SOME REMARKS ON LOW SEPARATION AXIOMS VIA $ID ext{-SETS}$

S. JAFARI, S. SHANTHI, AND N. RAJESH

(Communicated by Yasunao Hattori)

ABSTRACT. The purpose of this paper is to introduce some new classes of ideal topological spaces by utilizing I-open sets and study some of their fundamental properties.

1. Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [12] and Vaidyanathasamy [15]. Since then, many mathematicians contributed to this field of research such as M. E. Abd El-Monsef, A. Al-Omari, F. G. Arenas, M. Caldas, J. Dontchev, M. Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S. D. Iliadis, S. Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, H. Maki, A. C. Megaritis, A. A. Nasef, T. Noiri, B. K. Papadopoulos, M. Parimala, G. A. Prinos, M. L. Puertas, M. Rajamani, N. Rajesh, D. Rose, A. Selvakumar, Jun-Iti Umehara and many others (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [14], [13]). An ideal I on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if P(X)is the set of all subsets of X, a set operator (.)*: $P(X) \to P(X)$, called the local function [15] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(I,\tau) = \{x \in X | U \cap A \notin I\}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$ called the *-topology, finer that τ is defined by $Cl^*(A) = A \cup A^*(I,\tau)$. Where there is no chance of confusion, $A^*(I)$ is denoted by A^* . If I is an ideal on X, then (X, I, τ) is called an ideal space. By a space, we always mean a topological space (X,τ) with no separation properties assumed. If $A \subset X$, Cl(A) and Int(A) will denote the closure and interior of A in (X,τ) , respectively. A subset S of an ideal space (X,τ,I) is

²⁰¹⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. Ideal topological spaces, I-open set.

Received July 20, 2017; revised August 22, 2017.

said to be *I*-open [11] if $S \subset \operatorname{Int}(S^*)$. The family of all *I*-open sets of (X, τ, I) is denoted by IO(X).

2. ID-sets and associated separation axioms

Definition 2.1. A subset A of an ideal space (X, τ, I) is called an ID-set if there exist $U, V \in IO(X)$ such that $U \neq X$ and A = U - V.

Observe that every *I*-open set *U* different from *X* is an *ID*-set with A = U and $V = \emptyset$.

Definition 2.2. An ideal space (X, τ, I) is called I- D_0 (resp. I- T_0) if for any distinct pair of points x and y of X, there exists an ID-set of (X, τ, I) containing x but not y or an ID-set (resp. I-open set) of (X, τ, I) containing y but not x.

Definition 2.3. An ideal space (X, τ, I) is called I- D_1 (resp. I- T_1) if for any distinct pair of points x and y of X, there exists an ID-set (resp. I-open set) of X containing x but not y and an ID-set (resp. I-open set) of X containing y but not x.

Definition 2.4. An ideal space (X, τ, I) is called I- D_2 (resp. I- T_2) if for any distinct pair of points x and y of X, there exists disjoint ID-sets (resp. I-open set) of (X, τ, I) containing x and y, respectively.

Remark 2.5. (i) If (X, τ, I) is I- T_i , then it is I- D_i , i=0,1,2. (ii) If (X, τ, I) is I- D_i , then it is I- D_{i-1} , i=1,2.

Example 2.6. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a, c\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Then the ideal space (X, τ, I) is both I- D_2 and I- D_1 but none of I- T_2 and I- T_1 .

Problem 2.7. Find an I- D_0 space which is not I- T_0 .

Problem 2.8. Find an ideal space I- D_{i-1} which is not I- D_i , where i = 1, 2.

Theorem 2.9. For an ideal space (X, τ, I) , the following statements are true:

- (1) (X, τ, I) is I- D_0 if and only if it is I- T_0 .
- (2) (X, τ, I) is I- D_1 if and only if it is I- D_2 .

Proof. We prove only the necessary condition since the sufficiency is stated in Remark 2.5 (i).

Necessity. Let (X, τ, I) be $I-D_0$. Then for each distinct pair $x, y \in X$, at least one of x, y say x, belongs to an ID-set G where $y \notin G$. Let $G = U_1 - U_2$ such that $U_1 \neq X$ and $U_1, U_2 \in IO(X)$. Then $x \in U_1$, and for $y \notin G$, we have two cases: (a) $y \notin U_1$; (b) $y \in U_1$ and $y \in U_2$. In case (a), $x \in U_1$ but $y \notin U_1$; In case (b), $y \in U_2$ but $x \notin U_2$. Hence X is $I-T_0$.

(2) Sufficiency. Remark 2.5 (ii).

Necessity. Suppose (X, τ, I) is I- D_1 space. Then for each distinct pair $x, y \in X$, we have ID-sets G_1 , G_2 such that $x \in G_1$, $y \notin G_1$; $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 - U_2$, $G_2 = U_3 - U_4$. From $x \notin G_2$, we have either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. Now we consider two cases.

- (1) $x \notin U_3$. By $y \notin G_1$ we have two subcases:
 - (a) $y \notin U_1$. By $x \in U_1 U_2$, it follows that $x \in U_1 (U_2 \cup U_3)$ and by $y \in U_3 U_4$ we have $y \in U_3 (U_2 \cup U_4)$. Hence

$$(U_1 - (U_2 \cup U_3)) \cap (U_3 - (U_1 \cup U_4)) = \varnothing.$$

- (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 U_2$, $y \in U_2$ such that $(U_1 U_2) \cap U_2 = \emptyset$.
- (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 U_4$, $x \in U_4$ such that $(U_3 U_4) \cap U_4 = \emptyset$. Therefore, X is $I-D_2$.

