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Abstract. The purpose of this paper is to introduce some new classes of ideal
topological spaces by utilizing I-open sets and study some of their fundamental
properties.

1. Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [12]

and Vaidyanathasamy [15]. Since then, many mathematicians contributed to this

field of research such as M. E. Abd El-Monsef, A. Al-Omari, F. G. Arenas, M.

Caldas, J. Dontchev, M. Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S.

D. Iliadis, S. Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, , H. Maki, A. C.

Megaritis, A. A. Nasef, T. Noiri, B. K. Papadopoulos, M. Parimala, G. A. Prinos,

M. L. Puertas, M. Rajamani, N. Rajesh, D. Rose, A. Selvakumar, Jun-Iti Umehara

and many others (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [14], [13]). An

ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which

satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and (ii) A ∈ I and B ∈ I implies

A ∪ B ∈ I. Given a topological space (X, τ) with an ideal I on X and if P (X)

is the set of all subsets of X, a set operator (.)∗: P (X) → P (X), called the local

function [15] of A with respect to τ and I, is defined as follows: for A ⊂ X,

A∗(I, τ) = {x ∈ X|U ∩ A /∈ I} for every U ∈ τ(x)} where τ(x) = {U ∈ τ |x ∈ U}.
A Kuratowski closure operator Cl∗(.) for a topology τ ∗(I, τ) called the ∗-topology,

finer thatn τ is defined by Cl∗(A) = A ∪ A∗(I, τ). Where there is no chance of

confusion, A∗(I) is denoted by A∗. If I is an ideal on X, then (X, I, τ) is called

an ideal space. By a space, we always mean a topological space (X, τ) with no

separation properties assumed. If A ⊂ X, Cl(A) and Int(A) will denote the closure

and interior of A in (X, τ), respectively. A subset S of an ideal space (X, τ, I) is
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said to be I-open [11] if S ⊂ Int(S∗). The family of all I-open sets of (X, τ, I) is

denoted by IO(X).

2. ID-sets and associated separation axioms

Definition 2.1. A subset A of an ideal space (X, τ, I) is called an ID-set if there

exist U, V ∈ IO(X) such that U ̸= X and A = U − V .

Observe that every I-open set U different from X is an ID-set with A = U and

V = ∅.

Definition 2.2. An ideal space (X, τ, I) is called I-D0 (resp. I-T0) if for any

distinct pair of points x and y of X, there exists an ID-set of (X, τ, I) containing

x but not y or an ID-set (resp. I-open set) of (X, τ, I) containing y but not x.

Definition 2.3. An ideal space (X, τ, I) is called I-D1 (resp. I-T1) if for any

distinct pair of points x and y of X, there exists an ID-set (resp. I-open set) of

X containing x but not y and an ID-set (resp. I-open set) of X containing y but

not x.

Definition 2.4. An ideal space (X, τ, I) is called I-D2 (resp. I-T2) if for any

distinct pair of points x and y of X, there exists disjoint ID-sets (resp. I-open set)

of (X, τ, I) containing x and y, respectively.

Remark 2.5. (i) If (X, τ, I) is I-Ti, then it is I-Di, i=0,1,2.

(ii) If (X, τ, I) is I-Di, then it is I-Di−1, i=1,2.

Example 2.6. Let X = {a, b, c}, τ = {∅, {a, c}, X} and I = {∅, {a}}. Then the

ideal space (X, τ, I) is both I-D2 and I-D1 but none of I-T2 and I-T1.

Problem 2.7. Find an I-D0 space which is not I-T0.

Problem 2.8. Find an ideal space I-Di−1 which is not I-Di, where i = 1, 2.

Theorem 2.9. For an ideal space (X, τ, I), the following statements are true:

(1) (X, τ, I) is I-D0 if and only if it is I-T0.

(2) (X, τ, I) is I-D1 if and only if it is I-D2.

Proof. We prove only the necessary condition since the sufficiency is stated in

Remark 2.5 (i).

Necessity. Let (X, τ, I) be I-D0. Then for each distinct pair x, y ∈ X, at least

one of x, y say x, belongs to an ID-set G where y /∈ G. Let G = U1 −U2 such that

U1 ̸= X and U1, U2 ∈ IO(X). Then x ∈ U1, and for y /∈ G, we have two cases: (a)

y /∈ U1; (b) y ∈ U1 and y ∈ U2. In case (a), x ∈ U1 but y /∈ U1; In case (b), y ∈ U2

but x /∈ U2. Hence X is I-T0.

