
Conditional Activation GAN: Improved Auxiliary Classifier GAN

JeongIk Choଵ, Kyoungro Yoon ଶ(Corresponding Author)

Dept. of Computer Science and Engineeringଵ, Dept. of Smart ICT Convergence Engineeringଶ

College of Engineeringଵ, KU Institute of Technologyଶ

Konkuk University, Seoul, Koreaଵ, Konkuk University, Seoul, Koreaଶ

jeongik. jo. 01@gmail. comଵ, yoonk@konkuk. ac. krଶ

Abstract

 Conditional GAN is a GAN that generates

data with the desired condition from the latent

vector. The auxiliary classifier GAN is the most

used among the variations of conditional GANs.

In this study, we explain the problem of auxiliary

classifier GAN and propose conditional

activation GAN that can replace auxiliary

classifier GAN to reduce the number of

hyperparameters and improve training speed.

The loss function of conditional activation GAN

is defined as the sum of the loss of each GAN

created for each condition. Since each GAN

shares all hidden layers, the GANs can be

considered as a single GAN and it does not

increase the amount of computation much.

Also, in order to prevent ignorance of

conditions in the discriminator of conditional

GANs with batch normalization, we propose a

mixed batch training, in which each batch for

discriminator is always configured to have the

same ratio of real data and generated data so

that each batch always has the same condition

distribution.

Keywords

Auxiliary classifier GAN

StarGAN

Loss function

Batch normalization

Mixed batch normalization

Conditional activation GAN

Abbreviations

Generative adversarial network: GAN

Auxiliary classifier GAN: AC-GAN

Conditional activation GAN: CA-GAN

Fréchet Inception Distance: FID

1. Introduction

 Conditional GAN [1] is a GAN [2] that can

generate data with the desired condition from

the latent vector. Among the variations of

conditional GANs [3, 4], the most commonly

used conditional GAN is the Auxiliary Classifier

GAN (AC-GAN) [5] used in [6, 7, 8, 9, 10, 11].

Some papers used a variation of AC-GAN [10,

11] without giving any details on the

rationalization of the variations made. In this

study, we explain the reasons for the

modification of AC-GAN and the disadvantages

of AC-GAN.

 In AC-GAN, when real data distribution and

generated data distribution is the same,

auxiliary classifier of the discriminator and the

generator can be considered as a group of

GANs, each of which trains each condition and

cross-entropy adversarial loss by sharing all

hidden layers. Considering the AC-GAN as a set

of GANs, the generated data classification loss

of the AC-GAN discriminator loss interferes with

the training of each GAN and hence is removed

in the modified AC-GAN.

 Since each GAN can be trained as a GAN only

when the real data distribution and the

generated data distribution are the same, there

is a problem that individual GAN may not be

trained at the beginning of the AC-GAN

training.

 Also, to use the advanced adversarial loss as

used in papers such as LSGAN [12] or WGAN-

GP [13] in AC-GAN, a hyperparameter that is

adjusting the ratio of adversarial loss and

classification loss should be decided.

 We propose a conditional activation GAN (CA-

GAN) that can replace AC-GAN to reduce the

number of hyperparameters and improve

training speed to overcome the upper

mentioned problems of AC-GAN. Loss of CA-

GAN is the sum of the losses of each GAN when

each GAN is created for each condition. Since

each GAN shares all hidden layers, the CA-GAN

composed on a conceptual aggregation of

individual GAN can be considered as a single

GAN.

 Unlike AC-GAN's use of two losses (adversarial

loss, classification loss), CA-GAN uses only one

loss (conditional activation loss), so there is no

need to find the proper ratio of adversarial loss

and classification loss.

 Also, while AC-GAN starts to train each

condition when the real data distribution is the

same to the generated data distribution, CA-

GAN always trains each condition

simultaneously, which means that CA-GAN

always produces meaningful gradients, even in

the early training stage.

 In conditional GANs, training by applying

batch normalization [14] to the discriminator

induces the generator to distort the input

condition distribution.

