The Enigmatic Positron Confounds Atomic Theory

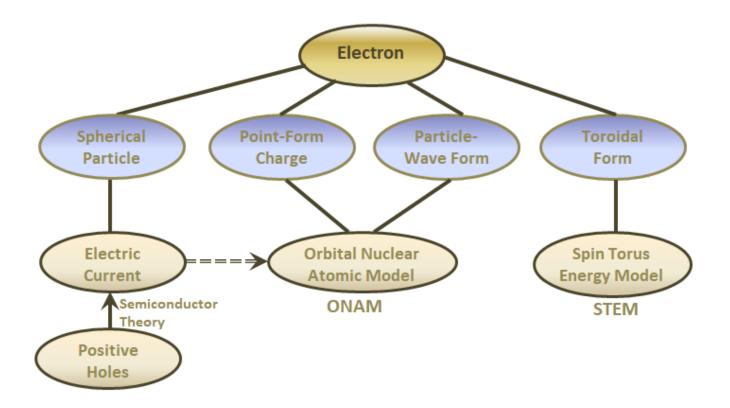
Ever since mankind ditched the flat-Earth model and taken on an orbital planetary model, albeit the Earth-centred Ptolemaic or the Sun-centred Copernican model, Physicists have been enthusiastic about orbital models. Thus, it is not surprising that after the discovery of atoms by John Dalton in **1803** and a reasonably accurate measurement of the charge of an electron by Robert Millikan in **1908**, that the orbital atomic model developed by Neils Bohr in **1913** quickly gained early widespread approval and adoption.

The **Bohr atomic model** represented a perfectly logical extension of the notion that patterns of Nature observable at the astrological level are reflected at the atomic scale. Apart from scale, the main difference was that the planets of our solar system are held in orbitals by gravitational attraction whereas, at the sub-microscopic level, high-speed electrons are considered to be held in orbitals by their electric-charge attraction to a positively-charged nucleus.

However the Bohr model was soon proven to be flawed, with discrepancies becoming apparent between the calculated energies (attributed to electrons transitioning between Bohr orbitals) and the measured energies (as determined from spectral line emissions and absorptions). Such discrepancies were attributed to the lack of provision for angular momentum related to **electron spin**.

In 1923, Louis de Broglie put forward a theory that particles can exhibit wave characteristics and vice versa, and by 1926 Erwin Schrödinger, using new matrix mechanics developed by Heisenberg, Born and Jordan, developed the waveform based **Schrödinger equation** for the generalised case of de Broglie's theory. The Schrödinger equation provides a predictor of the probability of a wave-form electron being at a particular location within an electron orbital, allowing orbitals to be considered to be electron probability clouds. Incorporating Heisenberg's uncertainty principle, in 1927 Paul Dirac began the process of unifying quantum mechanics with special relativity by proposing the **Dirac equation** for the electron.

The Bohr model was thus in effect the prototype that was converted into the current **Orbital Nuclear Atomic Model** (**ONAM**) by the inclusion of the wave function mathematics. By 1930 ONAM was established as the undisputed guiding mainstream model and reference point for atomic research up to and including the present day. Through parametrisation, the wave equations provide enough flexibility to reflect the fine line spectrum of Hydrogen, but they are ineffective for most other elements and certainly do not represent a predictive tool.


It is interesting to note that the **positron**, the positive anti-particle of the electron, satisfies the Dirac wave equations, but the positron was not discovered until **1932** by David Anderson, well after ONAM had been widely accepted and adopted. However ONAM has no provision for the existence of positrons within the atom: positrons just magically and inexplicably result from high energy particle/matter interactions. So, although positrons mathematically fit into the wave function equations that underpin ONAM, they represent a perplexing enigma because ONAM has no provision for their existence within atom structure or matter and cannot reasonably explain how they come into being.

The **electron** is variously considered to have different forms: it is considered to be a **spherical monopole charged particle** for explaining electric currents; **a point-form monopole charge** for mathematical modelling (i.e. the wave equations); and a **particle-wave** for explaining the interference patterns of the electron-based version of the 2-slit experiment. Although not readily accepted by ONAM protagonists, the **vortex ring** (or **toroidal**) electron is well documented and represents a fourth representation of the electron. However, as shown in the bubble diagram on page 2, the torus model of the electron accounts for positrons, but can lead to an atomic theory quite different to that of ONAM.

