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Abstract. The note studies further properties and results of anal-
ysis in the setting of hypermetric spaces. Among others, we present
some results concerning the hyper uniform limit of a sequence of
continuous functions, the hypermetric identification theorem and
the metrization problem for hypermetric space.
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1. Introduction

Metric spaces play an important role in the analysis as well as in the
applications of mathematics in a variety of fields: fixed point theory and
dynamical systems are just a few areas of such applications [5, 7, 9]. This
note studies some fundamental properties of the class of hypermetric
spaces, which properly contains the class of metric spaces. Let P(R)
denote the family of all subsets of R, where R is the set of real numbers
equipped with usual metric and R+ = [0,∞). We recall [2, 8] that a
hypermetric space is a pair (X,D), where X is a nonempty set and D
is a set-valued map D : X ×X → P(R+) such that for all x, y, z in X
we have:

(a) D(x, y) = {0} if and only if x = y.
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(b) D(x, y) = D(y, x).
(c) D(x, y) ⊆ D(x, z) + D(z, y), where for A,B in P(R+), we have

A+B = {a+ b : a ∈ A, b ∈ B}.
Examples of hypermetric spaces are provided in [2]. Furthermore,

it is shown that every metric space (X, d) induces a hypermetric space
(X,Dd). In particular, given a metric space (X, d) for the purposes
of this paper we shall define Dd(x, y) = {0} if x = y and Dd(x, y) =
(−d(x, y), d(x, y)) for x ̸= y. Note that a topology τ(d) induced by the
metric d on X is the same as the topology τ(Dd) on X induced by
hypermetric Dd. In particular, let X = R with d being the usual metric
on X. Then τ(Dd) is the usual topology on X. We now present the
following example:

Let X = R. Define D(x, y) = {0}, if x = y, and D(x, y) = {0, 1} if
x ̸= y. Then (X,D) is the hypermetric space. In fact, the topology
τ(D) on X is discrete. However, there is no metric d on X such that
τ(D) = τ(Dd).

Definition 1.1. [4](Kuratowski Convergence) Let (X, d) be a metric
space and {An} be a sequence of subsets of X. Then

(i) the Upper Limit orOuter limit of the sequence {An} is a subset
of X given by

lim sup
n→∞

An =

{
x ∈ X ; lim inf

n→∞
dist(x,An) = 0

}
(ii) the Lower limit or Inner limit of the sequence {An} is a subset

of X given by

lim inf
n→∞

An =

{
x ∈ X ; lim sup

n→∞
dist(x,An) = 0

}
.

If lim sup
n→∞

An = lim inf
n→∞

An, then we say that the limit of {An}n∈N
exists and

lim
n→∞

An = lim sup
n→∞

An = lim inf
n→∞

An.

In what follows the convergence of sequences will be important. We
therefore recall some basic facts concerning sequences in hyper metric
spaces. From Definition 1.1, a sequence {xn} in a hypermetric space
(X,D) is said to converge to a point x in X if for any ϵ > 0 there exists
a natural number N such that for every n ≥ N

D(xn, x) ⊂ (−ϵ, ϵ),
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then we shall write lim
n→∞

D(xn, x) = {0}. The sequence {xn} is said to be

Cauchy if
limm,nD(xn, xm) = {0}. We shall say that a sequence {xn} has a cluster
point x if there exists a subsequence {xn(k)} of {xn} that converges to
x. We easily observe that a sequence in a metric space (X, d) is Cauchy
if and only if it is Cauchy in (X,Dd).

2. Main results

The following results shows that for any x, y ∈ X the set D(x, y) is
nonempty set in P(R+).

Theorem 2.1. Let (X,D) be a hypermetric space, then {0} ⊆ D(x, y)
for all x, y ∈ X.

Proof. Let x0, y0 ∈ X. By definition of hypermetric spaces we have

{0} = D(x0, y0) ⊆ D(x0, y0) +D(y0, x0).

Since D(x0, y0) ⊆ R+, we infer that 0 ∈ D(x0, y0). □

We recall that for a hypermetric space (X,D) and x ∈ X then
Nh

r (x) = {y ∈ X : supD(x, y) < r ∧ infD(x, y) > −r} is called a
hyper open ball with center x and radius r for each r > 0. Now let Q de-
note the set of rational numbers, then for each x ∈ X, the set {Nh

r∈Q(x)}
is countable. From this and results in [2, 9] we deduce the following:

Theorem 2.2. Every hypermetric space is first countable.