 When batch normalization is applied to the

discriminator, and the real data and the

generated data condition distribution are

different, the discriminator may use the batch

condition distribution for real/fake

discrimination and the generated data

condition distribution follows the real data

condition distribution, not the input target

condition distribution.

 To prevent the generator from ignoring the

input target condition distribution, we suggest

mixed batch training. Mixed batch training is to

always configure each batch for discriminator

with the same ratio of real data and generated

data so that each batch always has the same

condition distribution.

However, if mixed batch training is applied at

the beginning of training, the generated data

and the original data within a single batch are

trivial for the discriminator to classify and there

are hardly anything to be trained. Therefore,

mixed batch training should be applied after a

moderate training has been done to improve

the performance of conditional GANs.

2. Analysis of Auxiliary classifier GAN

 The loss of AC-GAN is defined as follows [5]:

𝐿ௗ = 𝐿ௗ௩
ௗ + 𝐿௦

 + 𝐿௦
 (1)

𝐿 = 𝐿ௗ௩

+ 𝐿௦
 + 𝐿௦

 (2)

𝐿௦
 = 𝐸௫,ௗ~ೝ(௫,ௗ)[− log 𝐷௦(𝑐𝑛𝑑|𝑥)] (3)

𝐿௦

= 𝐸௫ᇲ,ௗᇲ~൫௫ᇲ,ௗᇲ൯[− log 𝐷௦(𝑐𝑛𝑑ᇱ|𝑥ᇱ)] (4)

𝐿ௗ௩
ௗ = 𝐸௫~ೝ(௫)[− log 𝐷ௗ௩(𝑥)] +

𝐸௫~(௫)ൣ− log൫1 − 𝐷ௗ௩(𝑥)൯൧ (5)

𝐿ௗ௩

= 𝐸௫~(௫)ൣlog൫1 − 𝐷ௗ௩(𝑥)൯൧ (6)

In (1) and (2), 𝐿ௗ is the loss of the

discriminator and 𝐿 is the loss of the

generator. 𝐿ௗ௩
ௗ is the adversarial loss of the

discriminator and 𝐿ௗ௩
 is the adversarial loss of

the generator. In (5), 𝐷ௗ௩ is the probability

distribution function of the data in the

adversarial module. 𝐷ௗ௩(𝑥) is the probability

distribution of 𝑥, which is given as the input of

the adversarial module. 𝐸 is the expectation of

the given variable. Symbol “~” means “is

distributed as”. For example, 𝐸௫~(௫)[𝑓(𝑥)] is

an expectation value of 𝑓(𝑥) when 𝑥 follows

the distribution of 𝑃௭(𝑥).

 In 𝑥, 𝑐𝑛𝑑~𝑃(𝑥, 𝑐𝑛𝑑) of (3), 𝑥 is the real data,

and 𝑐𝑛𝑑 is the binary vector that expresses the

conditions of real data. In 𝑥ᇱ, 𝑐𝑛𝑑ᇱ~𝑃(𝑥ᇱ, 𝑐𝑛𝑑ᇱ)

of (4), 𝑥ᇱ is the generated data and 𝑐𝑛𝑑ᇱ is the

target binary vector to generate 𝑥 ′. 𝐷௦(𝑥) is

the probability distribution of data 𝑥 within

auxiliary classifier of the discriminator.

− log 𝐷௦(𝑐𝑛𝑑|𝑥) is the cross-entropy loss

between 𝑐𝑛𝑑 and 𝐷௦(𝑥) . Minimizing

− log 𝐷௦(𝑐𝑛𝑑|𝑥) means that 𝐷௦ is trained to

estimate the conditions of 𝑥 (𝑐𝑛𝑑) well.

 Note that 𝐿௦
 in 𝐿 does not play any role

because the generator does not affect the

calculation of 𝐿௦
 .

 In AC-GAN, when real data distribution and

generated data distribution is the same,

auxiliary classifier of the discriminator and the

generator can be considered as a group of

GANs that each GAN trains each condition

using cross-entropy adversarial loss, and shares

all hidden layers as shown in Fig. 1.

