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Summary: This paper complements an earlier (Nov 2018) paper on the metaphysics of physics. The 

earlier paper focused on an alternative (realist) interpretation of quantum mechanics. While inspired by 

the previous one, this follow-up paper is a much simpler one: we just offer very basic thoughts on the 

most fundamental physical concepts, which are the idea of force, energy and mass.  

Based on the recent precision measurements of the (electric) charge radius of a proton, we also argue 

previous reflections on the zbw radius of a proton make more sense now. 

Needless to say, we also offer our usual reflections on the concept of fields and messenger particles. We 

think the first is very useful – even if fields are relative. In contrast, we argue that the latter (the idea of 

virtual photons, gluons or other messenger particles) is purely metaphysical. In other words, we 

continue to think the idea of messenger particles is a non-scientific successor to aether theories. 
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The metaphysics of physics (II) 
The idea of a force 
Newton’s force law tells us a force changes the state of motion of an object, and Maxwell’s equations 

tell us a force does so by acting on a charge. The force we know best is the electromagnetic force: it acts 

on an electric charge and we usually analyze it as the sum of two components: an electrostatic force and 

a magnetic force. Adding the concept of relativistic mass, we can write: 

d

d𝑡
[

m0 ∙ 𝒗

√1 − 𝑣2 𝑐2⁄
] = 𝑭 = 𝑭𝑬 + 𝑭𝑩 

= q𝑬 + q𝒗𝑩 = q(𝑬 +  𝒗𝑩) 

The separation between electric (or electrostatic) and magnetic forces comes with the frame of 

reference: what charges move (and in which direction and how fast) and what charges do not, depends 

on your own state of motion. That’s what led Einstein to look at Maxwell’s equations and develop his 

theory of (special) relativity. In reality – whatever that may be – there is only one combined 

electromagnetic force and – as shown in the force law above – it changes the state of motion of an 

object. To be precise, it changes its momentum p = mvv = γm0v. The m0 is the equivalent mass of the rest 

energy of the object, i.e. its energy in its own inertial frame of reference.1 The γ in the mv = γm0, of 

course, the ubiquitous Lorentz factor.   

The corollary of the idea of a force being that what changes the state of motion of an object is that the 

state of motion of an object does not change in the absence of a force: such resistance to change is 

referred to as inertia and is captured by the concept of mass. Let us look at the force law again and 

make sure we use correct definitions. 

𝑭 = m𝑣 ∙ 𝒂 =
d(m𝑣 ∙ 𝒗)

d𝑡
=

d𝐩

d𝑡
 

m𝑣 = γ ∙ m0 =
1

√1 − 𝑣2 𝑐2⁄
∙ m0 

The mv factor in the mv·a product is a scalar. Note that we can only bring it inside – or outside – of the 

brackets in the d(mv·a)/dt expression because we assume it is not a function of t: it is a function of v, its 

velocity, only. Because it is a scalar quantity – as opposed to a vector quantity – mass is the same in 

every direction. That sounds trivial – even plain stupid, perhaps – but it is less intuitive or trivial than you 

may think: from our experience in daily life, it looks much easier to change the direction of a massive 

object than its velocity2 and, hence, we may think there is less inertia sideways. In fact, Einstein himself 

 
1 Of course, if we think it does not move, then its own inertial frame of reference is the same as ours. 
2 Think of all the movies involving some asteroid threatening to crash into our planet: the hero in his rocket will not 

try to stop it, but he will try to, somehow, change its direction⎯or, else, destroy it (or some combination of both). 

Bruce Willis is my favorite action hero, so I guess you know what movie I am thinking of right now.       
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used velocity-dependent concepts of mass in his seminal 1905 article introducing the principle of 

relativity, distinguishing between the “longitudinal” and “transverse” mass of a moving charge.3 

We now know that a scalar mass concept will do: the directional aspect is taken care of by the 

acceleration vector a: the same force, for example, will be associated with half the acceleration if the 

mass doubles⎯because it is an object with a much larger rest mass or, else, because its velocity is equal 

to 0.866 times the velocity of light.4 

Having said that, if the nature of a force is defined by the charge it acts upon, then it might still make 

sense to define the concept of mass in terms of the force or the charge it acts upon. The concept of 

electromagnetic mass may, therefore, still be useful, and we will, therefore, come back to it later. 

The idea of a field 
The concept of a field is, perhaps, much more mysterious than the concept of a field. At the same time, 

it’s not all that difficult either: we should just try to imagine a force in the absence of a charge to act on. 

That’s all. The E and B vectors in the F = qE + q(vB) expression are vectors. We can replace both by 

introducing a combined electromagnetic vector Ɛ, so we write the electromagnetic force as5:  

𝑭 = q(𝑬 +  𝒗𝑩) = q𝓔 

Can we do that? The v in the vB expression is there for a reason, right? It’s the velocity of the charge 

on which the (magnetic) force is supposed to act. Can we make abstraction of it? Of course, we can. It is, 

in fact, a very logical thing to do: if we make abstraction of the charge (as we do when we think of a 

field), we should also make abstraction of its velocity. 

Let us think about this some more. We know a field is generally defined as the force per unit charge. 

What is the unit charge? It is not the charge of the electron (or the proton) – that is the elementary 

charge, which is something else – but the two concepts are, obviously, closely related. To be precise, the 

unit charge is the coulomb (C), and under the 2019 redefinition of the SI base units, the coulomb is now 

defined in terms of the elementary charge, which is the charge of the proton (or, what amounts to the 

same, its negative: the charge of the electron). Under this redefinition, which took effect on 20 May 

2019, the elementary charge has now effectively been defined as 1.602176634×10−19 coulombs, 

exactly⎯and vice versa: the coulomb is the charge of 1/1.602176634×10−19 protons, exactly.  

This value is, obviously, not relative. It is a fundamental constant of Nature, just like c or h. To be 

precise, its value does not depend on the reference frame. In contrast, the values we’ll measure for E 

and B and, hence, for F and Ɛ will be relative and dependent on our motion relative to the charge. We 

 
3 See p. 21 of the English translation of Einstein’s article on special relativity, which can be downloaded from: 
http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf. The two concepts may be 
associated with the equally relative distinction between the electrostatic and magnetic forces. While the concept 
of mass has been reduced to something scalar (which is quite consistent with the Higgs theory of mass), we feel 
the concept of energy is still ambiguous: both the concepts of kinetic and potential energy imply the idea of 
direction (kinetic energy comes from velocity, which is directional, and potential energy is calculating by bringing 
charges together – which also involves the idea of a trajectory). 
4 The Lorentz factor is equal to 2 for  = v/c  0.866. 
5 The symbol is a so-called Latin epsilon, also known as an open e (majuscule: Ɛ, minuscule: ɛ) and, yes, you have 
not seen it before. 

http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf
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do want to introduce four-vector algebra here but just note that (electric) charge is not relative and that, 

therefore, the F/Ɛ = q ratio should also not depend on the reference frame: it should be the same in any 

reference frame. This may sound trivial again but it is, in fact, a very interesting observation. 

As part of this discussion on the field concept, I should probably say a few words about how a force 

actually works. However, I won’t do that. Both physicists and philosophers alike tend to write volumes 

about that, usually noting that what is relative can, somehow, not be real and that we, therefore, should 

try to find “some kind of gear wheels”, or “something that can transmit the force.”6 In fact, I find most 

physicists will initially dismiss such discussions as rubbish but, unfortunately, then proceed to discuss 

what might or might not be going on inside of the nucleus of an atom and suddenly bring back the 

whole idea of ‘gear wheels’ through the back door: think of ‘messenger particles’ such as virtual photons 

or gluons here. I’ll be clear: I think of that as rubbish.  

The idea of a strong force 
We introduced the electromagnetic force above. Let us now think about other forces, charges and 

masses that may or may not exist. There is the gravitational force, of course⎯but Einstein did not think 

of it as a force, and so we will not dwell on it either here. 

We may also think of some kind of strong force. Indeed, because protons stay together in multi-proton 

nuclei, physicists also believe some kind of short-range strong force must exist: this strong force must 

act on some strong charge whose nature is not well understood. The idea here is rather simple: because 

protons carry positive charge, the electrostatic repulsive force between them should push them apart. 

Hence, some other – stronger – force must keep them together. This inspired Hideki Yukawa to propose 

a potential function for a nuclear force⎯some new force that, supposedly, holds nucleons together: 

protons as well as neutrons. The Yukawa potential has the following shape: 

U(𝑟) = −
gN

2

4π

𝑒−𝑟/𝑎

𝑟
 

This formula reflects the formula for the electrostatic potential: 

V(𝑟) =
qe

2

4πε0

1

𝑟
= e2

1

𝑟
 

Yukawa’s formula differs from Coulomb’s formula because of the minus sign (but that is because the 

electrostatic and strong forces are opposite) and, most importantly, because of the e−r/a factor, which is 

there to ensure that, at distances smaller than the range parameter a, the strong attractive force would, 

effectively, be stronger than the electrostatic repulsive force.  

