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Abstract 

This manuscript identifies the cause of gravity. Based on this cause the gravitational force is 

quantified. This leads to a correction of Newton’s gravitational equation for the (very) short 

distance: instead of an ever growing strength –up to infinity when the distance between two 

objects approaches 0- we will actually find a finite repelling force instead.  

This manuscript concludes with 2 case studies that support the here presented outcome for 

gravity, and with a third case study that may allow verification. 

The reason why gravity puzzled scientists is found in the S.I. system. This system imposes a 

framework for describinhg and analyzing nature/physics. However, it is -historically- based 

on observing human perceptions and has its flaws. For this reason this manuscript starts with 

pinpointing these flaws, and comes up with a more transparent alternative. Thereby no more 

than two physical properties are introduced: content and whereabouts.       

Keywords: Physics, Gravity 

1. Units of Measurement 

Physics describes nature in terms of units of measurement. 

These are typically based on the ‘International System’, 

abbreviated as ‘S.I’. However, the S.I. is not ‘normalized’. 

This which complicates physics.  

For example in defining mass as base unit, one would 

presume that simple mathematical rules would apply to it, 

such as: the total mass of two objects m1 and m2 equals 

m1+m2. However, e.g. the mass of an iron is about 1% less 

than the total mass of its constituents: protons, neutrons and 

electrons. Also, when heating up a piece of iron, we increase 

its mass. 

These examples demonstrate that mass depends on other 

physical properties. This would not be so if mass were an 

independent property. More in general: if the S.I. were 

normalized.  

Using the S.I. does not lead to false results as long as we 

are aware of the mutual dependencies between physical 

properties. Nevertheless: these dependencies complicate 

physics. 

To avoid this, we will develop a normalized system of 

units of measurement by introducing no more than two 

alternate physical properties. Our system thereby is not 

complete, but it is adequate for the purpose at hand: 

explaining gravity. 

As will be discussed in the following, analysing orbiting 

systems gives us a good starting point. 

a) Orbiting systems stretch distances and 

slow time. 

We envision an object ‘A’ that is propagating forward in 

an otherwise empty space. At some point the object is 

suddenly attached to the end of a stretched rope whereof the 

other end is tightly connected to some fixed point ‘X’ in 

space. This forces ‘A’ into a circular orbit: 

 
Fig.1.1: Object ‘A’ is forced into a circular orbit. 

 

A

Rope
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The now imposed orbiting causes an orbiting frequency 

‘𝜐’ which did not exist before. Regardless the nature of 

object ‘A’, per Planck’s equation 𝐸 = ℎ. 𝜐 this frequency is 

to be associated with a gain in embedded energy. We will 

refer to this as a gain in content, here specifically: ‘Planck 

content’ since Planck’s equation quantifies it. (The term 

content will be addressed later). Where did that ‘Planck 

content’ come from? How is the conservation principle 

obeyed?  

To answer these questions we analyse two equal point 

objects ‘A’ and ‘B’, keeping each other in a gravitational 

orbit around their centre of gravity ‘X’. We position 

ourselves at some remote point on the axis of the orbiting 

system, thereby observing: 

  
Fig. 1.2: equal objects ‘A’ and ‘B’ orbiting (clockwise) 

around their shared centre of gravity ‘X’. 

  

Next we decide to measure the distance between object 

‘A’ and object ‘B’.  

Distance measuring is a personal effort (the method is 

consistent within the S.I.): one uses a local clock (a clock that 

one holds in his hands) and the velocity of light c (in 

vacuum). One measures 𝛥𝑡𝑙𝑜𝑐𝑎𝑙  as the time needed for light 

to travel that distance (through vacuum). With c being a 

universal natural constant, this unambiguously delivers the 

distance: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝛥𝑡𝑙𝑜𝑐𝑎𝑙 . 𝑐    (1.1) 

 

Since we are at a remote position, we ask a person 

residing on object ‘A’ to measure his distance to object ‘B’ 

for us. We will name the result ‘LOD’ (the Locally Observed 

Distance): 

 

𝐿𝑂𝐷 = 𝛥𝑡𝑙𝑜𝑐𝑎𝑙 . 𝑐    (1.2) 

 

Thereby, due to the orbiting, object ‘B’ isn’t where it is 

seen. As the Moon isn’t where we see it from Earth. We see 

the Moon where it resided about 1.3 seconds ago because the 

distance between Earth and Moon is about 400,000 km, and 

the velocity of light is about 300,000 km/s. During those 1.3 

seconds the Moon has progressed in its orbit. 