BAReal/
Fake C

SigmoidLinear Sigmoid Sigmoid

Hidden Layers

CBA

Hidden Layers

Latent
Vector

Generator

Discriminator

Fig1. AC-GAN that trains A, B, and C conditions

 Suppose that AC-GAN training three

independent conditions (A, B, C) trains only

with adversarial loss, and the real data

distribution and the generated data distribution

are the same.

 Node A of the discriminator is trained by

𝐿௦
 [𝐴] in 𝐿ௗ to output 1 to represent real

when it receives real data with condition A, and

0 to represent fake with condition not-A.

 When the generator receives 1 as its node A’s

input, it attempts to generate data by 𝐿௦
 [𝐴]

in 𝐿 with condition A, and trains the

discriminator’s node A output to be 1.

 If the generator attempts to generate data

with condition A but fails, the generated data

distribution will be close to the real data

distribution with condition not-A since it is

assumed that the real data distribution and the

generated data distribution are the same.

 Thus, the hidden layers of the discriminator

and node A, the hidden layers of the generator

and the latent vector input, and node A can be

thought of as a single GAN A that generates

data with condition A trained by 𝐿௦
 [𝐴] in 𝐿ௗ

and 𝐿௦
 [𝐴] in 𝐿 . However, 𝐿௦

 [𝐴] in 𝐿ௗ

trains node A of the discriminator to be 1

representing real when the discriminator

receives generated data. Therefore, 𝐿௦
 [𝐴] in

𝐿ௗ interferes with the training of GAN A.

 Also, when the generator receives 0 as its node

A's input, it can be thought of as a GAN that

generates data with condition not-A.

 AC-GAN uses cross-entropy loss as an

adversarial loss. However, in order to use

advanced adversarial loss such as LSGAN or

WGAN-GP, a hyperparameter is needed to

adjust the ratio of adversarial loss and

classification loss.

 To solve these problems, the loss of the

modified AC-GANs used in StarGAN [10] or

AttGAN [11] is modified as follows:

𝐿ௗ = 𝐿ௗ௩
ௗ + 𝜆௦𝐿௦

 (7)

𝐿 = 𝐿ௗ௩

+ 𝜆௦𝐿௦
 (8)

𝐿௦
 = 𝐸௫,ௗ~ೝ(௫,ௗ)[− log 𝐷௦(𝑐𝑛𝑑|𝑥)] (9)

𝐿௦

= 𝐸௫ᇲ,ௗᇲ~൫௫ᇲ,ௗᇲ൯[− log 𝐷௦(𝑐𝑛𝑑ᇱ|𝑥ᇱ)] (10)

 In (7) and (8), 𝐿ௗ is loss of discriminator and

𝐿 is loss of generator. 𝐿ௗ௩
ௗ is adversarial loss

of discriminator and 𝐿ௗ௩
 is adversarial loss of

generator. In 𝑥, 𝑐𝑛𝑑~𝑃(𝑥, 𝑐𝑛𝑑) of (9), 𝑥 is real

data, and 𝑐𝑛𝑑 is the binary vector that

expresses the conditions of real data. In

𝑥ᇱ, 𝑐𝑛𝑑ᇱ~𝑃(𝑥ᇱ, 𝑐𝑛𝑑ᇱ) of (10), 𝑥ᇱ is generated

data and 𝑐𝑛𝑑ᇱ is the target binary vector to

generate 𝑥ᇱ. 𝜆௦ is classification loss weight.

 As explained above, modified AC-GAN also

can be considered as a group of GANs. However,

each GAN can only be trained as a GAN for

each condition only if the real data distribution

and the generated data distribution for the

corresponding condition are the same.

Fig2. Data distribution at the beginning of

training using AC-GAN

 In other words, if the real data distribution

differs from the generated data distribution at

the beginning of the training, the training does

not proceed with classification loss, but only

with adversarial loss, as shown in Fig.2.

Fig3. Distribution of generated data after some

training using AC-GAN

 By training with adversarial loss, the real data

distribution and the generated data distribution

gets closer. As these distributions get closer to

each other, the classification loss gradually acts

as the cross-entropy adversarial loss of each

GAN, and produces meaningful gradients and

training is performed to generate data with

each condition.