Yukawa’s formula also misses the equivalent of the electric constant (ε0). This is an oft-missed point and 

we do not think of it as a minor detail. In fact, we think it is a grave mistake: if there is something like a 

strong force, then there must something like a strong charge and, hence, Yukawa should have inserted 

some kind of nuclear constant. Because Yukawa had the freedom to choose a unit for this new 

hypothetical strong charge, its numerical value could be one, but it would still have some physical 

 
6 I quote from the interesting and, at the same time, fairly concise treatment of fields by Richard Feynman: see his 
Lectures, II-1-5, What are the fields? 
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dimension to ensure dimensional consistency on both sides of his U(r) equation. The discussion warrants 

a small digression to highlight the point.  

Electric charge is measured in units of coulomb, and it is a fundamental unit: the electron charge is the 

electron charge⎯regardless of the reference frame. As such, it is as fundamental as c or h.7 If the strong 

force would be as fundamental as the electromagnetic force, then the charge it acts upon should be as 

fundamental as the electric charge. In one of our previous papers, we invented a temporary unit for it: 

the dirac, which we abbreviated as Y to not only honor Dirac but Yukawa as well.8 Hence, if ε0 is 

expressed in C2/N·m2, then our nuclear constant (which we will denote as υ0) will be expressed in 

Y2/N·m2. It is, then, easy to calculate the value of the nucleon charge as9: 

gN = √𝑒 ∙ α ∙ ℎ ∙ 𝑐 · υ0 = 6.27723 … 10−14 Y 

It is a weird and, therefore, interesting formula: its key purpose in the context of this paper is to 

demonstrate a philosophical point only.10 It consists of a mathematical constant (Euler’s number) which 

is there because of the exponential function in Yukawa’s formula11, three natural constants (α, h and c)12 

and a physical proportionality constant whose only function is to ensure dimensional consistency and 

whose numerical value is, therefore, unity. 

As mentioned, the formula currently only serves to demonstrate a philosophical point: the formulas 

does not prove such strong force effectively exists. Other reasons may explain why nucleons tend to 

stick together inside of the nucleus. Indeed, considering electrostatic repulsion alone, as Yukawa and 

other theorists usually do, narrows the perspective considerably. If we think of the electric charges 

inside of the nucleus as, somehow, moving around, the magnetic forces between them might act as 

counterbalancing the electrostatic repulsive force. You should think of the attraction between two wires 

carrying current in the same direction or – more relevant in this context – between two loops of current 

acting as magnetic dipoles.13 

 
7 The 2019 revision of SI units defines the coulomb in terms of the elementary charge. To be precise, the coulomb 
is the charge of 1/1.602176634×10−19 protons, exactly.   
8 The choice of Y is also consistent with our choice of an upsilon symbol (υ) for the nuclear constant. 
9 See, for example, my paper with some thoughts on the nature of protons and neutrons 
(http://vixra.org/abs/2001.0104). 
10 While downplaying the (non-)importance of the formula, I insist on earning 20 points on the John Baez ‘crackpot 
index’ (see: http://math.ucr.edu/home/baez/crackpot.html) here for naming something after myself: this is Van 
Belle’s formula. And, yes, I’ve requested my kids to put it on my tombstone. Dirac or Yukawa can be the unit, but 

the formula is mine.       Its theoretical value may be limited but its practical value – in terms of reminding 
academic physicists they are supposed to explain stuff, not complicate it even more – may or may not be as 
significant as Yukawa’s. 
11 It would be tempting to try other functional forms but these would result in very complicated calculations and, 
in any case, in the lack of other good reasons, Yukawa’s choice of the natural exponential function is, a priori, as 
good or as bad as any other choice he could have made. 
12 While the fine-structure constant has no physical dimension (it is a scalar), it is obviously a physical – rather than 
mathematical – constant. The fine-structure constant has many meanings, but we primarily think of it as a scaling 
constant in a layered model of electron motion (http://vixra.org/abs/1812.0273). 
13 For a non-technical discussion of the idea, see the Encyclopædia Britannica article on it: 
https://www.britannica.com/science/magnetism/Repulsion-or-attraction-between-two-magnetic-dipoles. We like 
this article because it effectively also discusses nuclear magnetic moment. It does so in the context of technology 
(magnetic resonance imaging) but it serves to illustrate the point we’re trying to make here. 

http://vixra.org/abs/2001.0104
http://math.ucr.edu/home/baez/crackpot.html
http://vixra.org/abs/1812.0273
https://www.britannica.com/science/magnetism/Repulsion-or-attraction-between-two-magnetic-dipoles
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In fact, we are very much intrigued by calculations in the context of the forces between charged 

particles in accelerator beams here. One author – in the context of a very interesting article on relativity 

– actually claims that the charges on the surface of the beam and inside the beam would experience 

zero radial force if the charged particles would move at the speed of light.14  

One may also want to wonder why electron orbitals consist of electron pairs or – why in the context of 

superconduction – Cooper pairs of like charges emerge. In short, considering electrostatic forces alone 

and then argue some strong force must counter these is, obviously, a bit of a flawed argument. 

We’d like to conclude this section with a critical remark or question: the range parameter a in Yukawa’s 

formula is about 0.2 fm.15 That is much smaller than the measured charge radius of a proton, which is 

about 0.83 fm. I find it bizarre Yukawa hoped to explain some strong attractive force (stronger than the 

electrostatic repulsive force) between protons introducing a force whose range is much smaller than the 

proton’s size. 

The strong(er) force hypothesis 
Despite our skepticism above, we actually do believe some kind of strong force inside of the nucleus 

exists. However, the reason has got nothing to do with the idea some other force should counter the 

electromagnetic forces inside of a nucleus. The most compelling reason to believe some enormous force 

must govern the nucleus is the extraordinarily large mass and the equally extraordinary small size of 

protons and neutrons as compared to electrons. The energy density inside of protons and neutrons is, 

effectively, massive as compared to electrons. 

We have elaborated the Zitterbewegung model of an electron elsewhere and, hence, will not repeat 

ourselves here.16 We just note it does what it is designed to do: it yields an elegant explanation of both 

the mass and the Compton radius of an electron in terms of a local oscillation of a pointlike electric 

charge.17 By now, the skeptical reader may be inclined to stop reading all of this, so we will try to revive 

his or her interest by noting the Zitterbewegung hypothesis goes back to Erwin Schrödinger. Schrödinger 

stumbled upon the idea while exploring solutions to Dirac’s wave equation for free electrons, and it’s 

probably worth quoting Dirac’s summary of it once more:  

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

 
14 See: Oleg D. Jefimenko, 1998, On the Experimental Proofs of Relativistic Length Contraction and Time Dilation, Z. 
Naturforsch. 53a, 977-982 (https://www.degruyter.com/downloadpdf/j/zna.1998.53.issue-12/zna-1998-1208/zna-
1998-1208.pdf). 
15 See Aitchison and Hey’s introduction to Gauge Theories in Particles Physics, Vol. 1, Chapter 1 ((The Particles and 

Forces of the Standard Model) , p. 16. To be precise, Aitchison and Hey there write the range parameter as  2 fm. 
They don’t explain this result. We will do in a moment. Because they get the same value (more or less, at least), we 
must assume they went through the same calculations. We are not sure why they don’t mention them.  
16 For a brief overview, see our (critical) discussion of Oliver Consa’s classical calculations of the anomalous 
magnetic moment (http://vixra.org/abs/2001.0264). We also have more comprehensive papers on the topic (see, 
for example, http://vixra.org/abs/1905.0521).  
17 The oscillation is usually thought of as a ring current, and the pointlike charge may be associated as having some 
small but non-zero radius itself, which is supposed to explain Thomson scattering, as opposed to Compton 
scattering (see below). 

https://www.degruyter.com/downloadpdf/j/zna.1998.53.issue-12/zna-1998-1208/zna-1998-1208.pdf
https://www.degruyter.com/downloadpdf/j/zna.1998.53.issue-12/zna-1998-1208/zna-1998-1208.pdf
http://vixra.org/abs/2001.0264
http://vixra.org/abs/1905.0521
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small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

David Hestenes revived the Zitterbewegung (often abbreviated as zbw) interpretation in the 1970s and 

1980s, basically reviving an earlier ring electron model (Parson, 201518), which thinks of the electron as a 

unitary charge orbiting at the speed of light around some center, thereby generating a strong magnetic 

field which keeps the current going. As such, it is a rather nice example of a perpetuum mobile or a self-

sustaining oscillation. More importantly, the model does allow us to explain the two different radii we 

get from elastic versus inelastic scattering experiments (Thomson versus Compton scattering).19 

The point is: the electric current and the associated electromagnetic force allow us to calculate the 

Compton radius of an electron (rC), and its formula effectively corresponds to what is measured in those 

scattering experiments: 

𝑟C =
ℏ

me𝑐
=

ℏ𝑐

E
= 0.386 … 10−12 𝑚 

We used Einstein’s mass-energy equivalence formula above: E = me·c2. It is, effectively, very important 

to underline that, in our particular model of the zbw electron, all of the electron mass is explained as the 

equivalent mass of the energy in the (two-dimensional) oscillation of the pointlike charge. The pointlike 

charge itself has zero rest mass: all of its mass is derived from its motion. As such, it reminds us of a 

photon which, supposedly, also has zero rest mass but which can be associated with some effective 

mass as well, which it derives from its motion.20 

The  formula for the Compton radius establishes an inverse proportionality between the radius (or size) 

of our particle (the electron, in this case) and its energy. Now, we said all of the energy of the electron is 

electromagnetic: the mass of the electron – as measured in experiments (about 0.511 MeV/c2) – is the 

equivalent mass of the energy in the oscillation. The oscillation is electromagnetic and we can, 

therefore, calculate the energy from the electromagnetic force that drives the pointlike charge. The 

basic assumptions are depicted in Figure 1. 

