$G\alpha$ -CLOSED SETS IN TOPOLOGICAL SPACES

R. Devi¹, A. Selvakumar² and S. Jafari³

^{1,2}Department of Mathematics
Kongunadu Arts and Science College Coimbatore-29, Tamilnadu, India.
E-mail : rdevicbe@yahoo.com
³College of Vestsjaelland Syd, Herrestraede 11, 4200 Slagelse, Denmark.
E-mail : jafaripersia@gmail.com

Abstract

In this paper, we introduce the notion of $\tilde{g}\alpha$ -closed sets in topological spaces and investigate some of their basic properties.

Keywords. $\tilde{g}\alpha$ -closed set and $\sharp gs$ -closed set.

AMS(2000) Subject classification : 54A05,54D10,54F65,54G05.

1. Introduction and Preliminaries

Levine [6,7] introduced the concept of generalized closed sets and semi-closed sets in topological spaces. Maki et al. introduced generalized α -closed sets (briefly $g\alpha$ -closed sets) [9] and α -generalized closed sets (briefly αg -closed sets) [8]. The concept of \hat{g} -closed sets [16,17], *g-closed sets [14] and $\sharp gs$ -closed sets [15] are introduced by M.K.R.S. Veera Kumar. In this paper, we introduce a new class of sets, namely, $\tilde{g}\alpha$ -closed sets and present some of its properties.

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure of A and the interior of A, respectively. P(X) denotes the power set of X.

We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called

1. a pre-open set [10] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$,

- 2. a semi-open set [7] if $A \subseteq cl(int(A))$ and a semi-closed set [7] if $int(cl(A)) \subseteq A$,
- 3. an α -open set [11] if $A \subseteq int(cl(int(A)))$ and an α -closed set [11] if $cl(int(cl(A))) \subseteq A$,
- 4. a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set [1] if $int(cl(int(A))) \subseteq A$ and
- 5. a regular open set if A = int(cl(A)) and a regular closed set if cl(int(A)) = A.

The pre-closure (resp. semi-closure, α -closure, semi-preclosure) of a subset A of a space (X, τ) is the intersection of all *pre-closed* (resp. *semi-closed*, α -closed, *semi-preclosed*) sets that contain A and is denoted by pcl(A) (resp. scl(A), $\alpha cl(A)$, spcl(A)).

Definition 1.2. A subset A of a space (X, τ) is called a

- 1. a generalized closed (briefly g-closed) set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a g-closed set is called a g-open set,
- 2. a semi-generalized closed (briefly sg-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ,
- 3. a generalized semi-closed (briefly gs-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 4. an α -generalized closed (briefly α g-closed) set [8] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 5. a generalized α -closed (briefly $g\alpha$ -closed) set [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,
- 6. a $g\alpha^*$ -closed set [9] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,
- 7. a generalized semi-preclosed (briefly gsp-closed) set [4] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 8. a generalized preregular-closed (briefly gpr-closed) set [5] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) ,

- 9. a g^* -closed set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) ,
- 10. a \widehat{g} -closed set [16,17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ; the complement of a \widehat{g} -closed set is called a \widehat{g} -open set,
- 11. a *g-closed set [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) ; the complement of a *g-closed set is called a *g-open set,
- 12. a $\sharp gs$ -closed set [15] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\ast g$ -open in (X, τ) ; the complement of a $\sharp gs$ -closed set is called a $\sharp gs$ -open set and
- 13. a $\tilde{g}s$ -closed set [12] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) .

Notation 1.3. For a topological space (X, τ) , $C(X, \tau)$ (resp. $\alpha C(X, \tau)$, $GC(X, \tau)$, $SGC(X, \tau)$, $GSC(X, \tau)$, $\alpha GC(X, \tau)$, $G\alpha C(X, \tau)$, $G\alpha^* C(X, \tau)$, $GSPC(X, \tau)$, $GPRC(X, \tau)$, $G^*C(X, \tau)$, $^*GC(X, \tau)$, $^{\sharp}GSC(X, \tau)$, $\widetilde{G}SC(X, \tau)$) denotes the class of all closed (resp. α -closed, g-closed, sg-closed, gs-closed, α g-closed, g α -closed, $g\alpha^*$ -closed, gsp-closed, gpr-closed, g*-closed, $^{\sharp}g$ -closed, $^{\sharp}g$ -closed, $\widetilde{g}s$ -closed) subsets of (X, τ) .

2. $\tilde{g}\alpha$ -closed sets

We introduce the following definition.

Definition 2.1. A subset A of (X, τ) is called a $\tilde{g}\alpha$ -closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) .

Theorem 2.2. Every α -closed set is a $\tilde{g}\alpha$ -closed set and thus every closed set is $\tilde{g}\alpha$ -closed.