 AC-GAN has the disadvantage of requiring

one additional hyperparameter to adjust the

ratio of adversarial loss and classification loss in

both discriminator and generator and not

producing meaningful gradients early stage of

training.

3. Conditional activation GAN (CA-GAN)

 To solve these problems of AC-GAN, we

propose CA-GAN, which is similar to having

multiple GANs each of which is defined to train

corresponding condition.

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X

Fig4. Data distribution at the beginning of

training using CA-GAN

 Loss of conditional activation GAN is the sum

of each GAN’s loss where Each GAN trains only

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

one condition as defined in the following

equation.

𝐿ௗ = ∑ 𝐿ௗ ௌ
 (11)

𝐿 = ∑ 𝐿 ௌ
 (12)

𝐿ௗ
= 𝐸௫,~ೝ(௫,)ൣ𝑓

ௗ൫𝐷(𝑥)൯൧

+𝐸௫ᇲ~൫௫ᇲ,ଵ൯ൣ𝑓
ௗ൫𝐷(𝑥ᇱ)൯൧ (13)

𝐿ீ
= 𝐸௫ᇲ~൫௫ᇲ,ଵ൯ൣ𝑓൫𝐷(𝑥ᇱ)൯൧ (14)

 In (11) and (12), 𝐿ௗ and 𝐿 represent the

discriminator and the generator losses of

conditional activation GAN, respectively. 𝑆ௗ

represents the set of conditions that the given

CA-GAN is intended to be trained for. 𝑐 is one

specific condition in 𝑆ௗ . GAN 𝑐 is an

individual GAN that trains for only condition 𝑐.

𝑔 and 𝑑 are generator and discriminator of

GAN 𝑐 . 𝑔 receives a binary activation value

with a latent vector. If 𝑔 receives 1 as an

activation value, 𝑔 tries to trick 𝑑 , and 𝑑

tries to discriminate generated data from 𝑔 as

fake. If 𝑔 receives 0 as the activation value,

both 𝑔 and 𝑑 do not care about what has

been generated. 𝑑 only cares about

discriminating real data, which has condition 𝑐,

and does not care about other real data

including real data with condition not-𝑐.

 In 𝑥, 𝑐~𝑃(𝑥, 𝑐) of (13), 𝑥 is the real data

which has condition 𝑐 . In 𝑥ᇱ~𝑃
(𝑥ᇱ, 1) , 𝑥ᇱ is

generated data by 𝑔 when it receives latent

vector with 1 as activation value.

 𝑓
ௗ is a function that calculates the adversarial

loss of the discriminator about real data. 𝑓
ௗ is

a function that calculates the adversarial loss of

the discriminator about generated data. In (14),

𝑓 is a function that calculates the adversarial

loss of the generator.

 The following equation is an example of the

adversarial loss of GAN 𝑐 that uses adversarial

loss given in LSGAN [12].

𝐿ௗ
= 𝐸௫,~ೝ(௫,)[(𝐷(𝑥) − 1)ଶ]

+𝐸௫ᇲ~൫௫ᇲ,ଵ൯[𝐷(𝑥ᇱ)ଶ] (15)

𝐿
= 𝐸௫ᇲ~൫௫ᇲ,ଵ൯[(𝐷(𝑥ᇱ) − 1)ଶ] (16)

 In CA-GAN, since each GAN shares all hidden

layers, conditional activation loss can be

changed as the following equation.