 
18 See: https://en.wikipedia.org/wiki/Alfred_Lauck_Parson. Lucknow (India) lacks monuments, so I’ll recommend 
erecting one in his honor. 
19 Thomson scattering is referred to as elastic scattering because the energy of the photons remains unchanged. In 
contrast, Compton scattering involves some interaction between the photon and the electron. We think of the 
photon as being briefly absorbed, before the electron emits another photon of lower energy, and the energy 
difference between the incoming and outgoing photon gets added to the kinetic energy of the electron. 
20 Some authors refer to the pointlike charge as a toroidal or electron photon but we find this term misplaced 
because we think one should not associate a photon with electric charge, and vice versa. In fact, we think this 

distinguishes photons from matter: photons do not carry charge. Matter does⎯even neutrons, as evidenced by 
the fact they have a magnetic moment. As for the mysterious neutrinos, we may say a few words about them later. 

https://en.wikipedia.org/wiki/Alfred_Lauck_Parson
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Figure 1: The ring current model of an electron 

 

We distinguish between the effective mass of the pointlike charge, which we denote as mγ
21, and the 

mass of the electron as a whole, which we denote as me. Based on the geometry of the situation, it is 

easy to show that mγ = me/2. One can also show that the ratio between the force F and the momentum 

p must be equal to the ration between the speed of light and the radius a = rC, so we can write: F/p = 

c/a. To make a long story short, we can relate the force and the energy as follows: 

𝐹 =
𝑝 ∙ 𝑐

𝑎
=

mγ ∙ 𝑐2

𝑎
=

me ∙ 𝑐2

2𝑎
=

E

2𝑎
⟺ 𝑎 =

E

2𝐹
 

This shows the radius is inversely proportional to the strength of the force. In other words, if we’d find 

ourselves in some other universe, where the electromagnetic force would – for some totally random 

reason – be much stronger, the electrons there would be smaller than our electrons here. 

Of course, you’ll immediately note the obvious mistake in this argument: if the force would be stronger, 

the energy would be much larger as well, wouldn’t it? That is correct. Let us, therefore, try to develop a 

more general argument. Let us not make any assumption about the strength of the force. However, we 

will assume its structure is the one we presented above: a circular current of the charge it acts on will 

produce a field which keeps that charge in the orbit which it happens to be in. We can now derive the 

radius of the oscillation in another way. For some reason we do not understand, the angular frequency 

of the motion respects the Planck-Einstein relation: 

𝑎 =
ℏ

m𝑐
=

ℏ

E/𝑐
  E =

ℏ𝑐

𝑎
= ℏω = h𝑓 = h/T 

These calculations are not mere entertainment. We get fantastic but not necessarily impossible values 

for the cycle time and the current here22: 

 
21 The gamma (γ) in the subscript refers to the Lorentz factor. However, one should not think of the charge as a 
photon. Photons do not carry charge. For our photon model, see our other papers (e.g. 
http://vixra.org/abs/2001.0345). At the same time, we do not mind the association with a photon because, as we 
noted above, the pointlike charge is photon-like in the sense that it (also) travels at the speed of light. Alexander 
Burinskii, a Russian physicist who specializes in physical electron models, wrote me the following when I first 
contacted him (December 2018): “I know many people who considered the electron as a toroidal photon  and do it 
up to now. I also started from this model about 1969 and published an article in JETP in 1974 on it: "Microgeons 
with spin". Editor E. Lifschitz prohibited me then to write there about Zitterbewegung [because of ideological 
reasons ], but there is a remnant on this notion. There was also this key problem: what keeps [the pointlike charge] 
in its circular orbit?” We think we managed to answer his question. 
22 These values are also obtained by other authors, even if some of the other calculations differ. See our above-
mentioned critique of Consa’s calculations.  

http://vixra.org/abs/2001.0345
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T =
ℎ

E
≈

6.626 × 10−34 J ∙ s

8.187 × 10−14 J
≈ 0.8 × 10−20 s 

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 19.8 A 

The point is: one obtains the Compton radius most easily from combining the E = ħ·ω, c = a·ω and E = 

m·c2 relations, as shown below. 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2
=

ℏ

m ∙ 𝑐
=

λC

2π
≈ 0.386 × 10−12 m 

Let us now apply the E = ħ·ω, c = a·ω and E = m·c2 relations to  the mass/energy of proton (or a 

neutron23), we get this: 

𝑎p =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

938 × 106 eV
≈ 0.21 × 10−15 m 

The result that we obtain here is about 1/4 of the experimentally measured value. Indeed, the radius of 

a proton is thought to be around 0.83 or 0.84 fm.24 Hence, the order of magnitude is right, at least! 

More importantly, the distance we have obtained above matches the range parameter a that is usually 

associated with Yukawa’s formula, which is about 2 fm.25 In fact, we can equate the range parameter a 

and the distance r with the ap = ħ/mpc value in the force formulas we get from the potential formulas 

and we’ll see the electrostatic and nuclear force – which we’ll denote as FC and FN respectively – are, 

effectively the same26: 

FC = −
dV

d𝑟
= −

qe
2

4πε0

1

𝑟2
= −

αℏ𝑐

𝑟2
= −

αmp
2𝑐2

ℏ
 

 
23 The mass of a neutron is about 939,565,413 eV/c2 and about 938,272,081 eV/c2 for the proton. Hence, the 
energy difference is a bit less than 1.3 MeV. It is, therefore, very tempting to think a neutron might, somehow, 
combine a proton and an electron: the electron mass is about 0.511 MeV/c2 and, hence, we may think of the 

remaining difference as some kind of binding energy⎯the attractive force between the positive and a negative 
charge, perhaps? These thoughts are, obviously, very speculative. We did explore some of these, however, in our 
paper on the nature of protons and neutrons (http://vixra.org/abs/2001.0104), and we very much welcome 
comments. 
24 We refer to Wikipedia for a very readable account of the experiments and their results  
(https://en.wikipedia.org/wiki/Proton_radius_puzzle). Earlier measurements were somewhat inconclusive because 
they yielded a radius between 0.84 and 0.90. However, recent research suggests the so-called proton radius puzzle 
has been solved (see: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/). For those who 
would wonder, we may, perhaps, also note the same calculations do work very well for the muon-electron. We’ve 
done these calculations in another speculative paper (http://vixra.org/abs/1908.0430). 
25 See Aitchison and Hey’s introduction to Gauge Theories in Particles Physics, Vol. 1, Chapter 1 ((The Particles and 

Forces of the Standard Model) , p. 16. To be precise, Aitchison and Hey there write the range parameter is  2 fm. 
They don’t explain this result. Hence, we must assume they use the same formulas.  
26 For the detailed calculations in regard to force formulas, see: http://vixra.org/abs/2001.0104. Note that we left 
the nuclear constant (υ0) out because its numerical value is one. You can, of course, calculate the exact value using 
the CODATA values for the various constants. You should find a pretty decent value: about 0.0000174 N, if we are 
not mistaken. 

http://vixra.org/abs/2001.0104
https://en.wikipedia.org/wiki/Proton_radius_puzzle
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/
http://vixra.org/abs/1908.0430
http://vixra.org/abs/2001.0104
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FN = −
dU

d𝑟
= −

gN
2

4π
∙

(
𝑟
𝑎

+ 1) ∙ 𝑒−
𝑟
𝑎

𝑟2
= −

gN
2

4π
∙

2𝑒−1

𝑟2
== −

𝑒αhc

4π
∙

2𝑒−1mp
2𝑐2

ℏ2
=

αmp
2𝑐2

ℏ
 

Eureka ! Have we discovered the strong force? Is it just a stronger variant of the electromagnetic force?  

Maybe, but probably not. Again, this calculation only serves to demonstrate a philosophical point: if the 

energy (and equivalent mass) of nucleons is the energy of some oscillating strong charge, then the 

energy density of protons and neutrons suggest it is going to be a very strong force, indeed!  