Proof. Let A be an α -closed set in (X, τ) , then $A = \alpha cl(A)$. Let $A \subseteq U$ such that U is $\sharp gs$ -open in (X, τ) . Since A is α -closed, $A = \alpha cl(A) \subseteq U$. This shows that A is $\tilde{g}\alpha$ -closed set. The second part of the theorem follows from the fact that every closed set is α -closed.

The converse of Theorem 2.2 is not true as it can be seen by the following example.

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Here $\alpha C(X, \tau) =$

 $\{X, \phi, \{c\}\}$ and $G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$ and let $A = \{b, c\}$. Then A is not an α -closed and thus it is not closed. However A is a $\tilde{g}\alpha$ -closed set.

Thus the class of $\tilde{g}\alpha$ -closed sets properly contains the classes of α -closed sets and closed sets.

Theorem 2.4.

- (a) Every $\tilde{g}\alpha$ -closed set is a gs-closed set and thus gsp-closed and gpr-closed.
- (b) Every $\tilde{g}\alpha$ -closed set is a $g\alpha$ -closed set and thus αg -closed.
- (c) Every $\tilde{g}\alpha$ -closed set is a sg-closed set and thus semi-preclosed.

Proof. It follows from the definitions.

The following examples show that these implications are not reversible.

Example 2.5. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Here $GSC(X, \tau) = P(X)$, $GSPC(X, \tau) = P(X)$, $GPRC(X, \tau) = P(X)$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$ and let $A = \{b\}$. Then A is gs-closed, gsp-closed and gpr-closed. However A is not a $\widetilde{g}\alpha$ -closed set.

Example 2.6. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{b\}, \{b, c\}\}$. Here $G\alpha C(X, \tau) = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}, \alpha GC(X, \tau) = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and let $A = \{a, b\}$. Then A is $g\alpha$ -closed and αg -closed. However A is not a $\widetilde{g}\alpha$ -closed set.

Example 2.7. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Here $SGC(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$, $SPC(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$ and let $A = \{a\}$. Then A is sg-closed and semi-preclosed. However A is not a $\widetilde{g}\alpha$ -closed set.

Theorem 2.8. Every $\tilde{g}\alpha$ -closed set is $\tilde{g}s$ -closed set. **Proof.** It follows from the definitions.

The converse of Theorem 2.8 need not be true by the following example.

Example 2.9. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Here $\widetilde{GSC}(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}, \widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. Let $A = \{a\}$. Then A is \widetilde{gs} -closed but not a $\widetilde{g}\alpha$ -closed set.

Theorem 2.10.

- (a) $\tilde{g}\alpha$ -closedness is independent of g-closedness, g^* -closedness and *g-closedness.
- (b) $\tilde{g}\alpha$ -closedness is independent of \hat{g} -closedness.
- (c) $\tilde{g}\alpha$ -closedness is independent of $g\alpha^*$ -closedness.

Proof. It follows from the following examples.

Example 2.11. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$. Here $GC(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$, $G^*C(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$, $G^*C(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\tilde{G}\alpha C(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. Then $\{a, b\}$ is *g-closed*, g^* -closed and *g-closed, but not $\tilde{g}\alpha$ -closed set and also $\{c\}$ is $\tilde{g}\alpha$ -closed, but not even a *g-closed*, g^* -closed and *g-closed.

Example 2.12. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$. Here $\widehat{GC}(X, \tau) = \{X, \phi, \{b\}, \{b, c\}\}$ and $\widetilde{GaC}(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. Then $\{c\}$ is $\widetilde{gaclosed}$, but not a \widehat{g} -closed set.

Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Here $\widehat{G}C(X, \tau) = P(X)$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$. Then $\{b\}$ is \widehat{g} -closed, but not a $\widetilde{g}\alpha$ -closed set.

Example 2.13. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Here $G\alpha^*C(X, \tau) = P(X)$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$. Then $\{b\}$ is $g\alpha^*$ -closed, but not a $\widetilde{g}\alpha$ -closed set.

Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Here $G\alpha^*C(X, \tau) = \{X, \phi, \{b, c\}\}$ and $\widetilde{G}\alpha C(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. Then $\{b\}$ is $\widetilde{g}\alpha$ -closed, but not a $g\alpha^*$ -closed set.

Theorem 2.14. Let A be a subset of (X, τ) .

- (a) If A is $\tilde{g}\alpha$ -closed, then $\alpha cl(A) A$ does not contain any non-empty $\sharp gs$ -closed set.
- (b) If A is $\tilde{g}\alpha$ -closed and $A \subseteq B \subseteq \alpha cl(A)$, then B is $\tilde{g}\alpha$ -closed.

Proof.