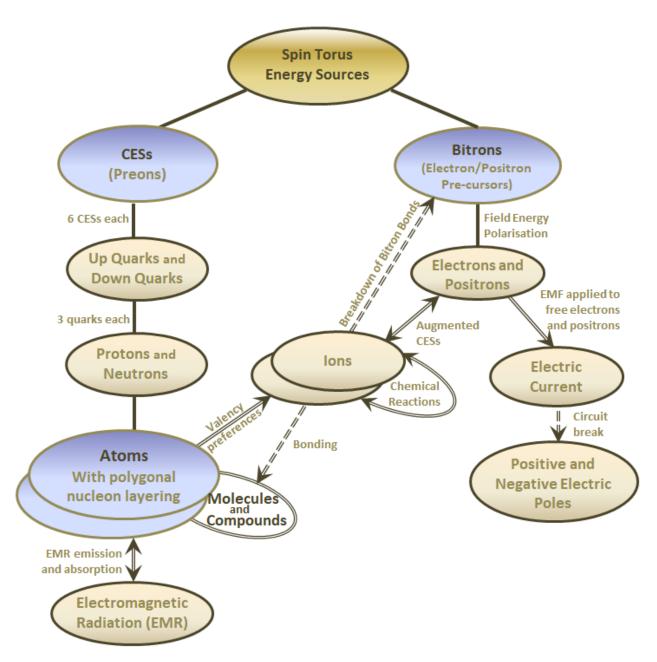
Although industrial electricity applications use a positive-to-negative flow direction, the ONAM-based conventional Science view is that **electric currents** consist of the one-way movement of electrons from a negative to positive terminal. However, with the development of the transistor by Shockley, Bardeen and Brattain in 1956, explanations in terms of the movement of monopole electrons alone were insufficient to explain how semiconductor electric currents form. Thus, because the ONAM approach makes no provision for free positrons within matter, Science was forced to introduce the concept of **positive holes**, which are the functional equivalent of positrons, to address the shortcomings.

The late discovery of the positron begs the question that, had the existence of positrons been known or suspected when ONAM was being developed (i.e. in the pre-1930 period), 'would ONAM have been significantly modified to include a provision for positrons within the atoms and/or matter?' Had provision for positrons within matter been made, it would have certainly negated the need to invoke the dubious concept of positive holes within semiconductors.

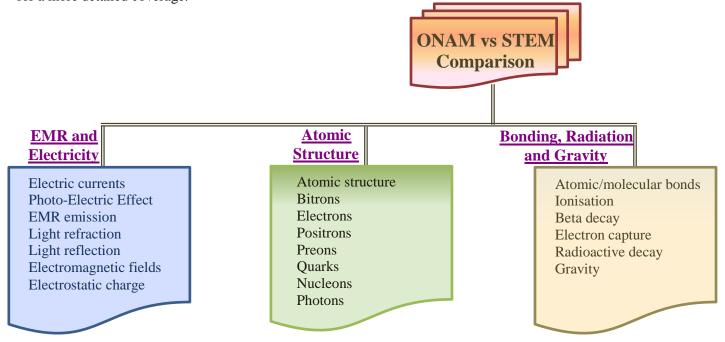
Adopting the vortex-ring electron (the fourth representation of an electron mentioned above) leads to the **Spin Torus Energy Model** (**STEM**). The STEM electron is considered to have a torus-shaped **energy core** consisting of rapidly moving (close to the speed of light) concentrated energy, and an outer **energy field** of less concentrated energy that circulates atmosphere-like in synch with the movement of core energy.

STEM electrons are considered to be a **polarised** form of the unpolarised (or neutral) form of the electron called the **bitron**. For a **neutral bitron**, its energy field flow is purely circular paralleling the energy core flow direction and speed: when polarised, often by an applied emf, the bitron's field energy takes on a linear flow component (i.e. parallel to the core energy's spin axis). STEM contends that it is the **chirality** of the field energy flow of a polarised bitron's energy field that determines whether it presents as an electron or as a positron. A neutral bitron may thus become an electron or a positron depending upon the relative polarisation direction of its energy field.