(2) Sufficiency. Remark 2.5 (ii).
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Necessity. Suppose (X, τ, I) is I-D1 space. Then for each distinct pair x, y ∈ X,

we have ID-sets G1, G2 such that x ∈ G1, y /∈ G1; y ∈ G2, x /∈ G2. Let G1 =

U1 −U2, G2 = U3 −U4. From x /∈ G2, we have either x /∈ U3 or x ∈ U3 and x ∈ U4.

Now we consider two cases.

(1) x /∈ U3. By y /∈ G1 we have two subcases:

(a) y /∈ U1. By x ∈ U1 − U2, it follows that x ∈ U1 − (U2 ∪ U3) and by

y ∈ U3 − U4 we have y ∈ U3 − (U2 ∪ U4). Hence

(U1 − (U2 ∪ U3)) ∩ (U3 − (U1 ∪ U4)) = ∅.

(b) y ∈ U1 and y ∈ U2. We have x ∈ U1 −U2, y ∈ U2 such that (U1 −U2)∩
U2 = ∅.

(2) x ∈ U3 and x ∈ U4. We have y ∈ U3−U4, x ∈ U4 such that (U3−U4)∩U4 =

∅. Therefore, X is I-D2.

¤

Definition 2.10. A point x ∈ X which has only X as the I-neighbourhood is called

an I-neat point.

Theorem 2.11. For an I-T0 ideal space (X, τ, I) the following are equivalent:

(1) (X, τ, I) is I-D1;

(2) (X, τ, I) has no I-neat point.

Proof. (1)→(2): Since (X, τ, I) is I-D1, then each point x of X is contained in a

ID-set O = U −V and thus in U . By definition U ̸= X. This implies that x is not

an I-neat point.

(2)→(1): If X is I-T0, then for each distinct pair of points x, y ∈ X, at least one

of them, x (say) has an I-neighbourhood U containing x and not y. Thus U which

is different from X is an ID-set. If X has no I-neat point then y is not an I-neat

point. This means that there exists an I-neighbourhood V of y such that V ̸= X.

Thus y ∈ (V − U) but not x and V − U is an ID-set. Hence (X, τ, I) is I-D1. ¤
A function f : (X, τ, I) → (Y, σ, J) is said to be I-irresolute if f−1(V ) ∈ IO(X)

for every V ∈ IO(Y ).

Theorem 2.12. If f : (X, τ, I) → (Y, σ, J) is an I-irresolute surjective function

and E is an ID-set in (Y, σ, J), then the inverse image of E is an ID-set in (X, τ, I).

Proof. Let E be an ID-set in (Y, σ, J). Then, there are I-open sets U1 and U2 in

(Y, σ, J) such that S = U1 −U2 and U1 ̸= Y . By the I-irresoluteness of f , f−1(U1)

and f−1(U2) are I-open in (X, τ, I). Since U1 ̸= Y , we have f−1(U1) ̸= X. Hence

f−1(E) = f−1(U1) − f−1(U2) is an ID-set. ¤

Theorem 2.13. If (Y, σ, J) is I-D1 and f : (X, τ, I) → (Y, σ, J) is I-irresolute

and bijective, then (X, τ, I) is I-D1.
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Proof. Suppose that Y is an I-D1 space. Let x and y be any pair of distinct points

in X. Since f is injective and Y is I-D1, there exist ID-sets Gx and Gy of Y

containing f(x) and f(y), respectively, such that f(y) /∈ Gx and f(x) /∈ Gy. By

Theorem 2.12, f−1(Gx) and f−1(Gy) are ID-sets in (X, τ, I) containing x and y,

respectively. This implies that (X, τ, I) is an I-D1 space. ¤

Theorem 2.14. An ideal space (X, τ, I) is I-D1 if and only if for each pair of dis-

tinct points x, y ∈ X, there exists an I-irresolute surjective function f : (X, τ, I) →
(Y, σ, J), where (Y, σ, J) is an I-D1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the

identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there

exists an I-irresolute, surjective function f from an ideal space (X, τ, I) onto an

I-D1 space (Y, σ, J) such that f(x) ̸= f(y). Therefore, there exist disjoint ID-sets

Gx and Gy in Y such that f(x) ∈ Gx and f(y) ∈ Gy. Since f is I-irresolute

and surjective, by Theorem 2.12, f−1(Gx) and f−1(Gy) are disjoint ID-sets in X

containing x and y, respectively. Hence the space X is an I-D1 space. ¤

3. Conclusion

In this paper, we used the notions of I-open sets and ID-set to define some new

low sepapartion axioms and presented some of their basic properties. We posed

some problems which open up for more research in this direction.
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