𝐿ௗ = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)ൣ𝑓
ௗ൫𝐷(𝑥)൯ ∙ 𝑐𝑛𝑑൧

+𝐸௫ᇲ,ௗᇲ~(௫ᇲ,ௗᇲ)ൣ𝑓
ௗ൫𝐷(𝑥ᇱ)൯ ∙ 𝑐𝑛𝑑ᇱ൧ (17)

𝐿 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔ቀ𝑥′,𝑐𝑛𝑑′

ቁ
ቂ𝑓𝑔

ቀ𝐷൫𝑥′൯ቁ ∙ 𝑐𝑛𝑑ᇱ
ቃ (18)

 In 𝑥, 𝑐𝑛𝑑~𝑃(𝑥, 𝑐𝑛𝑑) of (17), 𝑥 is real data, and

𝑐𝑛𝑑 is the binary vector that expresses the

conditions of real data. In 𝑥ᇱ, 𝑐𝑛𝑑ᇱ~𝑃(𝑥ᇱ, 𝑐𝑛𝑑ᇱ)

of (18), 𝑥ᇱ means generated data, and 𝑐𝑛𝑑ᇱ is

the target binary vector to make 𝑥ᇱ. “∙” is an

inner product.

 The following equation is the loss of CA-GAN

when it is using the adversarial loss of LSGAN.

𝐿ௗ = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)ൣ(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑൧

+𝐸௫ᇲ,ௗᇲ~(௫ᇲ,ௗᇲ) ቂ൫𝐷(𝑥ᇱ)൯
ଶ

∙ 𝑐𝑛𝑑ᇱቃ (19)

𝐿 = 𝐸
𝑥′,𝑐𝑛𝑑′~𝑃𝑔ቀ𝑥′,𝑐𝑛𝑑′

ቁ
ቂ൫𝐷൫𝑥′൯ − 1൯

ଶ
∙ 𝑐𝑛𝑑ᇱቃ (20)

 In AC-GAN, GAN A that trains condition A also

generates data with condition not-A as well as

data with condition A.

 However, in CA-GAN, since GAN A, training

with condition A, does not care about condition

not-A, a new GAN training condition not-A

must be added to train condition not-A.

BaldBlond
Hair

Black
Hair Male

SigmoidSoftmax

Real/
Fake

Linear

Hidden Layers

Fig5. Example of AC-GAN discriminator output

part

BaldBlond
Hair

Black
Hair Male

Hidden Layers

Latent Vector

Fig6. Example of AC-GAN generator input part

BaldBlond
Hair

Black
Hair Male Female

LinearLinear Linear Linear Linear

Hidden Layers

Fig7. Example of CA-GAN discriminator output

part

BaldBlond
Hair

Black
Hair Male Female

Hidden Layers

Latent Vector

Fig8. Example of CA-GAN generator input part

(Assume 𝑃(𝐵𝑙𝑎𝑐𝑘 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) +

𝑃(𝐵𝑎𝑙𝑑) = 1, 𝑃(𝑀𝑎𝑙𝑒) + 𝑃(𝐹𝑒𝑚𝑎𝑙𝑒) = 1)

 In CA-GAN, since each GAN can be trained

through advanced adversarial loss that

generates meaningful gradients even if the real

data distribution and the generated data

distribution are different, meaningful gradients

are generated even at the beginning of the

training.

 Also, unlike AC-GAN's use of two losses

(adversarial loss, classification loss), CA-GAN

uses only one loss (conditional activation loss),

so there is no need to find the proper ratio of

adversarial loss and classification loss. This

means that it takes less time to search for an

important hyperparameter: the ratio of

adversarial loss and classification loss.

4. Mixed batch training

 In conditional GANs, training by applying

batch normalization to the discriminator may

induce the generator to distort the input

condition distribution.

 When batch normalization is applied to the

discriminator and the target condition

distribution used for training is different from

the real data condition distribution, the

discriminator may use the batch condition

distribution for real/fake discrimination, which

leads generated data condition distribution to

follow real data condition distribution. To

prevent the generator from ignoring the input

target condition distribution, we suggest mixed

batch training.

 Mixed batch training is configuring each batch

for discriminator always to have the same ratio

of real data and generated data so that each

batch always has the same condition

distribution. Since each training batch is always

configured to keep the same condition

distribution, the discriminator will not

discriminate real/fake by condition distribution,

and the generator will not attempt to follow the

real data condition distribution.

However, if mixed batch training is applied at

the beginning of training, for the discriminator

to discriminate the generated data from the

original data in the batch is arbitrary and the

training does hardly proceed. Therefore, the

mixed batch training should be applied after

some training has been done to improve the

performance of conditional GANs.