(a) Suppose that A is $\tilde{g}\alpha$ -closed and let F be a non-empty $\sharp gs$ -closed set with $F \subseteq \alpha cl(A) - A$. Then $A \subseteq X - F$ and so $\alpha cl(A) \subseteq X - F$. Hence $F \subseteq X - \alpha cl(A)$, a contradiction.

(b) Let U be a $\sharp gs$ -open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $\tilde{g}\alpha$ -closed, $\alpha cl(A) \subseteq U$. Now $\alpha cl(B) \subseteq \alpha cl(\alpha cl(A)) \subseteq U$. Therefore B is also a $\tilde{g}\alpha$ -closed set of (X, τ) .

Theorem 2.15. Let A and B be subsets of a topological space (X, τ) . Then the union of two $\tilde{g}\alpha$ -closed set is $\tilde{g}\alpha$ -closed set in (X, τ) .

Proof. Let A and B be $\tilde{g}\alpha$ -closed sets. Let $A \cup B \subseteq U$ such that U is $\sharp gs$ -open. Since A and B are $\tilde{g}\alpha$ -closed sets, $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. This implies that $\alpha cl(A \cup B) = \alpha cl(A) \cup \alpha cl(B) \subseteq U$, (since $\tau^{\alpha} = \alpha$ -open set forms a topology [9]) and so $\alpha cl(A \cup B) \subseteq U$. Therefore $A \cup B$ is $\tilde{g}\alpha$ -closed.

We need the following notations:

For a subset E of a space (X, τ) , we define the following subsets of E.

 $E_{\tau} = \{x \in E/\{x\} \in \tau\};$ $E_{\mathcal{F}} = \{x \in E/\{x\} \text{ is closed in } (X,\tau)\};$ $E_{\tilde{g}\alpha o} = \{x \in E/\{x\} \text{ is } \tilde{g}\alpha \text{-open in } (X,\tau)\};$ $E_{\sharp gsc} = \{x \in E/\{x\} \text{ is } \sharp gs\text{-closed in } (X,\tau)\}.$

Lemma 2.16. For any space (X, τ) , $X = X_{\sharp gsc} \cup X_{\tilde{g}\alpha o}$ holds. **Proof.** Let $x \in X$. Suppose that $\{x\}$ is not $\sharp gs$ -closed set in (X, τ) . Then X is a unique $\sharp gs$ -open set containing $X - \{x\}$. Thus $X - \{x\}$ is $\tilde{g}\alpha$ -closed in (X, τ) and so $\{x\}$ is $\tilde{g}\alpha$ -open. Therefore $x \in X_{\sharp gsc} \cup X_{\tilde{g}\alpha o}$ holds.

We need more notations:

For a subset A of (X, τ) , $ker(A) = \cap \{U/U \in \tau \text{ and } A \subseteq U\}$; $^{\sharp}GSO\text{-}ker(A) = \cap \{U/U \in {}^{\sharp}GSO(X, \tau) \text{ and } A \subseteq U\}.$

Theorem 2.17. For a subset A of (X, τ) , the following conditions are equivalent.

- (1) A is $\tilde{g}\alpha$ -closed in (X, τ) .
- (2) $\alpha cl(A) \subseteq {}^{\sharp}GSO\text{-}ker(A)$ holds.
- (3) (i) $\alpha cl(A) \cap X_{\sharp gsc} \subseteq A$ and (ii) $\alpha cl(A) \cap X_{\sharp gso} \subseteq {}^{\sharp}GSO\text{-}ker(A)$ holds.

Proof.

(1) \Rightarrow (2) Let $x \notin {}^{\sharp}GSO\text{-}ker(A)$. Then there exists a set $U \in {}^{\sharp}GSO(X, \tau)$ such

that $x \notin U$ and $A \subseteq U$. Since A is $\tilde{g}\alpha$ -closed, $\alpha cl(A) \subseteq U$ and so $x \notin \alpha cl(A)$. This shows that $\alpha cl(A) \subseteq {}^{\sharp}GSO\text{-}ker(A)$.

(2) \Rightarrow (1) Let $U \in {}^{\sharp}GSO(X, \tau)$ such that $A \subseteq U$. Then we have that ${}^{\sharp}GSO-ker(A) \subseteq U$ and so by (2) $\alpha cl(A) \subseteq U$. Therefore A is $\tilde{g}\alpha$ -closed.