To illustrate the point, the above F = E/2a formula yields a force of 0.115 N for the electron: such force 

gives a mass of about 115 gram (1 g = 10-3 kg) an acceleration of 1 m/s per second, which is humongous 

on the picometer scale that we are talking about here. However, terms such as massive or humongous 

suddenly become very relative when using the same formulas to calculate the value of the presumed 

strong(er) version of the oscillatory force inside a proton. We will let you go through them and, to keep 

the exercise somewhat interesting, you may want to think of they’d imply in terms of spacetime 

curvature. 

Note: In contrast to the enormity of the presumed forces inside of an electron (or, even larger, inside of a 

proton), you should note that the force between two protons at the calculated cut-off value (0.21 fm) is 

quite reasonable: you can, effectively, calculate the exact value for FN = FC using the formulas above (and 

the CODATA values for the various constants). You should find a pretty decent value: about 0.0000174 N, 

if we are not mistaken. 

To conclude this section, we’d like to repeat the remark we made above: the effective range of Yukawa’s 

force is much smaller than the measured charge radius of a proton: one fourth (1/4), to be precise. 

Hence, it is really bizarre Yukawa hoped to explain some strong attractive force (stronger than the 

electrostatic repulsive force) between protons. It is one of those weird things that just doesn’t make 

sense. 

The magnetic moment of electrons, protons and neutrons 
Before we move on, we should quickly insert some other obvious calculations. If a proton, somehow, 

combines electric and strong charge, we could, for the time being, think of the electric charge alone and 

ask some questions in regard to the electric current inside of the proton. A circular electric current 

creates a magnetic moment which, for the electron, we calculated as: 

μ = I ∙ π𝑎2 = qe𝑓 ∙ π𝑎2 = qe

m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ 

It is also consistent with the presumed angular momentum of an electron, which is that of a spin-1/2 

particle. Here we must make some assumption as to how the effective mass of the electron will be 

spread over the disk. If we assume it is spread uniformly over the whole disk27, then we can use the 1/2 

form factor for the moment of inertia (I). We write: 

 
27 This is a very essential point. It is also very deep and philosophical. We say the energy of the electron is in the 
motion of the pointlike charge, but it’s also in the magnetic field inside of the ring. Our two-dimensional oscillator 
model models this as the energy of two independent (perpendicular) oscillations. The mass factor in the formula is 
the effective mass of the electron which, based on a geometric argument (http://vixra.org/abs/1905.0521), we can 
calculate as ½ of the (rest) mass of the electron. Hence, we write: mγ = me/2. We should then use the relativistically 

http://vixra.org/abs/1905.0521
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L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g (
qe

2m
) 𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

However, let us look at the formula for the magnetic moment once more. If the proton, somehow, has a 

pointlike elementary charge in it and if it – as we presume in a Zitterbewegung model – is in some kind 

of circular motion, then we can establish a simple relation between the magnetic moment and radius of 

the circular current. Indeed, the current I is just the product of the elementary charge and the 

frequency, which we can calculate as f = E/h (Planck-Einstein relation) or – more prosaically – as f = 

c/2πa, i.e. the velocity of the charge divided by the circumference of the loop. We write: 

μ = I ∙ π𝑎2 = qe𝑐
π𝑎2

2π𝑎
= qe𝑐

𝑎

2
 

= (1.60217663410−19) ∙ (299,792,458) ∙
𝑎

2
≈ 0.24 … 10−10 ∙ 𝑎 

Using the Compton radius, this yields the correct magnetic moment for the electron28: 

μe = (0.24 … 10−10 ∙ 0.386 … × 10−12) ≈ 9.2847647043 × 10−24 J/T 

What radius do we get when applying the a = μ/0.24…10–10 relation to the (experimentally measured) 

magnetic moment of a proton? I invite the reader to verify the next calculation using CODATA values: 

𝑎 =
1.41 … 10−26

0.24 … 10−10
= 0.58710−15 𝑚 

Again, the order of magnitude is right, at least! So… Is this rubbish, or is it good enough? 

Wait a minute! The measured value of the charge radius of a proton radius is 0.83 fm, right? Correct. 

And the exact value of a charge radius also depends on statistical definitions and all that, right? Correct. 

Then look at this: 

(0.587 … 10−15 m) ∙ √2 ≈ 0.8310−15 m 

We get the exact value of the charge radius of a proton based our theoretical zbw model, don’t we? 

Hence, our model makes perfectly sense, doesn’t it?29  

 
correct energy equation for an oscillator (see p. 66-67 of my manuscript: http://vixra.org/pdf/1901.0105vG.pdf, 
which we also copied in annex 2): 

dE

dt
=

d

dt
[
1

2
k𝑥2 + m𝑐2] = 0 

28 The calculations do away with the niceties of the + or – sign conventions as they focus on the values only. We 
also invite the reader to add the SI units so as to make sure all equations are consistent from a dimensional point 
of view. For the values themselves, see the CODATA values on the NIST website 
(https://physics.nist.gov/cuu/Constants/index.html). 
29 In case you wonder how a 2 factor can be related to statistics, see Feynman’s analysis of Einstein’s treatment of 
the random walk (https://www.feynmanlectures.caltech.edu/I_06.html). 

http://vixra.org/pdf/1901.0105vG.pdf
https://physics.nist.gov/cuu/Constants/index.html
https://www.feynmanlectures.caltech.edu/I_06.html
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Maybe. Maybe not. These are, largely, tautological calculations. We only modeled an electric current 

based on the assumption that the idea of a proton must include the idea of a circulating elementary 

charge, somehow. Nothing more. Nothing less. But I admit it is nice we get very meaningful results.  

What about the weak force? 
To conclude this rather philosophical introduction, we should probably say a few words about the weak 

force. The weak force is supposed to explain why things fall apart, or why particles are unstable, rather 

than stable. We prefer to not think of decay or disintegration as a force. It is, in fact, the exact opposite 

of the idea of a force: a force is supposed to keep things together.30 

In the same vein, we like to add we do not want to entertain the idea of messenger particles or force 

carriers – virtual photons, gluons, or whatever other bosons or metaphysical constructs that have been 

invented since Yukawa first presented these ideas. Indeed, it is unfortunate that – instead of realizing he 

was actually proposing the existence of a new charge – he used his formula to derive a hypothetical 

nuclear force quantum.31   

It is now time to turn to the concept of mass⎯or to the concepts (plural) of mass, we should say. 

Kinetic, electromagnetic and other masses 
We should probably not remind the reader of the classical concept of electromagnetic mass. If so, we 

will refer him or her to an equally classic textbook, such as Feynman’s Lectures.32 These classical 

calculations are usually based on the assembly of a spherical shell or sphere of charge. Another, more 

intricate, argument involves the concept of field momentum.33 However, they all involve the idea of 

naked charge, i.e. electric charge stripped of any other attribute or idea. Hence, the basic idea, here too, 

is that charge is just charge, with zero rest mass. As such, these models are not entirely dissociated from 

our modern-day zbw model of an electron.34  

We should highlight the key differences and issues, however. First, these classical calculations do usually 

not use Compton radius, but the (classical) Thomson radius, which we can write as35: 

 
30 You will wonder how we think about unstable particles, then. We think of them as wavicles that do not quite 
respect the Planck-Einstein relation. Hence, we think of them as non-harmonic oscillations: after a while, they just 
break down in stuff that does respect the Planck-Einstein relation.. 
31 For a brief but accessible treatment of this matter, see the above-mentioned introduction to Aitchison and Hey’s 
Gauge Theories in Particle Physics (2013). I am quoting this textbook rather than any other because it also 
incorporates the Higgs mechanism: the ‘missing’ scalar field that is supposed to explain mass and is now thought of 
as being real. Why? Because some CERN data might be interpreted as some ‘signature’ of it and, more importantly, 
because the current Nobel Prize Committee thinks such ‘signals’ or ‘signatures’ give the hypothesis sufficient 
credibility. 
32 See: Feynman’s Lectures, Volume II, Chapter 28, on Electromagnetic mass. 
33 See section 2 in Feynman’s above-mentioned Lecture (the field momentum of a moving charge). 
34 Note that calculations of electromagnetic mass never revolve around protons because their mass is inexplicably 
large as compared to that of an electron, as we pointed out already. 
35 The formula uses the fine-structure constant α = qe

2/4πε0ħc = e2/ħc  0.0073, which relates all of the three radii 
of the electron (Thomson, Compton and Bohr radius). The fine-structure constant has several meanings but, as 
mentioned before, we primarily think of it as a scaling constant in a layered model of electron motion. It is surely 
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𝑟e = α ∙ 𝑟C =
qe

2

4πε0ℏ𝑐

ℏ

me𝑐
=

e2

me𝑐2
=

e2

Ee
 

For example, if we assume all of the electron charge is to be assembled in a spherical shell with radius a 