Definition 2.10. A point $x \in X$ which has only X as the I-neighbourhood is called an I-neat point.

Theorem 2.11. For an I-T₀ ideal space (X, τ, I) the following are equivalent:

- (1) (X, τ, I) is $I-D_1$;
- (2) (X, τ, I) has no I-neat point.

Proof. (1) \rightarrow (2): Since (X, τ, I) is I- D_1 , then each point x of X is contained in a ID-set O = U - V and thus in U. By definition $U \neq X$. This implies that x is not an I-neat point.

 $(2) \rightarrow (1)$: If X is I- T_0 , then for each distinct pair of points $x, y \in X$, at least one of them, x (say) has an I-neighbourhood U containing x and not y. Thus U which is different from X is an ID-set. If X has no I-neat point then y is not an I-neat point. This means that there exists an I-neighbourhood V of y such that $V \neq X$. Thus $y \in (V - U)$ but not x and V - U is an ID-set. Hence (X, τ, I) is I- D_1 . \square

A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be *I*-irresolute if $f^{-1}(V)\in IO(X)$ for every $V\in IO(Y)$.

Theorem 2.12. If $f:(X,\tau,I)\to (Y,\sigma,J)$ is an I-irresolute surjective function and E is an ID-set in (Y,σ,J) , then the inverse image of E is an ID-set in (X,τ,I) .

Proof. Let E be an ID-set in (Y, σ, J) . Then, there are I-open sets U_1 and U_2 in (Y, σ, J) such that $S = U_1 - U_2$ and $U_1 \neq Y$. By the I-irresoluteness of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are I-open in (X, τ, I) . Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) - f^{-1}(U_2)$ is an ID-set.

Theorem 2.13. If (Y, σ, J) is I- D_1 and $f: (X, \tau, I) \to (Y, \sigma, J)$ is I-irresolute and bijective, then (X, τ, I) is I- D_1 .

Proof. Suppose that Y is an I- D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is I- D_1 , there exist ID-sets G_x and G_y of Y containing f(x) and f(y), respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 2.12, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are ID-sets in (X, τ, I) containing x and y, respectively. This implies that (X, τ, I) is an I- D_1 space.

Theorem 2.14. An ideal space (X, τ, I) is I- D_1 if and only if for each pair of distinct points $x, y \in X$, there exists an I-irresolute surjective function $f: (X, \tau, I) \to (Y, \sigma, J)$, where (Y, σ, J) is an I- D_1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists an I-irresolute, surjective function f from an ideal space (X, τ, I) onto an I- D_1 space (Y, σ, J) such that $f(x) \neq f(y)$. Therefore, there exist disjoint ID-sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is I-irresolute and surjective, by Theorem 2.12, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint ID-sets in X containing x and y, respectively. Hence the space X is an I- D_1 space. \square

3. Conclusion

In this paper, we used the notions of I-open sets and ID-set to define some new low sepapartion axioms and presented some of their basic properties. We posed some problems which open up for more research in this direction.

Acknowledgement. The authors are very grateful to the referee for his/her comments and suggestions.

References

- [1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30.
- [2] F. G. Arenas, J. Dontchev, M. L. Puertas, *Idealization of some weak separation axioms*, Acta Math. Hungar. 89 (2000), no. 1-2, 47-53.
- [3] M. Caldas, S. Jafari and N. Rajesh, Some fundamental properties of β -open sets in ideal bitopological spaces, Eur. J. Pure Appl. Math. 6 (2013), no. 2, 247-255.
- [4] J. Dontchev, M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach category theorem, Third Iberoamerican Conference on Topology and its Applications (Valencia, 1999). Acta Math. Hungar. 88 (2000), no. 1-2, 53-58.
- [5] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica 49 (3) (1999), 395-401.
- [6] J. Dontchev, M. Ganster and D. Rose, *Ideal Resolvability*, Topology Appl. 93 (1999), 1-16.
- [7] D. N. Georgiou and B. K. Papadopoulos, *Ideals and its [their] applications*, J. Inst. Math. Comput. Sci. Math. Ser. 9 (1996), no. 1, 105-117.
- [8] D. N. Georgiou, S. D. Iliadis, A. C. Megaritis, G. A. Prinos, *Ideal-convergence classes*, Topology Appl. 222 (2017), 217-226.

- [9] E. Hatir, A. Al-omari, S. Jafari, δ-local function and its properties in ideal topological spaces, Fasc. Math. No. 53 (2014), 53-64.
- [10] S. Jafari, A. Selvakumar, M. Parimala, Operation approach of g*-closed sets in ideal topological spaces, An. Univ. Oradea Fasc. Mat. 22 (2015), no. 1, 119-123.
- [11] D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll. U.M.I., 7(6-B)(1992), 453-465.
- [12] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [13] T. Noiri, M. Rajamani, M. Maheswari, A decomposition of pairwise continuity via ideals, Bol. Soc. Parana. Mat. (3) 34 (2016), no. 1, 141-149.
- [14] H. Maki, Jun-Iti Umehara, *Topological ideals and operations*, Questions Answers Gen. Topology 29 (2011), no. 1, 57-71.
- [15] R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- (S. Jafari) College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark

E-mail address: jafaripersia@gmail.com

(S. Shanthi) Department of Mathematics, Arignar Anna Govt. Arts College, Namakkal -637 002, Tamilnadu, India

E-mail address: shanthiwini2005@yahoo.co.in

(N. Rajesh) Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India

 $E ext{-}mail\ address: nrajesh_topology@yahoo.co.in}$