5. Material and methods

 In this experiment, we used dataset of the

MNIST handwriting number dataset [15]. The

dataset has 60000 training images and 10000

test images with an image resolution of

28 × 28 pixels, and the channel size is 1.

 The basic design of DCGAN [16] with instance

normalization is used for the model architecture.

The generator receives a 10-dimensional

condition vector and a 256-dimensional latent

vector that follows a Gaussian distribution.

While AC-GAN uses all 11 outputs of the

discriminator, CA-GAN uses only 10 outputs.

Adversarial loss of LSGAN was used for both

AC-GAN and CA-GAN. Adam

optimizer (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10ିହ) [17],

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32, 𝑒𝑝𝑜𝑐ℎ = 50 were used for all

experiments. 𝜆௦ for AC-GAN is 0.1, which is

the best hyperparameter for AC-GAN we found.

For the implementation, tensorflow2.0 is used

[18].

 For the evaluation of the proposed network,

an average of Fréchet Inception Distance (FID)

[19] over all conditions is used.

All the experiments were conducted three times

and the result of three experiments are

averaged.

 The size of the generated data set is the same

as the size of each test dataset in evaluation.

 In all generated pictures below, each row has

the same latent vector, and each column has

the same condition.

6. Experimental Results and Discussion

6.1 AC-GAN

 We compared the performance of modified

AC-GAN with or without 𝐿௦
 in discriminator

loss when the adversarial loss exists.

Fig. 9 Effect of 𝐿௦
 in modified AC-GAN

performance

 In Fig. 9, the blue graph shows the average

FID of modified AC-GAN with 𝐿ௗ = 𝐿ௗ௩
ௗ +

𝜆௦൫𝐿௦
 + 𝐿௦

 ൯, 𝜆௦ = 0.1 and the orange graph

shows the average FID of modified AC-GAN

with 𝐿ௗ = 𝐿ௗ௩
ௗ + 𝜆௦𝐿௦

 , 𝜆௦ = 0.1 . As the

graph shows, the performance of the network

without 𝐿௦
 is better.

 The next experiment is to compare the

performance when the adversarial loss weight

and classification loss weight are different in

modified AC-GAN.

Fig. 10 modified AC-GAN performance

comparison with different weight of adversarial

loss and classification loss

 Fig. 10 shows the FID when the classification

loss weight 𝜆௦ varies from 0.01 to 10.0, with

the adversarial loss weight fixed to 1.0. The

changes in training speed and the quality of the

results as the ratio of the adversarial loss weight

and the classification loss weight changes can

be easily seen through this graph.

6.2 CA-GAN

 We compared proposed CA-GAN with

modified AC-GAN.

Fig. 11 Performance comparison of modified

AC-GAN vs CA-GAN

Fig. 11 shows that the performance of CA-GAN

is similar to that of the modified AC-GAN when

we use a good hyperparameter (𝜆௦).

6.3 Mixed batch training

 In the original MNIST handwriting number

training dataset, the number of images for each

number is almost the same. For the experiment,

we intentionally used a dataset consisting of

5500 of number 0 and 500 of other numbers

1~9 each from the MNIST handwriting number

training dataset, to create an unbalanced

dataset. The number 0 in the dataset occupies

55% of the total 10000 data, and the remaining

numbers 1~9 accounts for 5% each.

 We applied batch normalization in the

discriminator instead of instance normalization

in this experiment.

 After training conditional GANs by 100

epoches without mixed batch training, we

compared the performance of conditional

GANs with mixed batch training and without

mixed batch training for additional 50 epoches.

Fig.12 and Fig.13 show the data generated by

modified AC-GAN and CA-GAN trained for 100

epoches without mixed batch training,

respectively. The generated data clearly show

that that both modified AC-GAN and CA-GAN

ignore conditional vectors and generate a lot of

number zeros following the distribution of the

original training data.