= re, then the energy needed to do so, will be equal to36: 

U =
1

2

e2

𝑎
=

1

2

e2E

e2
=

1

2
E 

If the form factor is a proper sphere instead of a shell, then we get: 

U =
3

5

e2

𝑎
=

3

5
E 

The more advanced idea of using the idea of field momentum – an argument which takes some time to 

explain and, hence, which we won’t elaborate here – gives us a value of 0.75 (3/4) times the actual 

electron energy: 

U =
3

4

e2

𝑎
=

3

4
E 

Are we getting there? Can we assemble an electron, somehow, so as to make sure the energy of the 

assembly adds up to the total electron mass? No. Feynman writes the following about that: 

“It is impossible to get all the mass to be electromagnetic in the way we hoped. It is not a legal theory if 

we have nothing but electrodynamics. Something else has to be added. Whatever you call them—“rubber 

bands,” or “Poincaré stresses,” or something else—there have to be other forces in nature to make a 

consistent theory of this kind. Clearly, as soon as we have to put forces on the inside of the electron, the 

beauty of the whole idea begins to disappear. Things get very complicated. You would want to ask: How 

strong are the stresses? How does the electron shake? Does it oscillate? What are all its internal 

properties? And so on. It might be possible that an electron does have some complicated internal 

properties. If we made a theory of the electron along these lines, it would predict odd properties, like 

modes of oscillation, which haven’t apparently been observed. We say “apparently” because we observe 

a lot of things in nature that still do not make sense. We may someday find out that one of the things we 

don’t understand today (for example, the muon) can, in fact, be explained as an oscillation of the Poincaré 

stresses. It doesn’t seem likely, but no one can say for sure. There are so many things about fundamental 

particles that we still don’t understand. Anyway, the complex structure implied by this theory is 

undesirable, and the attempt to explain all mass in terms of electromagnetism—at least in the way we 

have described—has led to a blind alley.”37 

What rubbish! Doing some more thinking about the equivalent mass of magnetic forces resulting from 

the motion of charge would have solved the problem!  

 
not some “magical” or “God-given number.” Its meaning is perfectly comprehensible. See our paper on the 
meaning of the fine-structure constant (http://vixra.org/abs/1812.0273). 
36 For the formulas of the energy, we refer to Feynman’s Lecture on electromagnetic mass (Volume II, Chapter 28). 
Needless to say, with E we mean the actual total energy of the electron, i.e. about 0.511 MeV/c2).  
37 Feynman’s Lectures, section II-28-4 (https://www.feynmanlectures.caltech.edu/II_28.html). 

http://vixra.org/abs/1812.0273
https://www.feynmanlectures.caltech.edu/II_28.html
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Richard Feynman was a clever man, and the ring electron model had been around for quite a while 

already. Consa offers a short but interesting history of the idea, and it goes all the way back to 1915.38 It 

begs the question: why are (were?) gems like this hidden from common sight for so long?  

To conclude this paper, we should say something about other masses⎯because that’s what I suggested 

in the title of this section (electromagnetic and other masses). However, we did that already. We 

suggested the rest mass of a particle is determined by the force(s) inside. The only other mass that is 

relevant, then, is the concept of kinetic or dynamic mass: the extra energy we get from the motion of 

our particle.  

Now that’s the concept of relativistic mass. It’s not any different. We’ve added an annex on that, which 

does not have any advantage to the treatment you’ll find in a textbook except we’ve tried to make it 

somewhat wittier. Hence, we think we’ve exhausted the topic⎯for the time being, that is.  

Jean Louis Van Belle, 24 January 2020  

 
38 Consa’s paper can be found on: http://www.ptep-online.com/2018/PP-53-06.PDF. We should mention David 
Hestenes also refers to earlier calculations by Antonio F. Rañada. We found the link 
(https://link.springer.com/article/10.1007/BF00401864) but have not examined this paper in detail. 

http://www.ptep-online.com/2018/PP-53-06.PDF
https://link.springer.com/article/10.1007/BF00401864
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Annex 1: Relativity 
A force is that what changes the state of motion of an object. How do we define an object, and how do 

we model its state of motion? In the previous sections, we argued the rest mass of an electron may be 

explained by the oscillatory motion of a pointlike charge which – by itself – is not supposed to have any 

other attributes. To be precise, we assumed the pointlike charge had zero rest mass. 

The idea of a zero-mass object is problematic. Newton’s force law (F = m·a) tells us that, if m is zero, 

even the smallest force will give it an infinitely large acceleration and, therefore, its velocity should also 

be infinitely large. It would, therefore, be impossible to calculate its position along its direction of 

motion at any point in time. The idea of infinity is a wonderful mathematical concept but, in reality, it is 

a rather inconvenient thing to work with. If mass would not depend on velocity, then any mass could be 

accelerated to humongous velocities by the tiniest of forces: all that is needed is time. 

Infinity is, perhaps, just some Platonic idea: an idealization that cannot be real⎯whatever that means. 

To explain relativity and the absolute speed of light to someone who has not had the luxury to study 

physics, I’d use the following story.39 Because of the above-mentioned inconveniences related to the 

idea of infinite velocity (a particle with infinite velocity is everywhere and, therefore, nowhere at the 

same time), you’ll agree there should be some (absolute) speed cap in the Universe. Now, if you would 

be God, and you’d have to regulate the Universe by putting a cap on speed, how would you do that? 

You would probably want to benchmark speed against the fastest thing in the Universe, which is a light 

photon. Why is a photon the fastest thing in the Universe? Because it has no rest mass and, hence, it can 

effectively travel at the speed of light: c. It’s the speed of the fastest-traveling signal.40 So now you want 

to put a speed limiter on everything else, so it can only travel at some fraction of the speed of light.  

That fraction (v/c) is just a ratio between 0 and 1, of course. Now, because you’re God, you do not want 

to police around so you want something mechanical: you want to burden everything with an intricate 

friction device, so as to make sure the friction goes up progressively as v/c goes to 0 to 1. You do 

not want something linear because you want the friction to become infinite as v/c goes to 1, so that’s 

when v approaches c. So that’s one thing you have figured out in your design.  

Of course, you’ll also want a device that can cope with everything: electrons, bicycles, spaceships, solar 

systems—whatever you can think of. The speed limit applies to all. But then you don’t need too much 

force to accelerate a proton as compared to, say, that new spaceship that was just built on planet X. 

Hence, you think about brakes and engines and all that but, after a while, you realize it’s probably better 

to just ask some of your best engineers to finalize your design.  

 
39 I borrow this story from my e-book on a realist interpretation of quantum physics 
(http://vixra.org/abs/1901.0105). 
40 If you know anything about quantum mechanics, you will know that the phase velocity of a composite wave 
packet may be superluminal. In fact, it usually is. However, this phase velocity is just a mathematical concept. It is 
not something real that is traveling through space. In other words, it cannot carry any information. Only the shape 
of the wave can carry information and, therefore, can qualify as a proper signal. Now, the shape of the wave 
travels with the group velocity of the wave packet, which is always smaller than c. This is probably confusing you, 
but I just wanted to be correct—especially because I must assume you have already done quite a lot of homework 
when you are reading papers such as this one. 

http://vixra.org/abs/1901.0105
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So you all sit together and you explain your problem and the design requirements. One of 

them, Newton, will tell you that, when applying a force to an object, its acceleration will be proportional 

to its mass. So he goes to the blackboard and writes it down like this: F = m·a. Of course, you tell him 

you know that already, and that this is exactly your problem: even the smallest force can accelerate the 

very massive object to crazy speeds—to infinite speeds, in fact! You just need to apply the force long 

enough. Newton shrugs his shoulders and sits down again. Now Lorentz gets up and points to the mass 

factor in the formula: m should go up with speed, he says. And it should go up progressively—as per 

God’s design, he says. Lorentz is always well prepared, so he has a print-out with some formulas and 

graphs and sticks it on the blackboard. Here is an easy formula that does the trick, he says.  

 

Figure 2: How to put a speed cap on bicycles, spaceships and galaxies 

Look here, he says. The red graph is for m = 1/2, the blue one for m = 1, and the green one for m = 3. In 

the beginning, nothing much happens: the thing picks up speed but its mass doesn’t increase all that 

much. Why not? Because you do want to allow everyone to move their stuff around, right? But when it 

gets a bit crazy, then the friction kicks in, and very progressively so as the speed gets closer to the speed 

of light.  

Now you stare at this for a few seconds, and you think this is looking good. However, you tell Lorentz 

you don’t want to discriminate: it looks like we’re putting more aggressive brakes on the green thing 

than on the blue or the red thing, right? However, Lorentz says that is not the case. There is no 

discrimination here: his factor is the same per unit of mass. The graphs show the product of the mass 

and his Lorentz factor, which is actually represented by the blue line—because that’s the one for m = 1. 