The energy field of a low-speed electron (e.g. free electrons within metal or those forming an electric current) or a positron is considered to have a **dipolar** form whereas the energy field of a fast-moving electron (e.g. cathode rays) or positron is distorted so as to present as a **monopole** electric charge. STEM contends that slow-speed free electrons and positrons can co-exist within matter, and readily form electric currents within electrical conductors (mainly metals). And certainly STEM does not need to invoke positive holes to explain electric currents within semiconductors.


Due to the similarity between free electrons and positrons, and because STEM contends that they co-exist in approximately equal numbers within electricity conductors, leads to a question along the lines of: 'if electrons and positrons are so similar, why are electrons much more readily available (e.g. emitted by the photoelectric effect or cathode ray tubes) than positrons?' The answer to this question is that free positrons require at least twice as much kinetic energy to allow them to escape from their host material than do electrons. Positrons can thus only escape when high-energy exchanges are involved (e.g. beta radiation or the high energy bombardment of metal film). Positrons do not escape in low-energy exchanges and are not readily extracted from matter: this is the reason why they remained unnoticed and un-discovered until 1932.

Extrapolating the torus model for the electron, STEM hypothesises that the generalised torus-form of bitrons (and thus electrons and positrons) typifies the structure of many other fundamental particles. The other main particle grouping consisting of concentrated energy in a spin-torus form is the **Concentrated Energy Source** (**CES**), which can build into **nucleons** (Protons and Neutrons): it corresponds to the concept of a **Preon**. A summary of the STEM approach based upon bitrons and CESs is provided in the bubble diagram overview on page 3.


A more detailed three-part coverage of the **STEM** approach can be downloaded in **pdf** format using the leftmost links below, or in a variety of **e-pub book** formats free of charge from the Smashwords site using the rightmost links below:

STEM and the Orbital Model (Part 1): Has Atomic Physics Lost its Way?
 STEM and the Orbital Model (Part 2): The Atomic Structure of Matter
 STEM and the Orbital Model (Part 3): Electromagnetic Radiation and Gravity
 e-pub
 e-pub

The advantages of the e-pub versions are that they are easier to read anywhere (home, work, train etc.) on a range of devices (tablets, PCs, phones or smart TVs), are more dynamic and better cross-referenced. Also, using an e-reader such as **Freda**, the material can be read in speaker (audio) mode so reducing eye-strain.

A comparison of the ONAM and STEM approaches covering a wide range of Science-related topics is provided in pages 4 to 6. The comparison is presented as 3 separate tabulations, with the topic-list for each listed in the flowchart diagram below. Each topic is also cross-referenced to the 3-part STEM and the Orbital Model series should you wish for a more detailed coverage.