Fig.12 Data generated by modified AC-GAN

after 100 epoch without mixed batch training

Fig.13 Data generated by CA-GAN after 100

epoch without mixed batch training

Fig. 14 and Fig. 15 show the data generated by

the modified AC-GAN after additional 50

epoches without mixed batch training and with

mixed batch training, respectively. Fig. 16 shows

performance comparison of these two cases

based on FID measure. These figures clearly

shows the effectiveness of mixed batch training

in modified AC-GAN.

Fig.14 Data generated by AC-GAN after

additional 50 epoch without mixed batch

training

Fig.15 Data generated by AC-GAN after

additional 50 epoch with mixed batch training

Fig.16 Mixed batch training performance

comparison for modified AC-GAN

Fig. 17 and Fig. 18 show the data generated by

CA-GAN after additional 50 epoches without

mixed batch training and with mixed batch

training, respectively. Fig. 19 shows the

performance comparison of these two cases

based on FID measure.

Fig.17 Data generated by CA-GAN after

additional 50 epoch without mixed batch

training

Fig.18 Data generated by CA-GAN after

additional 50 epoch with mixed batch training

Fig.19 Mixed batch training performance

comparison for CA-GAN

These results shown in Figues from 14 to 19

clearly show that the performance of mixed

batch training is better than not using it when

an additional 50 epoches of training is

performed in both modified AC-GAN and CA-

GAN after being trained without mixed batch

for 100 epoches.

In particular, Fig.15 and 18 show that mixed

batch training in conditional GANs can prevent

the conditional vector being ignored.

7. Conclusion

 In this paper, we tried to interpret AC-GAN as

a set of GANs and explained why generated

data classification loss of discriminator loss in

AC-GAN interferes with training and confirmed

this theory through the experiments.

 Based on this interpretation, we proposed a

novel approach of GAN, called Conditional

Activation GAN(CA-GAN). CA-GAN can be

interpreted as an integration of GANs in which

each individual GAN trains only one condition.

Unlike modified AC-GAN, CA-GAN generates a

meaningful gradient even at the beginning of

the training, so that the training speed is fast,

as shown in the experiments.

 CA-GAN is expected to be used as a

replacement for modified AC-GAN in many

GAN applications because it has fewer

hyperparameters and trains faster than

modified AC-GAN, while it is compatible with

AC-GAN.

We also predicted that the discriminator with

batch normalization might use batch condition

distribution to discriminate real/fake, which

would cause performance degradation, in

conditional GAN.

 To prevent this degradation, we proposed

mixed batch training. The mixed batch training

is configuring each batch for discriminator with

the same ratio of real data and generated data

so that each batch always has the same

condition distribution. Through experiments,

the performance improvement of conditional

GANs: modified AC-GAN and CA-GAN, due to

mixed batch training is confirmed.

Mixed batch training is expected to help train

conditional GANs using batch normalization for

discriminators.

In conclusion, CA-GAN, which we propose in

this paper, provides better performance than

AC-GAN in terms of training speed and

hyperparameter search. The mixed batch

training also improves performance of

somewhat trained conditional GAN by inducing

healthy competition between generator and

discriminator.

8. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

9. References

[1] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[2] Goodfellow, Ian and Pouget-Abadie, Jean