Corollary 2.3. Every metric space is first countable.

Theorem 2.4. Let (X,D) be a hypermetric space such that every Cauchy
sequence has a hyper convergent subsequence. Then (X,D) is hyper com-
plete.

Proof. Let {xn} be a hyper Cauchy sequence in (X,D) and {xn(k)}
be the subsequence of {xn}. Let ϵ > 0. We note that there exists a
natural number N such that if n,m ≥ N then D(xm, xn) ⊂ (− ϵ

2 ,
ϵ
2).

Furthermore, there exists x ∈ X such that D(xn(k), x) ⊂ (− ϵ
2 ,

ϵ
2) for all

n(k) > N. It follows that for n ≥ N, we have D(xn, x) ⊆ D(xn, xn(k)) +
D(xn(k), xm). Hence, for n > N, we get D(xn, x) ⊂ (−ϵ, ϵ). □

Theorem 2.5. Let (X,D) be a complete hypermetric space. Let A be a
subset of X. Then A is hyper complete if and only if it is closed.
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Definition 2.6. Let X be a set and let (Y,D) be a hypermetric space.
Let f : X → Y be a function and for each n ∈ N, fn : X → Y, be
a function. Then the sequence {fn} hyper converges uniformly to f
provided that for each ϵ > 0, there is a natural number N such that if
n ≥ N , then D(fn(x), f(x)) ⊂ (−ϵ, ϵ) for all x ∈ X.

Theorem 2.7. Let (X, τ) be a topological space and (Y,D) be a hyper-
metric space. Let f : (X, τ) → (Y,D) be a function and for each n ≥ 1
the function fn : (X, τ) → (Y,D) be continuous. If the sequence {fn} is
hyper converging uniformly to f , then f is continuous.

Proof. Let x0 ∈ X and let V ∈ τ(D) be such that V contains f(x0).
Then there exists ϵ > 0 such that Nh

ϵ (f(x0)) ⊆ V. Since {fn} hyper
converges uniformly to f , there exists N ∈ N such that if n ≥ N and
x ∈ X, then D(fn(x), f(x0)) ⊂ (− ϵ

4 ,
ϵ
4). Since fN is continuous, there

exists U ∈ τ containing x0 such that fN (U) ⊆ Nh
ϵ
2
(fN (x0)).

We shall show that D(f(x), f(x0)) ⊂ (−ϵ, ϵ) for x ∈ U. Now, let
us consider x ∈ U , then D(f(x), fN (x)) ⊂ (− ϵ

4 ,
ϵ
4), D(fN (x), fN (x0)) ⊂

(− ϵ
4 ,

ϵ
4), andD(fN (x0), f(x0)) ⊂ (− ϵ

4 ,
ϵ
4).Hence,D(f(x), f(x0)) ⊂ (−ϵ, ϵ).

This completes our proof. □
Since every metric space admits a compatible hypermetric space, the

proof of the following is immediate.

Corollary 2.8. Let (X, τ) be a topological space and (Y, d) be a metric
space. Let f : (X, τ) → (Y, d) be a function and for each n ≥ 1 the
function fn : (X, τ) → (Y, d) be continuous. If the sequence {fn} is
converging uniformly to f , then f is continuous.

Definition 2.9. Let X be a nonempty set. The set-valued function
D : X ×X → P(R+) such that for all x, y, z in X we have:

(a) D(x, x) = {0}.
(b) D(x, y) = D(y, x).
(c) D(x, y) ⊆ D(x, z) +D(y, z),
will be called a hyper pseudo metric. The pair (X,D) is called a hyper

pseudo metric space.

For a hyper pseudo metric space, denote RD = {(x, y) ∈ X × X :
D(x, y) = {0}} and for a pseudo metric space (X, d), set Rd = {(x, y) :
d(x, y) = 0}. Note that if (X, d) is a pseudo metric space then RDd

= Rd.