(2) \Rightarrow (3) (i) First we claim that ${}^{\sharp}GSO\text{-}ker(A) \cap X_{\sharp_{gsc}} \subseteq A$. Indeed, let $x \in {}^{\sharp}GSO\text{-}ker(A) \cap X_{\sharp_{gsc}}$ and assume that $x \notin A$. Since the set $X - \{x\} \in {}^{\sharp}GSO(X, \tau)$ and $A \subseteq X - \{x\}, {}^{\sharp}GSO\text{-}ker(A) \subseteq X - \{x\}$. Then we have that $x \in X - \{x\}$ and so this is a contradiction. Thus we show that ${}^{\sharp}GSO\text{-}ker(A) \cap X_{\sharp_{gsc}} \subseteq A$. By using (2), $\alpha cl(A) \cap X_{\sharp_{gsc}} \subseteq {}^{\sharp}GSO\text{-}ker(A) \cap X_{\sharp_{gsc}} \subseteq A$.

(ii) It is obtained by (2).

 $(3) \Rightarrow (2)$ By lemma 2.16 and (3),

$$\alpha cl(A) = \alpha cl(A) \cap X = \alpha cl(A) \cap (X_{\sharp gsc} \cup X_{\tilde{g}\alpha o})$$

= $(\alpha cl(A) \cap X_{\sharp gsc}) \cup (\alpha cl(A) \cap X_{\tilde{g}\alpha o})$
= $A \cup {}^{\sharp}GSO\text{-}ker(A)$
= ${}^{\sharp}GSO\text{-}ker(A)$ holds.

Theorem 2.18. Let (X, τ) be a space and A and B are subsets.

- (i) If A is $\sharp gs$ -open and $\tilde{g}\alpha$ -closed, then A is α -closed in (X, τ) .
- (ii) Suppose that (X, τ) is an α -space. A $\tilde{g}\alpha$ -closed set A is α -closed in (X, τ) if and only if $\alpha cl(A) A$ is α -closed in (X, τ) .
- (iii) For each $x \in X$, $\{x\}$ is $\sharp gs$ -closed or $X \{x\}$ is $\tilde{g}\alpha$ -closed in (X, τ) .
- (iv) Every subset is $\tilde{g}\alpha$ -closed in (X, τ) if and only if $\sharp gs$ -open set is α -closed.

Proof.

- (ii) (Necessity) If A is α-closed, then αcl(A) A = φ.
 (Sufficiency) Suppose that A is ğα-closed and αcl(A) A is α-closed. It follows from assumptions that τ = τ^α. Then, αcl(A) A is [‡]gs-closed in (X, τ) and by Theorem 2.14., αcl(A) A = φ. Therefore A is α-closed in (X, τ).
- (iii) If $\{x\}$ is not $\sharp gs$ -closed, then $X \{x\}$ is not $\sharp gs$ -open. Therefore $X \{x\}$ is $\tilde{g}\alpha$ -closed in (X, τ) .
- (iv) (Necessity) Let U be a $\sharp gs$ -open set. Then we have that $\alpha cl(U) \subseteq U$ and hence U is α -closed.

(Sufficiency) Let A be a subset and U is a $\sharp gs$ -open set such that $A \subseteq U$. Then $\alpha cl(A) \subseteq \alpha cl(U) = U$ and hence A is $\tilde{g}\alpha$ -closed.

Remark 2.19. The following diagram shows the relationships established between $\tilde{g}\alpha$ -closed sets and some other sets. $A \rightarrow B$ represents A implies B but not conversely.

 $\begin{array}{cccc} \alpha-closed & gs-closed & g\alpha-closed \\ &\searrow &\uparrow &\nearrow \\ closed &\longrightarrow & \widetilde{g}\alpha-closed \longrightarrow gsp-closed \\ &\swarrow &\downarrow &\searrow \\ semi-preclosed & sg-closed & gpr-closed \end{array}$

References

- [1] D. Andrijevic, Semi-preopen sets, Mat. vesnik, 38(1)(1986), 24-32.
- [2] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J.Pure.Appl.math., 21(8)(1990), 717-719.
- [3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987) 375-382.
- [4] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.
- Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3)(1997), 351-360.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970),89-96.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A Math., 15(1994), 51-63.

- [9] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [10] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [11] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961- 970.
- [12] P. Sundaram, N. Rajesh and Z. Dusynski, \tilde{g} -semi-closed sets in topological spaces (submitted)
- [13] M. K. R. S. Veera kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.
- [14] M. K. R. S. Veera kumar, Between g*-closed sets and g-closed sets, Antartica J. Math., 3(1)(2006), 43-65.
- [15] M. K. R. S. Veera kumar, [#]g-semi-closed sets in topological spaces, Antartica J. Math., 2:2(2005), 201-222.
- [16] M. K. R. S. Veera Kumar, ĝ-locally closed sets and GLC-functions, Indian J. Math., 43(2)(2001), 231-247.
- [17] M. K. R. S. Veera Kumar, On *ĝ-closed* sets in topological spaces, Allahabad Math. Soc., 18(2003), 99-112.

* * * * *