is \mathcal{DS} -continuous and \mathcal{AB} -continuous but it is neither \mathcal{D} -continuous nor LC-continuous.

Theorem 26. For a function $f: (X, \tau) \longrightarrow (Y, \sigma)$, the following are equivalent:

- (1) f is \mathcal{AB} -continuous,
- (2) f is quasi-continuous and \mathcal{DS} -continuous,
- (3) f is γ -continuous and \mathcal{DS} -continuous,
- (4) f is β -continuous and \mathcal{DS} -continuous.

Proof. It follows from Theorem 11.

Definition 27. A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is called ic-continuous [16] if $f^{-1}(N)$ is interior-closed for each $N \in \sigma$.

Theorem 28. For a function $f: (X, \tau) \longrightarrow (Y, \sigma)$, the following are equivalent:

- (1) f is continuous,
- (2) f is α -continuous and \mathcal{AB} -continuous,
- (3) f is α -continuous and \mathcal{D} -continuous,
- (4) f is α -continuous and \mathcal{DS} -continuous,
- (5) f is precontinuous and \mathcal{AB} -continuous,
- (6) f is precontinuous and \mathcal{D} -continuous,
- (7) f is precontinuous and \mathcal{DS} -continuous,
- (8) f is quasi-continuous, D-continuous and f is either precontinuous or ic-continuous,
- (9) f is quasi-continuous, \mathcal{DS} -continuous and f is either precontinuous or ic-continuous.

Proof. It is immediate consequence of Theorem 13.

Theorem 29. For a function $f: (X, \tau) \longrightarrow (Y, \sigma)$, the following are equivalent:

- (1) f is \mathcal{A} -continuous,
- (2) f is quasi-continuous and \mathcal{D} -continuous,
- (3) f is γ -continuous and \mathcal{D} -continuous,
- (4) f is β -continuous and \mathcal{D} -continuous.

Proof. It is immediate consequence of Theorem 14.

References

- ABD EL-MONSEF, M.E., EL-DEEB, S.N. and MAHMOUD, R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] AHO, T. and NIEMINEN, T., Spaces in which preopen subsets are semiopen, Rich. di Mat., vol. XLIII (1) (1994), 45–59.
- [3] ANDRIJEVIĆ, D., Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [4] ANDRIJEVIĆ, D., On b-open sets, Mat. Bech., 48 (1996), 59–64.
- [5] BOURBAKI, N., General Topology, Part I, Addison Wesley, Reading, Mass 1996.
- [6] CALDAS, M. and JAFARI, S., On δD-sets and associated weak separation axioms, Bull. Malaysian Math. Sc. Soc. (Second Series), 25 (2002), 173– 185.
- [7] CARSON. H. and MICHAEL, E., Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351–360.
- [8] DI MAIO and NOIRI, T., On s-closed spaces, Indian J. Pure Appl. Math., 18 (3) (1987), 226–233.
- [9] DONTCHEV, J., Characterizations of some peculiar topological spaces via Aand B-sets, Acta Math. Hungar., 69 (1-2) (1995), 67-71.
- [10] DONTCHEV, J. and GANSTER, M., On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996), 15–31.
- [11] DONTCHEV, J. and PRZEMSKI, M., On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71 (1-2) (1996), 109–120.
- [12] DONTCHEV, J., Between A- and B-sets, Math. Balkanica (N.S.), 12 (3-4) (1998), 295–302.
- [13] DUNHAM, W., Weakly Hausdorff spaces, Kyungpook Math. J., 15 (1975), 41–50.
- [14] EL-ATIK, A.A., A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta Univ., Egypt, 1997.
- [15] GANSTER, M. and REILLY, I.L., Locally closed sets and LC-continuous functions, Int. J. Math. Math. Sci., 3 (1989), 417–424.

- [16] GANSTER, M. and REILLY, I.L., Another decomposition of continuity, Annals of the New York Academy of Sciences, 704 (1993), 135–141.
- [17] KEMPISTY, S., Sur les functions quasicontinues, Fund. Math., 19 (1932), 184-197.
- [18] LEVINE, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963) 36-41.
- [19] MASHHOUR, A.S., ABD EL-MONSEF, M.E and EL-DEEB, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [20] MASHHOUR, A.S., HASANEIN, I.A. and EL-DEEB, S.N., α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213–218.
- [21] NJĀSTAD, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [22] PARK, J.H., LEE, B.Y. and SON, M.J., On δ-semiopen sets in topological space, J. Indian Acad. Math., 19 (1) (1997), 59–67.
- [23] STONE, M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–481.
- [24] TONG, J., A decomposition of continuity, Acta Math. Hungar., 48 (1-2) (1986), 11-15.
- [25] TONG, J., On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1–2) (1989), 51–55.
- [26] VELIČKO, N.V., H-closed topological spaces, Amer. Math. Soc. Transl.,
 (2) 78 (1968), 103–118.

Accepted: 28.07.2007