Theorem 2.10. Let (X,D) be a hyper pseudo metric space. Then RD

is an equivalence relation on X.
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Proof. That RD is reflexive and symmetric is clear. We shall show that
RD is transitive. Suppose that (x, y) ∈ RD and (y, z) ∈ RD. We
need to show that (x, z) ∈ RD. From D(x, z) ⊆ D(x, y) + D(y, z), it
follows from Theorem 2.1 that {0} ⊆ D(x, z) ⊂ {0}+ {0} = {0}. Hence
(x, z) ∈ RD. □

We are now ready to show that every hyper pseudo metric space
admits a hypermetric identification.

Theorem 2.11. Let (X,D) be a hyper pseudo metric space. Then there
exists a hypermetric space (X/RD, D

∗).

Proof. LetD∗ : X/RD×X/RD → P(R+) be defined byD∗(f(x), f(y)) =
D(x, y), where f : X → X/RD is a natural map. Then D∗ is a hyper-
metric on X/RD. □

The hypermetric space (X/RD, D
∗) in Theorem 2.11 will be called

the hypermetric identification associated with the hyper pseudo metric
space (X,D). Observe that if the hyper pseudo metric space (X,D) is
hyper complete, then (X/RD, D

∗) is hyper complete.

Theorem 2.12. Let (X/RD, D
∗) be the metric identification of the hy-

per pseudo metric space (X,D). Then the topology for the quotient space
X/RD is the topology generated by the hypermetric D∗.

We say that a topological space (X, τ) admits a compatible hyperme-
tric if there is a hypermetric D on X such that τ = τ(D). By definition
of hypermetric space and basic results in [2] we see that every metrizable
topological space admits a compatible hypermetric space. Conversely,
we shall show that every hypermetric space is metrizable.

A classical result on the theory of metrizable topological spaces due
to Kelly[8] is the following:

Lemma 2.13. A T1 topological space (X, τ) is metrizable if and only if
it admits a compatible uniformity with a countable base.

The following lemma can be deduced from [2, 8]:

Lemma 2.14. Let (X,D) be a hypermetric space. Then τ(D) is a
Hausdorff topology and for each x ∈ X, {Nh

1
n

(x)} is a local base at point

of x for topological space (X, τ(D)).

We recall [6] that a uniform space is a set with uniform structure.
In general, There are three equivalent definitions for a uniform space.
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They all consist of a space equipped with a uniform structure. Uniform
spaces were introduced in 1938 by A. Weil [10].

Definition 2.15. A nonempty collection F of subsets U ⊆ X ×X is a
uniform structure if it satisfies the following axioms:

1) If U ∈ F then ∆ ⊆ U where, ∆ = {(x, x) ; x ∈ X} is the diagonal
on X.

2) If U ∈ F and U ⊆ V for V ⊆ X ×X then V ∈ F .
3) if U ∈ F and V ∈ F then U ∩ V ∈ F .
4) if U ∈ F the there is V ∈ F , V oV ⊂ U where V oV denotes the

composite of V with itself. The composite of two subset V and U of
X ×X is defined by

V oU :=

{
(x, z) ∈ X ×X ; ∃y ∈ X ; (x, y) ∈ U ∧ (y, z) ∈

}
.

5) If U ∈ F then U−1 ∈ F where, U−1 :=

{
(y, x) ∈ X ×X ; (x, y) ∈

U

}
is the inverse of relation U ⊂ X ×X.

Every uniform space X becomes a topological space by defining a
subset O of X to be open if and only if for every x in O there exists an
element V such that Vx is a subset of O. In this topology the neighbor-
hood of point x is {Vx : V ∈ F}. For simplicity, we call uniformity a
set X with such a uniform structure.

Theorem 2.16. Let (X,D) be hypermetric space. Then for n ≥ 1 and
x ∈ X, the set {Nh

1
n

(x)} is a countable base for a uniformity U , where

Nh
1
n

(x) = {y ∈ X : supD(x, y) <
1

n
∧ infD(x, y) > − 1

n
}.

Proof. For each n ∈ N, define

Un = {(x, y) ∈ X ×X : D(x, y) ⊂ (− 1

n
,
1

n
)}.

Clearly, the set {Un : n ∈ N} is countable. Next, we shall show that
{Un : n ∈ N} is a base for a uniformity U on X. First note that for
each n ∈ N, {(x, x) : x ∈ X} ⊆ Un, Un+1 ⊆ Un and Un = U−1

n . Also,
for each n ∈ N, there is an m ∈ N such that Um ◦ Um ⊆ Un. Without
loss of generality, let m > 2n. Suppose that (x, y) ∈ Um ◦ Um, then
there is z ∈ X such that (x, z) ∈ Um and (z, y) ∈ Um. It follows that
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D(x, y) ⊆ (− 2
m , 2

m) ⊂ (− 1
n ,

1
n). Hence, (x, y) ∈ Un Thus Um ◦ Um ⊆ Un.