So, yes, the green thing will actually have better brakes, but that’s just commensurate with its mass. You 

want the lorry to come with better brakes, right? And bicycle brakes won’t do for a car, right?  

You look again, and you think that makes sense. But then you hesitate, of course. You don’t want to 

change the Laws of the Universe, as that would be messy. It would surely upset Newton, because he is 

pretty fussy about you tampering with stuff. So you look at both and you say: what’s the implications for 

the force law? Newton nods in agreement: yes, what about it? We don’t want to change it, he says, 

because there are a zillion devices that work on it now. We can’t do a total recall, can we?  

Lorentz is still at the blackboard but he tells Newton: it’s not a problem. We’re going to use the same 

force law. We’re just going to distinguish two mass concepts: the mass at rest, and the mass at some 

velocity v. Just put a subscript – mv – and then you use this. He jots this on the blackboard: 
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𝑭 = m𝑣 ∙ 𝒂 =
d(m𝑣 ∙ 𝒗)

d𝑡
=

d𝐩

d𝑡
 

m𝑣 = γ ∙ m0 =
1

√1 − 𝑣2 𝑐2⁄
∙ m0 

Now Newton stares at that, and he takes a few minutes. You think he is going to turn it down, because 

his formula is… Well… Newton’s formula, right? But… No. Something weird happens: Newton nods and 

agrees! He gets up, shakes hands with Lorentz and says: excellent job! Perfect fix! So you’re delighted 

and you tell Lorentz he can pick and choose his men and build it.  

Newton walks out, and Lorentz stays behind. Suddenly you see some worry on this face, and so you ask: 

what’s up? You’re not happy with your own thing? He sighs and says: my formula is the only thing that 

can do the trick because, yes, you want it to be progressive. It needs to be something based on the idea 

of the mass unit. But this mechanical thing has some weird implications. You ask: what implications? 

Now Lorentz starts a discussion on a guy you’ve never heard about – Albert Einstein – and he starts 

mumbling about time dilation and length contraction. He says Newton’s formula came with Galilean 

relativity, and that we’ll need a new concept of relativity. But you want to move on by now, and so you 

tell Lorentz to hire that Einstein and just get on with it. So… Well… That’s what we’ll do also. We’ll just 

get on with it. However, before we do so, we’d like to add one or two other philosophical remarks: 

1. We wrote that the Lorentz formula is the only one that can do the trick but, to be honest, we have no 

proof that other formulas would not work. While our Universe is what it is and, hence, we should just 

accept the Lorentz factor for what it is, it is an interesting exercise to try some other formulas. The 

√1 − (𝑣/𝑐)
2
 factor makes us think of the formula for a circle: 𝑦 = √1 − x2, and you may, therefore, 

think some similar formula might also do the trick. Try it. It doesn’t.41  

2. We also wrote – rather jokingly – that infinity is a nice mathematical concept but that it is weird to 

think of what it could possibly mean in reality. This is actually a rather deep philosophical statement. 

You should think through Zeno’s paradoxes. Differential calculus shows that the idea that we can keep 

splitting some interval in time or in space in smaller and smaller bits – going on forever (so that’s, funnily 

enough42, the idea of a limit in math) – is not incompatible with Achilles overtaking the tortoise, or the 

idea of an arrow being somewhere while flying through space, but it is good to think through those 

paradoxes. We need math to describe reality – whatever idea we have about it – but Planck’s quantum 

of action, and the finite speed of light, seems to tell us our mathematical ideas are what they are: 

idealized notions to describe something finite.43 

 
41 Having said that, the graph of the inverse Lorentz factor, as a function of the β = v/c ratio, is, in fact, just a simple 

circular arc⎯which is as it should be in light of the functional shape of the two formulas. 
42 Think about what I’d call that funny: the mathematical definition of a limit involves the idea of infinity. So that’s 

a pretty clear example of a contradictio in terminis, no?       
43 The rather philosophical discussion on the mathematical consistency of Dirac’s delta function is a nice example 
of a paradox in quantum mechanics. We will not entertain such discussions in this book, however. Not because we 
don’t like them – on the contrary – but because they have little practical value in trying to move towards some 
understanding of it all. However, we do encourage the reader to look into this. It’s fun. For starters, the reader 

may want to think of how a link function can map the infinite [0, +] set of real numbers to the finite [0, c] interval.    
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Annex 2: The effective mass of the Zitterbewegung charge 

The electron and its charge 
The Zitterbewegung model thinks of an electron as a hybrid thing: it consists of a pointlike charge which 

– in itself – has zero rest mass. However, its Zitterbewegung motion gives the electron as a whole the 

energy and, therefore, rest mass as measured in countless experiments. Hence, the ‘elementary charge’ 

that is whizzing around the center is a naked charge: it has no properties but its charge. Its rest mass is, 

therefore, zero, and it acquires all of its mass from its velocity. As such, some refer to it as some kind of 

toroidal photon, or an electron photon – but I don’t like these terms because they are not only 

imprecise but also misleading: photons are not supposed to carry any charge. 

Of course, the question is: how does a naked charge acquire mass? Just from whizzing around? The 

answer is positive. To keep an object with some momentum in a circular orbit, a centripetal force is 

needed, as shown in Figure 3. What is the nature of this force? Because the force can only grab onto the 

charge, it must be electromagnetic. We will come back to the force in a moment but, at this point, we 

will want to think about the nature of the momentum of the charge (p). 

Figure 3: The Zitterbewegung model of an electron 

 

The momentum p is relativistic momentum, of course, so its magnitude p = p is equal to: 

p = mc = γm0c 

How should we calculate this? The Lorentz factor (γ) goes to infinity as the velocity goes to c and, as 

mentioned above, we assume the pointlike charge has zero rest mass, so m0 = 0. So we are multiplying 

zero by infinity. What do we get? The behavior of the p = γm0v function is quite weird. The graph in 

Figure 4 shows what happens with the p = mvv = γm0v for  m0 = 0.001 and v/c ranging between 0 and 1.44 

It is quite enlightening: p is (very close to) zero for v/c going from 0 to (very close to) 1 but then 

becomes infinity near or at v/c = 1 itself. What can we say about this? Perhaps we should say that the 

momentum of an object with zero rest mass is a nonsensical concept? Perhaps we should associate a 

tiny but non-zero rest mass with the pointlike charge? If it is something, then it should have some mass, 

shouldn’t it?  

Maybe. Maybe not. We are not in a position to say much about this right now, and so we won’t. The 

discussion is, in any case, quite philosophical here and, therefore, not so relevant. What we want to do 

is to find some value for the effective mass and, preferable, a value that is expressed in terms of the 

 
44 We used the online desmos.com graphing tool to produce the graph. 
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actual rest mass of our electron: note that we distinguish the electron, as a whole, from the pointlike 

charge that (we think) is part of it ! 

Figure 4: p = mvv = γm0v for m0 → 0 

 

Calculating the effective mass of the charge 
Let us distinguish the components of the momentum vector p in the x- and y-direction respectively. We 

write: 

p = px + py 

The magnitude of these vectors can then be written as p = p, px = px, andps = py respectively. If 

we then write the effective mass as mv or – even simpler – as m (as opposed to me), then we can write   

px and py as:  

px = mvx = γm0vx and py = mvy = γm0vy 

The origin of both the force and momentum vectors is the position vector r, which we can write using 

the elementary wavefunction, i.e. Euler’s function: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

We can also calculate the centripetal acceleration: it’s equal to ac = vt
2/a = a·ω2. This formula is 

relativistically correct. It might be useful to remind ourselves how we get this result. The position vector 

r has a horizontal and a vertical component: x = a·cos(ωt) and y = a·sin(ωt). We can now calculate the 

two components of the (tangential) velocity vector v = dr/dt as vx = −a·ω·sin(ωt) and vx y = −a· ω·cos(ωt) 

and, in the next step, the components of the (centripetal) acceleration vector ac: ax = −a·ω2·cos(ωt) and 

ay = −a·ω2·sin(ωt). The magnitude of this vector is then calculated as follows: 

ac
2 = ax

2 + ay
2 =  a2·ω4·cos2(ωt) + a2·ω4·sin2(ωt) = a2·ω4  ac = a·ω2 = vt

2/a 

Now, Newton’s force law tells us that the magnitude of the centripetal force F= F will be equal to: 

F = m·ac = m·a·ω2 

However, we again have this problem of determining what the mass of our pointlike charge actually is: 

the m0 in our m = γm0 is zero ! We should find another way ! 