Tonic	ONAM (Conventional Science)	STEM
Topic	ONAM (Conventional Science)	
Electric	An electric current consists of monopole	An electric current is caused by the movement of
Currents	electrons moving from a negative to a positive	dipolar electrons and positrons. Most currents
fp. 1.43	terminal, although the electricity industry	(source-to-sink, magnetically induced, capacitor
[Part 1]	convention is that electric currents move from	charge and discharge, diodes, transistors and AC
	positive to negative. Problems also arise when	electricity) consist of electrons and positrons
	attempting to explain semiconductor current	moving synchronously within strands in opposite
	flow in detail, requiring the introduction of the	directions. Photovoltaic cell and photodiode
	concept of positive hole (effectively a positron	current is predominantly the one-way movement
	equivalent) movement to explain current flow within P-N junctions. However, this approach	of electrons and positrons respectively. The magnetic field around a current-carrying wire
	results in electrons moving in the reverse-bias	conductor is due to the same spin-direction of the
	direction for a photovoltaic cell.	participating electron and positron energy fields.
Photo-Electric	Some incident photon energy liberates an	An incident photon liberates a bitron from a bitron
Effect	electron from an electron orbital as a free	bond; or collides with a free bitron so as to polarise
Lilect	electron particle, and the remaining photon	it and provide it with kinetic energy; or it can be
[Part 3]	energy contributes to the electron's kinetic	captured and absorbed, possibly to be released as
[runto]	energy. If the photon does not have sufficient	a rebound photon. The polarised bitron may be an
	energy to liberate an electron (i.e. is below the	electron or a positron, but only electrons with
	threshold frequency) it is re-emitted as a	sufficient kinetic energy can escape the host
	rebound photon.	material.
EMR Emission	Photons are considered to be the	In an energised environment it is the unrestrained
	electromagnetic energy released when an	CESs with an out-facing AI or CI-pole that generate
[Part 3]	electrons jump from an outer to a more inner	and release photons. Photons can also be captured
	orbital. Incident photons may be absorbed and	by out-flow vortices of CESs and released as
	re-emitted as rebound photons with an	rebound photons with a marginally increased
	increased wavelength.	wavelength.
Light Refraction	Refraction is a change in the direction of light as	Refracted light (the angle of refraction defined by
and Reflection	it passes from one transparent medium to	Snell's law) is reflected if it to passes directly into
	another as described by Snell's Law. It is	the reflection area of an appropriately orientated
[Part 3]	accompanied by a frequency-dependent change	CES. Reflection and associated polarisation may
	in speed and wavelength of the light that results	occur at any depth to which the light can
	in dispersion. Reflection involves the bouncing of	penetrate. Any refracted light that is not reflected
	light by the second medium. Refraction and	continues as partially polarised light until it exits
-1	reflection involve a degree of light polarisation.	the host material or is absorbed by it.
Electromagnetic	Electric fields are produced by stationary charges	Magnetic and electric fields consist of the same
Fields	and magnetic fields by moving charges	type of field energy, with their subtly different
[Dart 1]	(currents). The interaction of charges and	properties being due to different energy flow patterns. Magnetic fields emanate from magnets,
[Part 1]	currents with an electromagnetic field is described (but not explained) by Maxwell's	or are generated by an electric current moving in a
	equations and the Lorentz force law. Field lines	loop circuit (or a coil). Unlike electric fields, they do
	of force are used to visualise electromagnetic	not involve energy-field spin. Wisps and threads
	fields. The Quantum Mechanics view is that an	associated electric monopole charges present as
	electromagnetic field is quantized and composed	electric field lines of force.
	of individual particles.	
Electrostatic	Static electricity is an imbalance of electric	Static electricity is due to friction-induced
Charge	charges within or on the surface of a material	polarisation of neutral bitron strands, with the
(Static	created whenever two surfaces contact and	structure of triboelectric materials pre-disposing
Electricity)	separate, and at least one of the surfaces is an	them to develop more p-strands (+ve charge pre-
	electrical insulator. Triboelectric materials are	disposition) or more e-strands (-ve charge). The
[Part 1]	defined as having a tendency to release electrons	surfaces are charged by the concentration of +ve
	to become +ve, or to attract them to become -ve,	only or -ve only polarised strands: thus no electric
	with such charge remaining until it can move	current is generated in either material, but the
	away via an electric current or as an electrical	polarised strands are pushed towards and
	discharge. Static electricity is detailed and	concentrate at the materials' outer surface.
	described but is not properly explained.	