Thus {Un : n ∈ N} is a base for a uniformity U on X. □

Theorem 2.17. Let (X,D) be a hypermetric space, then (X,D) is
metrizable.

Proof. For each x ∈ X and each n ∈ N, we have Un(x) = {y ∈ X :
D(x, y) ⊂ (− 1

n ,
1
n)} = Nh

1
n

(x). By Lemma 2.14 we deduce that the topol-

ogy induced by the uniformity U is the same as the topology induced
by the hypermetric D on X. Therefore by Lemma 2.13 (X, τ(D)) is a
metrizable topological space □

Corollary 2.18. A topological space is metrizable if and only if it admits
a compatible hypermetric.

Proof. First suppose that (X, τ) is a metrizable topological space. Then
by definition of metrizable space τ = τ(d). Using Corollary 1.2 in [2],
X admits a compatible hypermetric Dd. Now, suppose that X admits a
compatible hypermetric, then by Theorem 2.17, Lemma 2.14 and Lemma
2.13, the topological space X is a metrizable. □

Let us recall that a metrizable topological space (X, τ) is said to be
completely metrizable if it admits a complete metric. On the other hand,
a hypermetric space is said to be complete if every Cauchy sequence in
X hyper converges to a point in X with respect to D. If (X,D) is hyper
complete, we say that D is a hyper complete hypermetric on X.

Theorem 2.19. Let (X,D) be a complete hypermetric space. Then
(X, τ(D)) is completely metrizable.

Proof. From the proof of Theorem 2.16 and Corollary 2.18, the set {Un :
n ∈ N} is a base for a uniformity U on X compatible with the topology
τ(D), where

Un = {(x, y) ∈ X ×X : D(x, y) ⊂ (− 1

n
,
1

n
)}

for every n ∈ N. Then there exists a metric d on X whose induced
uniformity coincides with U . We want to show that D is hyper complete
on X. Let {xn} be a Cauchy sequence in (X, d). It easily follows that
{xn} is hyper Cauchy in (X,Dd), hence it is hyper convergent. Thus that
the Cauchy sequence {xn} is convergent with respect to τ(Dd). Hence d
is complete. We conclude that (X, τ(D)) is completely metrizable. □
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Corollary 2.20. A topological space is completely metrizable if and only
if it admits a compatible complete hypermetric space.

Proof. Suppose that the topological space (X, τ) is completely metriz-
able. Let d be a complete metric on X compatible with τ . Clearly,
the hypermetric Dd induced by d is hyper complete, and is compatible
with τ . Conversely, if (X,D) is a complete hypermetric space then by
Theorem 2.19, the (X, τ(D)) is completely metrizable. □
Theorem 2.21. Let (X,D) be a separable hypermetric space. Then
(X,D) is second countable.

Proof. Let (X,D) be a separable hypermetric space. By Theorem 2.16
(X, τ(D)) is a separable metrizable space. So, it is second countable
[3]. □

Since every completely metrizable space is Baire [1], we deduce from
Theorem 2.19 that the following holds:

Corollary 2.22. Every complete hypermetric space is a Baire space.

Definition 2.23. A hypermetric space (X,D) is said to be pre-compact
if for each r > 0, there is a finite subset A of X, such that

X = ∪a∈AN
h
r (a).

In this case we say that D is a pre-compact hypermetric on X.

A hypermetric space (X,D) is said to be compact if (X, τD) is a
compact topological space.

Lemma 2.24. A hypermetric space (X,D) is pre-compact if and only
if every sequence has a Cauchy subsequence.