We may note the horizontal and vertical force component behave like the restoring force causing linear 

harmonic oscillation. This restoring force depends linearly on the (horizontal or vertical) displacement 

from the center, and the (linear) proportionality constant is usually written as k. In case of a mechanical 

spring, this constant will be the stiffness of the spring. We don’t have a spring here so it is tempting to 
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think it models some elasticity of space itself. However, we should probably not engage in such 

philosophical thought. Let us just write down the formulas:  

Fx = dpx/dt = –k·x = –k·a·cos(ωt) = −F·cos(ωt) 

Fy = dpy/dt = –k·y = –k·a·sin(ωt) = −F·sin(ωt) 

Now, it is quite straightforward to show that the constant (k) can always be written as: 

k = m·ω2 

We get that from the solution we find for ω when solving the differential equations Fx = dpx/dt = –k·x 

and Fy = dpy/dt = Fy = dpy/dt = –k·y and assuming there is nothing particular about p and m. In other 

words, we assume there is nothing wrong with this p = m·v = γm0v relation. So we just don’t think about 

the weird behavior of that function. It’s a bit like what Dirac did when he defined his rather (in)famous 

Dirac function: the function doesn’t make sense mathematically but it works – i.e. we get the right 

answers – when we use it.  

So now we have the k = m·ω2 equation and we know m is not the rest mass of our electron here. We 

referred to it as the effective mass of our pointlike charge as it’s whizzing around at the speed of light. 

We need to remember mass is a measure of inertia and, hence, we can measure that inertia along the 

horizontal and vertical axis respectively. Hence, we can write something like this: m = mγ = mx = my, in 

line with the distinction we made between p, px and py. Why mγ? The notation is just a placeholder: we 

need to remind ourselves it is a relativistic mass concept and so I used γ (the symbol for the Lorentz 

factor) to remind ourselves of that. So let us write this:  

k = mγ·ω2 

From the equations for Fx and Fx, we know that k·a = F, so k = F/a. Hence, the following equality must 

hold: 

F/a = mγ·ω2   F = mγ·a·ω2  F/a = mγ·a2·ω2 =  F/a·mγ = a2·ω2 

We know the sum of the potential and kinetic energy in a linear oscillator adds up to E = m·a2·ω2/2. We 

have two independent linear oscillations here so we can just add their energies and the ½ factor 

vanishes. Now I am going to ask you to accept Einstein’s mass-energy equivalence relation should apply, 

so I am asking you to accept that the total energy in this oscillation must be equal to E = m·c2. The mass 

factor here is the rest mass of our electron, so it’s not that weird relativistic mγ concept. However, we did 

equate c to a·ω2. Hence, we can now write the following: 

E = m·c2 = m·a2·ω2 = m·F/a·mγ  

The force is, therefore, equal to: 

F = (mγ/m)·(E/a) 

Now what can we say about the mγ/m ratio? We know mγ is sort of undefined⎯but it shouldn’t be zero 

and it shouldn’t be infinity. It is also quite sensible to think mγ should be smaller than m. It cannot be 

larger because than the energy of the oscillation would be larger than E = mc2. What could it be? 1/2, 

1/2π? Rather than guessing, we may want to remind ourselves that we know the angular momentum: L 

= ħ/2. We calculated it using the L = I·ω formula and using an educated guess for the moment of inertia 
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(I = m·a2/2), but we also have the L = r  p formula, of course! The lever arm is the radius here, so we 

can write: 

1. L = ħ/2  p = L/a = (ħ/2)/a = (ħ/2)·mc/ħ = mc/2  

2. p = mγc 

 mγc = mc/2  mγ = m/2 

We found the grand result we expected to find: the effective mass of the pointlike charge – as it whizzes 

around the center of the two-dimensional oscillation that makes up our electron – is half of the (rest) 

mass of the electron. 

Basic calculations 
We can now calculate the force using the F = (mγ/m)·(E/a) formula: 

F =
1

2

E

𝑎
≈

8.187 × 10−14 J

2
2𝜋 · 2.246 × 10−12 m

≈ 0.115 N 

This force is equivalent to a force that gives a mass of about 115 gram (1 g = 10-3 kg) an acceleration of 1 

m/s per second. This is huge at the sub-atomic scale. Does it make sense? We think it does. We can also 

calculate the current and the other properties of the electron, such as the angular momentum and the 

magnetic moment45:  

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 19.8 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

The magnetic moment is equal to the current times the area of the loop and is, therefore, equal to: 

μ = I ∙ π𝑎2 = qe

m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ 

This calculation is consistent with the presumed angular momentum of an electron, which is that of a 

spin-1/2 particle. Here we must make some assumption as to how the effective mass of the electron will 

be spread over the disk. Our oscillator model assumes it is spread uniformly over the whole disk46, then 

we can use the 1/2 form factor for the moment of inertia (I). We write: 

L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g (
qe

2m
) 𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

  

 
45 See: Jean Louis Van Belle, The Electron as a Harmonic Electromagnetic Oscillator, 1 June 2019 
(http://vixra.org/abs/1905.0521). 
46 See Annex 3 for our oscillator model, which effectively assumes the energy is all over the ‘disk’ of this two-
dimensional oscillation. 

http://vixra.org/abs/1905.0521
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Annex 3: Oscillator math 
In this Annex, we will walk you through the math of our ‘two-dimensional oscillator’ model which, 

initially, I used to refer to as the ‘flywheel model’ of matter-particles.47 It is all pretty straightforward but 

let us just make sure you’re somewhat comfortable with it.48 

If the magnitude of the oscillation is equal to a, then the motion of the piston (or the mass on a spring) 

will be described by x = a·cos(ω·t + Δ).49 Needless to say, Δ is just a phase factor which defines our t = 0 

point, and ω is the natural angular frequency of our oscillator. Because of the 90° angle between the 

two cylinders, Δ would be 0 for one oscillator, and –π/2 for the other. Hence, the motion of one piston is 

given by x = a·cos(ω·t), while the motion of the other is given by x = a·cos(ω·t–π/2) = a·sin(ω·t). The 

kinetic and potential energy of one oscillator (think of one piston or one spring only) can then be 

calculated as: 

1. K.E. = T = m·v2/2 = (1/2)·m·ω2·a2·sin2(ω·t + Δ) 

2. P.E. = U = k·x2/2 = (1/2)·k·a2·cos2(ω·t + Δ)  

The coefficient k in the potential energy formula characterizes the restoring force: F = −k·x. From the 

dynamics involved, it is obvious that k must be equal to m·ω2. Hence, the total energy is equal to: 

E = T + U = (1/2)· m·ω2·a2·[sin2(ω·t + Δ) + cos2(ω·t + Δ)] = m·a2·ω2/2 

The formulas above are illustrated below.  

 

Figure 5: Kinetic (K) and potential energy (U) of an oscillator50 

Now, if the amplitude of the oscillation is equal to a, then we know that the sum of the kinetic and 

potential energy of the oscillator will be equal to (1/2)·m·a2·ω2. Now, if we have two oscillators – 

 
47 See: https://readingfeynman.org/2017/11/19/the-flywheel-model-of-an-electron/.  
48 In case you wonder, the remark is inspired by various ‘crackpot theorist’ remarks. 
49 The origin of our oscillator idea goes back to a discussion on the efficiency of the Ducati V-2 engines, which has 
the pistons in a 90-degree angle as opposed to, say, a Harley-Davidson. Of course, when thinking about engines, 
we should note that – because of the sideways motion of the connecting rods – the sinusoidal function will 
describe the linear motion only approximately. Springs connected to a crankshaft will give you the same issue. 
However, you can easily imagine the idealized limit situation. 
50 You will find this diagram in many texts, but we took this one from the https://phys.libretexts.org/ site—which is 
a great hub for open-access textbooks.  

https://readingfeynman.org/2017/11/19/the-flywheel-model-of-an-electron/
https://phys.libretexts.org/
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working in tandem at a 90-degree angle – then we can add their kinetic and potential energies. Why? 

Because of the 90-degree phase difference. Think of the V-2 metaphor—or of two springs working in 

tandem on the same crankshaft: it is a perpetuum mobile. Let us show you the associated math. 

To facilitate the calculations, we will briefly assume that k = m·ω2 and a are both equal to 1. Think of it 

as a normalization.51 The motion of our first oscillator is given by the cos(ω·t) = cosθ function (so the 

phase varies with time only: θ = ω·t). Its kinetic energy will be equal to sin2θ. Hence, the 

(instantaneous) change in kinetic energy at some point in time – any point in time, really – will be equal 

to: 

d(sin2θ)/dθ = 2·sinθ·d(sinθ)/dθ = 2·sinθ·cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin2(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2·sin(θ−π /2)·cos(θ−π /2) = −2·cosθ·sinθ = −2·sinθ·cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = ma2ω2.  We have a great metaphor 

here. Somehow, in this beautiful interplay between linear and circular motion, energy is borrowed from 

one place and then returns to the other, cycle after cycle.  

We know the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine 

is the imaginary component. We believe they are equally real. And we believe each of the two 

oscillations carries half of the total energy of our particle. 

The relativistic oscillator 
You may wonder if the math holds for relativistic speeds. If the velocity of our mass on this spring – on 

the two springs, really – becomes a sizable fraction of the speed of light, then we can no longer treat the 

mass as a constant factor: it will vary with velocity, and its variation is given by the Lorentz factor (γ). 