Topic	ONAM (Conventional Science)	STEM
Atomic	An atom consists of a spherical nucleus formed	An atom consists of polygonal proton and
Structure	by an amorphous mix of protons and neutrons.	neutron layers held together by a combination
	The nucleus is enveloped by electrons moving in	of strong force inter-quark bonds, bitron bonds
[Part 2]	a variety of different shaped orbitals.	and off-set bonds.
Bitrons	No equivalent particle.	Bitrons are a spin toroidal form of energy and
		are pre-cursors to electrons and positrons.
[Part 1]		They form as bitron bonds within atoms and as
		chemical bonds between atoms. Released (i.e.
		free) neutral bitrons tend to self-organise into
-1 .		same-spin strands within conductors.
Electrons	Electrons orbiting a nucleus in mathematically	Electrons are dynamically polarised bitrons.
[D+ 1]	defined orbital patterns are considered to be	Slow moving low-energy electrons have a
[Part 1]	wave-like in nature. A free electron (external to an atom) is usually represented as a spherical	dipolar form, whereas fast moving high-energy electrons have an asymmetrical energy field
	negatively-charged monopole particle: it defines	and present as a negative electric monopole
	the unit (e) for electric charge. Mathematically	charge. Electrons can attach to atoms to create
	it is considered to be a point-form monopole	or enhance anions.
	electric charge.	
Positrons	The positron is considered to be high-energy	Positrons are dynamically polarised bitrons
	positive anti-particle of the electron, and is	that have opposite chirality to electrons. As for
[Part 1]	considered to have no role within atoms. No	electrons, slow moving low-energy positrons
	explanation is provided for the appearance of	have a dipolar form and fast moving high-
	free high-energy positrons (and electrons) from	energy positrons present as a positive electric
	the high-energy bombardment of metals and	monopole form. Free positrons require at least
	helium gas, or from beta radiation. 'Slow'	double the kinetic energy required by an
	positrons (energised positrons with reduced	electron in order to escape a host medium's
	kinetic energy) are quickly destroyed via	electromagnetic field. Positrons can attach to atoms to create or enhance cations.
Preons	electron-positron annihilation within matter. Preon-based models for quarks and nucleons	The CES (Concentrated Energy Source) is the
(smallest	are not widely accepted. The list of	Preon equivalent. It is considered to have the
fundamental	fundamental particles (those with no sub	same form as electrons and positrons (i.e. a
particle)	structure and not consisting of other particles)	spin torus energy core and a polarised energy
	currently consists of the fermions (quarks and	field). A CES's energy core is considered to
[Part 2]	leptons) and their anti-particles (a total of 24	contain approximately 100 times more energy
	particles), but none of these are considered to	than an electron or a positron.
	represent preons.	
Quarks	There are six flavours of quarks (up, down,	An up quark consists of 5 p-CESs and 1 e-CES,
	strange, charm, bottom and top) plus their	and a down quark of 2 p-CESs and 4 e- CESs.
[Part 2]	antiparticles. Up quarks have an electric charge	The 6 CESs of each type of quark are arranged
	of +2/3 e and down quarks -1/3 e. No structure	in a regular octahedron (or cubic) form. The
	is suggested for quarks and they are currently considered to be fundamental particles.	net electric charge equivalent of up quarks is +2/3 e and for down quarks is -1/3 e.
Nucleons	A Proton consists of 2 up quarks and 1 down	Quark composition and electric charge as for
INGCICOTIS	quark and an electric charge of +1e, and a	ONAM. Nucleons are considered have an 'L' (L-
[Part 2]	Neutron consists of 2 down quarks and 1 up	form) or triangular (T-form) shape, but within
,	quark and has no net electric charge.	nucleon layers they present as linear (I-form).
Photons	Several models for photons exist, and thus their	A photon is considered to consist of inert field
	form is conjectural and undecided. Photons are	energy in a helical form that spins as it moves.
[Part 3]	considered to be emitted by electrically charged	Base photons result from the clearing of
	particles undergoing acceleration. Emission	energy congestion from within the in-flow
	spectral lines of atoms represent electrons	vortex of CESs. Photons can also be captured
	jumping from various outer orbitals to further-	by out-flow vortices of CESs and released as
	in orbitals. When photons are absorbed by an	rebound photons with a marginally increased
	atom, it can cause an electron to jump to an	wavelength. Spectral lines consist of unique
	orbital further away from the nucleus.	combinations of base and rebound photons.