Proof. Let the hypermetric space (X,D) be pre-compact and {xn} be a
sequence in X. We shall construct a subsequence {xn(n)} of {xn} and
show that {xn(n)} is a Cauchy sequence in (X,D). By pre-compactness

of (X,D) there is a finite subset Am of X such that X = ∪a∈AmN
h
1
m

(a)

for each m ∈ N. Now for m = 1, there exists an A1 and a subsequence
{x1(n)} of {xn} such that

x1(n) ∈ Nh
1 (a1)

for every n ∈ N.
Similarly, there exists an a2 ∈ A2 and a subsequence {x1(n)} such that

x2(n) ∈ Nh
1
2

(a2)
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for every n ∈ N. Continuing with this process, for m > 1, there

xm(n) ∈ Nh
1
m
(am)

for every n ∈ N. Now consider the subsequence {xn(n)} of {xn}. Given

ϵ > 0 there exists n0 ∈ N such that 2
n0

< ϵ and for all k,m ≥ n0, we
have

D(xk(k), xm(m)) ⊆ D(xk(k), an0) +D(an0 , xm(m)).

Similar to proof of Theorem 2.16 we can consider

Un0 =

{
(an0 , y) ∈ X ×X ; D(an0 , y) ⊂ (− 1

n0
,
1

n0
)

}
as a countable base for uniformity of {Nh

1
n0

(an0)}. Then

D(xk(k), an0) +D(xm(m), an0) ⊂ (− 1

n0
,
1

n0
) + (− 1

n0
,
1

n0
) ⊂ (− 2

n0
,
2

n0
).

Hence D(xk(k), xm(m)) ⊆ (− 2
n0
, 2
n0
) ⊂ (−ϵ, ϵ) for all k,m ≥ n0. This

shows that every subsequence of a sequence in (X,D) is a Cauchy se-
quence. Conversely, suppose that the hypermetric space (X,D) is not
pre-compact. Then there exists r > 0 such that for each finite subset A
of X , we have X ̸= ∪a∈AN

h
r (a). Fix x1 ∈ X. There is x2 ∈ X which

does not belong to Nh
r (x1). Similarly, we can find x3 ∈ X−∪2

k=1N
h
r (xk).

We continue with this process to construct a sequence of distinct points
in X, such that xn+1 ∈ X − ∪n

k=1N
h
r (xk) for all n ∈ N. Clearly, the

sequence {xn} does not have a Cauchy subsequence. If we suppose that
xni is a Cauchy subsequence in (X,D) then for any ϵ > 0 there exists a
n0 such that for all m, j > n0, xm, xj ∈ Nh

1
n0

(xn0). Now consider ϵ = r

and finite subset A = {x1, ..., xn0+1, xn0+2}. Since X is not pre-compact
so xn0+1 /∈ Nh

r (xn0) while xn0+1 ∈ Nh
r (xn0) from definition of Cauchy

sequence but this makes a contradiction. Hence {xn} does not have any
Cauchy subsequence. This is complete our proof. □

Theorem 2.25. A hypermetric space (X,D) is separable if and only if
(X, τD) admits a compatible pre-compact hypermetric.

Proof. Let the hypermetric space (X,D) be separable. Since (X, τ(D))
is metrizable, so we see that (X, τ(D)) is separable metrizable topologi-
cal space and so it admits a compatible pre-compact metric space (X, d).
It remains to show that the hypermetric space (X,Dd) induced by the
metric d is pre-compact. Since (X,D) is separable thus by Theorem
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2.21 (X,D) is second countable space. Moreover, from Theorem 2.19
and Corollary 2.20 (X,D) is compatible complete hypermetric space.
Hence, every sequence has a Cauchy subsequence. Thus (X,D) is a
pre-compact space. Indeed, let {xn} be a sequence in (X,D). Since
(X,D) is pre-compact then the sequence {xn} has a Cauchy subsequence
{xk(n)} with respect to d. That is limk→∞d(xk(n), xk(m)) = 0. There-
fore by definition of hypermeter Dd which is defined as Dd(x, y) = {0}
if x = y and Dd(x, y) = (−d(x, y), d(x, y)) if x ̸= y, it follows that
limkDd(xk(n), xk(m)) = {0}. Hence {xk(n)} is Cauchy with respect to
Dd. By Lemma 2.24 we conclude that the hypermetric space (X,Dd) is
pre-compact.
Conversely, suppose that (X, τ(D)) admits a compatible pre-compact
hypermetric L. Then, for each n ∈ N there is a finite subset An of X
such that X = ∪a∈AnN

h
1
n

(a), where Nh
1
n

(a) = {y ∈ X : supL(x, y) <

1
n ∧ infL(x, y) > − 1

n}. Put A = ∪∞
n=1An. Then A is countable. We shall

show that A is dense in X. Indeed let x ∈ X and Nh
1
m

(x) be a basic

neighborhood of x. Then there exists a ∈ Am such that x ∈ Nh
1
m

(a).