While we will not work out each and every detail, we will show you the basics of why our reasoning 

above isn’t faulty – even when relativistic speeds are involved. 

The relativistically correct force equation for one oscillator is:  

F = dp/dt = F = –kx with p = mvv = γm0v 

The mv = γm0 varies with speed because γ varies with speed: 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=

dt

dτ
 

What’s the dt/dτ here? Don’t worry about it. We actually don’t need it for what follows, but we quickly 

wanted to insert it so as to remind you that we no longer have a unique concept of time: there is the 

 
51 There is no trick here. You can check for yourself by writing it all out. In fact, we advise that – as an exercise – 

you re-do the calculations for a  1 and k = m·ω2  1. It’s easy enough: you can treat both as a constant factor in 
the derivations. 
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time in our reference frame (t) – aka as the coordinate time – and the time in the reference frame of the 

object itself (τ) – which is known as the proper time. We may want to use these two concepts of time in 

a later development, so it’s good to introduce them here. But let’s get on with that equation above. It 

actually is a differential equation (it involves a derivative), but you’ll agree it’s a very simple one. In fact, 

when you first learned about an equation like this, no one probably told you it’s a proper differential 

equation. However, simple as it is, we’re not going to solve it – because we don’t have to. We’ll just 

derive an energy conservation equation from it. 

We do so by multiplying both sides with v = dx/dt. I am skipping a few steps (we’re not going to do all of 

the work for you) but you should be able to verify the following: 

𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺

dE

dt
=

d

dt
[
1

2
k𝑥2 + m𝑐2] = 0 

So what’s the energy concept here? We recognize the potential energy: it is the same kx2/2 formula we 

got for the non-relativistic oscillator. No surprises: potential energy depends on position only, not on 

velocity, and there is nothing relative about position. However, the (½)m0v2 term that we would get 

when using the non-relativistic formulation of Newton’s Law is now replaced by the mc2 = γm0c2 term. 

You should note this mc2 = γm0c2 is not a constant: it varies with time – just like kx2/2 – because of the 

use of the relativistic mass concept.   

So how can we calculate the energy? The total energy is constant at any point, so we may equate x to 0 

and calculate the energy there. At that point, the potential energy will be zero and, crossing the x = 0 

point, our pointlike charge will also reach the speed of light. The m in the formula will, therefore, be 

equal to mγ = mc = me/2. We write:  

E =
1

2
k ∙ 02 + m𝑥 = 0𝑐2 = mγ  =

me𝑐2

2
  

We can now add the energies in both oscillators so as to arrive at the total energy of the electron: 

E = mec2 

It is a wonderful result. In fact, we think it amounts to a rather elegant and intuitive common-sense 

explanation of Einstein’s mass-energy equivalence relation. 

Should we regret this? Did we take the magic away? We don’t think so. While we’ve made the magic 

somewhat more comprehensible, perhaps, it is still there: we used the metaphor of two oscillators 

working in tandem, somehow. As such, it may feel like squaring the circle. However, how this 

‘machinery’ actually works – exactly, that is – is a deep mystery. 
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Annex 4: Equivalent models? 
We spoke about the ‘machinery’ of the Zitterbewegung in Annex 3. Most theorists – such as Hestenes, 

for example – think of the machinery as being electromagnetic. The approach is quite sensible but, at 

the same time, it raises its own questions. In fact, one of the people who wrote me accused me of using 

Hestenes’ model and, worse, of using it wrongly, because Hestenes’ model yields a radius that is twice 

as large as mine. The exchange hereunder may be enlightening in that regard: 

“Hello Jean Louis – Thanks for your latest article. I’m not sure why you don’t consider the 

circulating internal momentum in your electron model as the source of the electron's inertial 

mass. David Hestenes’ Zitter electron model has radius ħ/2mc. This is the same amplitude (see 

the excerpt below) that Barut and Bracken found in 1981 ("Zitterbewegung and the internal 

geometry of the electron”, Phys Rev D, Vol 23, No. 10) when they went through Schrodinger’s 

analysis of the Dirac equation. Their full paper is attached below the excerpt from their paper 

which shows this result.  Note in the excerpt that the zitterbewegung’s characteristic frequency 

is ω = 2mc2/ħ. Geometrical models of the electron with radius ħ/mc and corresponding 

circulating frequency ω = mc2/ħ therefore don’t correspond to Schrodinger’s  zitterbewegung 

result from the Dirac equation. All the best – [X].” 

I responded as follows: 

“Dear [X] – We talked about the ½ factor a couple of times before. The essence of ‘my’ zbw idea 

is an oscillation in two dimensions – so I am not thinking in terms of a current ring and the 

magnetic field it creates, although the ‘electromagnetic’ zbw model must be equivalent 

somehow. The ‘ring current’ idea is secondary only to this basic geometric interpretation of the 

motion of the pointlike charge. 

The idea is that the circulating pointlike charge has an effective mass (because of its velocity c) 

that is half the electron mass (m/2). However, just like a photon, it does have this effective mass 

and, hence, some centripetal force must keep the pointlike charge in place – even if its rest mass 

is zero. That centripetal force can be broken down in two perpendicular oscillations, each of 

which is associated with energy (so we add the energies of two linear harmonic oscillators to 

arrive at the energy of a two-dimensional harmonic oscillator). [Note the ½ factor also vanishes 

when using the relativistically correct formula for the energy of a harmonic oscillator – see p. 66 

of http://vixra.org/pdf/1901.0105vG.pdf).] 

The summary formula in Consa’s article sums up the ‘Big Issue’ with the ‘electromagnetic’ zbw 

model of an electron, as he writes: L = m·a·c = ħ. This makes the “1/2 mistake” two times, which 

is why the gets the ‘right’ result: 

1. The electron mass (me) is the electron’s rest mass. It is non-zero and, therefore, such 

mass cannot travel around at the speed of light. One should use the effective mass of 

the electron in calculations involving angular momentum or – in my calculations – the 

energy of the two perpendicular oscillations that make up the circular current. 

2. The angular momentum of an electron is not ħ but ħ/2: that’s why electrons are 

considered to be spin-1/2 particles. 

http://vixra.org/pdf/1901.0105vG.pdf
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One can ‘avoid’ one of the two mistakes above by accepting a zbw radius that is twice the 

Compton radius, but that just creates another problem then. 

So my answer to your question is simple: my model is not a copy of Hestenes’ or any other 

model. It’s a totally different ‘philosophy’, so to speak, but it gives the right answers – to me, at 

least. I also feel it has an advantage over the ‘electromagnetic’ model because it gives us an 

explanation to the quintessential question: there is nothing ‘mechanical’ (no wire or so) to 

‘constrain’ the zbw charge in its circular motion. Hence, the ‘electromagnetic’ model offers a 

delicate ‘equilibrium’ trajectory that can easily be disturbed. As such, I don’t like the comparison 

with superconducting currents or so – because superconducting currents do need a ‘mechanical’ 

constraint ensuring the charge doesn’t go ‘off-track’.  

Having said that, I’ve started to realize it must, effectively, look like a ‘crackpot’ theory to most, 

especially because it also offers an easy geometric interpretation of the previously mysterious 

mass-energy equivalence relation which – I realize – sounds terribly arrogant. 

Kindest regard – JL”  

It is an interesting discussion. I hope someone will be able to show the two models (electromagnetic and 

two-dimensional) are equivalent. However, in order to do so, Hestenes’ followers will need to explain 

the missing ½ factor based on a thorough review of their calculations. To be precise, they will need to 

present more convincing calculations of the electric and magnetic energies in their models, and show 

how these add up to the total energy of the electron.52 

Of course, one may think the question can be settled by a careful consideration of the experimentally 

measured charge radius of an electron, as is done in photon scattering experiments, so that is something 

to look into. In addition, the various models use different energy concepts (the ring electron model is 

associated with electric and magnetic energies, while the oscillator model uses kinetic versus potential 

energy – in a very ‘mechanical’ sense, that is). These energies must, of course, add up to the total 

electron energy.  

I should look in more detail, but in zbw models I see good calculations of force based on spin and 

angular momentum – and calculations of the strength of the magnetic field (e.g. in Consa’s article53) – 

but I have not seen any integration of (field) energies over space: does the energy in the 

electromagnetic fields of the ring electron add up to 0.511 MeV/c2?  

They should, of course, and so all of the models of the electron that are currently around (Burinskii, 

Hestenes and mine) should then be equivalent, somehow – just showing different aspects of (how we 

think about) the reality of an electron. 

 

 
52 To be honest, they will also need to explain why they don’t seem to care about integrating the Planck-Einstein 
relation, or Einstein’s mass-energy equivalence relation, into their rather elaborate computations. 
53 See: Oliver Consa, The Helical Solenoid Model of the Electron (http://www.ptep-online.com/2018/PP-53-06.PDF). 

http://www.ptep-online.com/2018/PP-53-06.PDF