and Mirza, Mehdi and Xu, Bing and Warde-

Farley, David and Ozair, Sherjil and Courville,

Aaron and Bengio, Yoshua

Generative Adversarial Nets

Advances in Neural Information Processing

Systems 27 (NIPS), 2014, pp. 2672-2680

https://papers.nips.cc/paper/5423-generative-

adversarial-nets

[3] Takuhiro Kaneko, Kaoru Hiramatsu, Kunio

Kashino

Generative Attribute Controller With

Conditional Filtered Generative Adversarial

Networks

The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 6089-

6098

http://openaccess.thecvf.com/content_cvpr_201

7/html/Kaneko_Generative_Attribute_Controller

_CVPR_2017_paper.html

[4] Chen, Xi and Duan, Yan and Houthooft, Rein

and Schulman, John and Sutskever, Ilya and

Abbeel, Pieter

InfoGAN: Interpretable Representation Learning

by Information Maximizing Generative

Adversarial Nets

Advances in Neural Information Processing

Systems 29 (NIPS), 2016, pp. 2172-2180

http://papers.nips.cc/paper/6399-infogan-

interpretable-representation

[5] Augustus Odena, Christopher Olah,

Christopher Olah, Jonathon B Shlens, Jonathon

Shlens

Conditional image synthesis with auxiliary

classifier GANs

ICML'17: Proceedings of the 34th International

Conference on Machine Learning – Volume 70,

2017, pp. 2642-2651

https://dl.acm.org/doi/10.5555/3305890.33059

54

[6] L. Zhang, Y. Ji, X. Lin and C. Liu

Style Transfer for Anime Sketches with

Enhanced Residual U-net and Auxiliary

Classifier GAN

2017 4th IAPR Asian Conference on Pattern

Recognition (ACPR), Nanjing, 2017, pp. 506-511.

https://ieeexplore.ieee.org/abstract/document/

8575875

[7] X. Xia, R. Togneri, F. Sohel and D. Huang

Auxiliary Classifier Generative Adversarial

Network With Soft Labels in Imbalanced

Acoustic Event Detection

IEEE Transactions on Multimedia, vol. 21, no. 6,

pp. 1359-1371, June 2019.

https://ieeexplore.ieee.org/document/8523637

[8] Prasanna Sattigeri, Samuel C. Hoffman, Vijil

Chenthamarakshan, Kush R. Varshney

Gated-GAN: Adversarial Gated Networks for

Multi-Collection Style Transfer

IEEE Transactions on Image Processing, vol. 28,

no. 2, pp. 546-560, Feb. 2019.

https://ieeexplore.ieee.org/abstract/document/

8463508

[9] Maayan Frid-Adar, Idit Diamant, Eyal Klang,

Michal Amitai, Jacob Goldberger, Hayit

Greenspan

GAN-based synthetic medical image

augmentation for increased CNN performance

in liver lesion classification

Neurocomputing, Volume 321, 2018, Pages

321-331, ISSN 0925-2312,

https://www.sciencedirect.com/science/article/a

bs/pii/S0925231218310749

[10] Z. He, W. Zuo, M. Kan, S. Shan and X. Chen

AttGAN: Facial Attribute Editing by Only

Changing What You Want

IEEE Transactions on Image Processing, vol. 28,

no. 11, pp. 5464-5478, Nov. 2019.

https://ieeexplore.ieee.org/document/8718508

[11] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 8789-

8797

http://openaccess.thecvf.com/content_cvpr_201

8/html/Choi_StarGAN_Unified_Generative_CVP

R_2018_paper.html

[12] Xudong Mao, Qing Li, Haoran Xie,

Raymond Y.K. Lau, Zhen Wang, Stephen Paul

Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2794-2802

https://ieeexplore.ieee.org/document/8237566

[13] Gulrajani, Ishaan and Ahmed, Faruk and

Arjovsky, Martin and Dumoulin, Vincent and

Courville, Aaron C

Improved Training of Wasserstein GANs

Advances in Neural Information Processing

Systems 30 (NIPS), 2017, pp. 5767-5777

http://papers.nips.cc/paper/7159-improved-

training-of-wasserstein-gans

[14] Sergey Ioffe, Christian Szegedy

Batch Normalization: Accelerating Deep

Network Training by Reducing Internal

Covariate Shift

Proceedings of the 32nd International

Conference on Machine Learning, PMLR

37:448-456, 2015.

http://proceedings.mlr.press/v37/ioffe15.html

[dataset][15] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[16] Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

arXiv preprint arXiv:1511.06434v2 [cs.LG], 2015

https://arxiv.org/abs/1511.06434 (accessed 16

February 2020)

[17] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

arXiv preprint arXiv:1412.6980v9 [cs.LG], 2014

https://arxiv.org/abs/1412.6980 (accessed 16

February 2020)

[18] tensorflow 2.0

http://www.tensorflow.org (accessed 16

February 2020)

[19] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium

Advances in Neural Information Processing

Systems 30 (NIPS), 2017, pp. 6626-6637

http://papers.nips.cc/paper/7240-gans-trained-

by-a-two-t