Topic	ONAM (Conventional Science)	STEM
Atomic and	Molecules, crystals, metals and diatomic gases	The physical characteristics of atoms are
Molecular	are mainly held together by chemical bonds,	dependent upon structure of their nucleus,
Bonding	which dictate the structure and the bulk	with their chemical bonding preferences and
	properties of matter. Atomic bonds are primary	orientation being dictated by the polygonal
[Part 2]	(metallic, covalent, and ionic bonds) and	geometry of the nuclei involved. Covalent,
	secondary (hydrogen and Van der Waals	ionic and hydrogen bonding predominantly
	bonds). For metallic bonding electrons are	involves a balance between bitron and offset
	delocalized over a lattice of atoms whereas	bonds (commonly referred to as chemical
	ionic bonding relies on binding by cations and	bonds). Metallic bonds occur when geometry
	anions. Covalent bonds involve electron sharing	compatibility of the nuclei of different metals
	as described by Valence Bond (VB) and	allows them to inter-lock, possibly with
	Molecular Orbital (MO) theories. With nuclei	pseudo bonding between nuclei. Complex
	considered as a spherical amorphous group of	molecular chains such as carbohydrates form
	nucleons, attempts to explain the orientation	coordination complexes involving bitron and
	and length bonds between atoms in terms of	offset (and/or pseudo) bonds which are
Ionisation	electron orbital patterns have largely failed. Ionisation is when an atom or molecule	collectively called ligands . Ionisation involves the breaking of a bitron
ionisation	acquires a negative or positive charge by	and off-set bond combination so releasing
[Part 2]	gaining or losing electrons, often in conjunction	the bond's bitron and creating a cation and
[Furt 2]	with other chemical changes. It occurs when	an anion. Upon release, the bitron becomes
	sufficiently energetic charged particles or	transformed into a free electron or a positron
	radiant energy travel through gases, liquids, or	(i.e. it is polarised). Ions can be enhanced by
	solids. Alpha radiation particles and fast moving	the attachment of electrons and positrons to
	energised electrons and positrons also cause	the outer fixed and swivel CESs. (Causes of
	extensive ionization along their path.	ionisation are covered in the ONAM column)
Beta Decay and	Beta decay is a common form of radioactive	β+ decay is triggered by the high speed
Electron	disintegration by which unstable atomic nuclei	collision of a free electron with a foot-in
Capture	spontaneously gain or lose a positron without	L-form proton that causes it to CES-flip into a
	any change in mass number. The three	neutron with the release of an energised
[Part 2]	processes are electron emission (β– decay),	positron and a neutrino. When the collision is
	positron emission (β+ decay), and electron	lower energy β+ decay is called electron
	capture (K-capture). Lighter isotopes (neutron	capture. β- decay is triggered by a high speed
	deficient) generally tend toward stability by	positron collision with a foot-in L-form
	positron emission or electron capture, whereas	neutron, converting it into a proton with the
	the heavier isotopes (neutron rich) usually	release of an energised electron and an anti-
- 1	approach stability by electron emission.	neutrino.
Radioactive	The radioactive decay chain refers to a series of	Many heavier atoms consist of a series of
Decay	radioactive decays of certain heavier atoms	embedded polygonal forms. Some of these
Instanced in	different radioactive that undergo sequential	atoms (e.g. thorium and uranium) are
[not covered in detail in this	transformations until eventually a stable isotope is reached. The main series are those	unstable and the embedded forms separate into daughter products accompanied with
three-part	for thorium, uranium, actinium and neptunium	alpha (energised helium atoms) and beta
series]	with half-lives between 0.7 and 14 billion years.	decay bi-products.
Gravity	Gravity is considered to be one of the four	Minor energy losses occur from most
Gravity	fundamental forces together with strong, weak	concentrated energy sources via their energy
[Part 3]	and electromagnetic forces. According to	fields. Such energy loss accumulates as an
[, 2, 1, 2]	Einstein's 1915 theory of general relativity	atmosphere-like pool of weak inert energy
	gravity is not a force and results from matter	around objects called an Enersphere. All
	warping space-time. The mathematical space-	normal matter is considered to have an
	time model relates well to the gravitational	enersphere and, for objects that are
	interaction of large-scale objects in space but is	sufficiently close, their enerspheres overlap
	incompatible with quantum mechanics and fails	and merge. The competitive pull by CESs
	to explain at the smaller scale why objects	within atoms on their merged overlapping
	unsupported within a gravitational field (such	Enerspheres is considered to represent the
	that of Earth) fall downwards due to gravity.	pull of Gravity.