Thus, A is dense in X. We conclude that hypermetric space (X,L) is
separable. That is, (X, τ(D)) is a separable topological space. □

We observe that if {xn} is Cauchy sequence in (X,D) and the subse-
quence {xk(n)} of {xn} converges to x inX then it follows that limD(xn, x)
= {0}.
Lemma 2.26. Let (X,D) be a hypermetric space. If a Cauchy sequence
clusters to a point x in X, then the sequence converges to x.

Let us recall that a metric space (X, d) is said to be sequentially
compact if every sequence has a convergent subsequence. In a similar
way we shall say that a hypermetric space (X,D) is sequentially compact
if every sequence has convergent subsequence.

Theorem 2.27. A hypermetric space (X,D) is compact if and only if
it is pre-compact and complete.

Proof. Suppose the hypermetric space (X,D) is compact. Then {Nh
r (x) :

x ∈ X} is an open cover for X hence {Nh
r (x) : x ∈ X} has a finite sub-

cover. This shows that (X,D) is pre-compact. Now we shall show that
(X,D) is complete. Let {xn} be a Cauchy sequence by compactness
there exists a cluster point y for {xn} and by Lemma 2.26, we have
limnD(xn, x) = {0}. Therefore (X,D) is complete.
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Conversely, suppose that (X,D) is pre-compact and complete. We
shall show that (X, τ(D)) is compact. Let {xn} be a sequence in (X,D)
and {xk(n)} be subsequence of {xn}. By pre-compactness (X,D) the
sequence {xk(n)} is Cauchy and by completeness of (X,D) there exists
y ∈ X such that limkD(xk(n), y) = {0}. Thus (X,D) is sequentially
compact. Now (X, τ(D)) is metrizable by Theorem 2.17 and every se-
quentially compact metrizable space is compact we conclude that the
hypermetric space (X,D) is compact. □

Theorem 2.28. A metrizable topological space is compact if and only
if every compatible hypermetric is pre-compact.

Proof. Suppose that the topological space (X, τ) is metrizable and com-
pact and let (X,D) be a compatible hypermetric space. Then (X,D) is
pre-compact by Theorem 2.27.

Conversely, let the metrizable topological space (X, τ) be pre-compact
and (X,D) be a compatible hypermetric on X. We shall show that
(X, τ) is compact. Clearly, we have τ = τ(d) = τ(D), where d is a
metric on X. Now consider the hypermetric Dd on X induced by d.Then
(X, dd) is pre-compact. Let {xn} be a sequence in (X,Dd). Then by
pre-compactness {xn} has a Cauchy sequence subsequence {xk(n)} in
(X,Dd). Hence, {xk(n)} is a Cauchy sequence in (X, d). Therefore,
every metric d on X which is compatible with τ is pre-compact. We
conclude, therefore that (X, τ) is compact. □

Theorem 2.29. A metrizable topological space is compact if every com-
patible hypermetric is complete.

Proof. Suppose that (X, τ) is a compact metrizable space. By Theorem
2.27, every compatible hypermetric is complete.

Conversely,let d be any metric on X compatible with τ . Consider
the hyper metric Dd induced by d. By hypothesis (X,Dd) is complete
so (X, d) is also complete. Hence by Niemytzki-Tychonoff theorem we
deduce that (X, τ) is compact. □
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[10] A. Weil, Sur les espaces à structure uniform et sur la topologi générale, Hermman

(1938) Zbl 0019.18604.

M. Alimohammady
Department of Mathematics, University of Mazandaran, P.O.Box 47416-1468, Babol-
sar, Iran
Email: amohsen@umz.ac.ir

S. Jafari
Department of Statistics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse,
Denmark
Email: jafaripersia@gmail.com

S. Moshokoa
Department of Statistics, University of South Africa, P. O . Box 392 Pretoria, South
Africa
Email: moshosp@gmail.com

M. Koozehgar Kalleji
Department of Mathematics, University of Mazandaran, P.O.Box 47416-1468, Babol-
sar, Iran
Email: m.kalleji@yahoo.com


	1. Introduction
	2. Main results
	References