We review the situation from the perspective of our 

remote observation location on the orbit axis. We define the 

‘ROD’ as the Remotely Observed Distance between objects 

‘A’ and ‘B’. The ROD is the distance as we see it. That is: 

the diameter of the orbit as shown in figure (1.2). 

The following figure illustrates the 

challenge:      

 

      

Fig.1.3: the Remotely Observed Distance ‘ROD’ and 

Locally Observed Distance ‘LOD’ 

 

Location ‘C’ is the anticipated location where object ‘B’ 

(from our remote perspective) will reside by the time a light 

flash as sent by our helper on location ‘A’ will arrive at ‘B’.  

The line ‘LOD’ therefore represents the direction as well 

as the path that light will follow from the perspective of our 

remote observation point.  

As figure (1.3) shows: 

 

𝐿𝑂𝐷 < 𝑅𝑂𝐷       

 

The difference between LOD and ROD depends on the 

orbit velocity vorbit .We use the following figure: 

   
Fig. 1.4: LOD/ROD. 

 

Given an orbit velocity vorbit, angle BXC (which equals 

2.α) is calculated as: 

 

2. 𝛼 =  
vorbit. 𝑅𝑂𝐷/𝑐

𝜋. 𝑅𝑂𝐷
 × 2. 𝜋 =  

2. vorbit

𝑐
 (𝑟𝑎𝑑𝑖𝑎𝑙𝑠) 

 

Thus: 

BA

BA

C

ROD

BA

C

RODα α
α

D
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𝛼 =  
vorbit

𝑐
 (𝑟𝑎𝑑𝑖𝑎𝑙𝑠) 

 

Figure 1.4 shows: 

 
𝐿𝑂𝐷

𝑅𝑂𝐷
=  cos(α) =  cos (

vorbit

𝑐
)    

 

Or: 

 

𝐿𝑂𝐷 = 𝑅𝑂𝐷 ×  cos (
vorbit

𝑐
)   (1.3) 

 

Note that the ratio LOD/ROD does not depend on the 

diameter of the orbit. 

With different line lengths for ROD and LOD in above 

figure, the question comes up what the ‘real’ distance 

between object ‘A’ and ‘B’ will be. 

Relative to both observers, the region of the orbiting 

system is not moving. Therefore -per Theory of Relativity- 

they must find an equal value for the orbiting system’s 

embedded content, thus for the aforementioned orbiting 

induced ‘Planck content’. This implicitly demands that both 

observers must find the same orbiting frequency when 

applying Planck’s equation 𝐸 = ℎ. 𝜐. The latter demand can 

only be met when time stretches proportionally to distance.  

Therefore, when seen from our remote position (from 

where we see the longer distance ROD between ‘A’ and ‘B’), 

we must require the clock at the orbiting system to appear 

running at a proportionally slower pace. Equation (1.3) 

therefore not only specifies distance stretching, but also time 

stretching:  

 

𝑇𝑖𝑚𝑒𝐿𝑜𝑐𝑎𝑙 = 𝑇𝑖𝑚𝑒𝑅𝑒𝑚𝑜𝑡𝑒 × 𝑐os (
vorbit

𝑐
)  (1.4) 

 

Thus the local observer on ‘A’ as well as the remote 

observer will find that the time it takes light to travel the 

distance from ‘A’ to ‘B’ is equal between them. And when 

both observers multiply this time with light velocity ‘c’, they 

therefore will come up with an equal value for the distance 

between ‘A’ and ‘B’.  

b) Whereabouts 

Given the proportional relationship between distance and 

time, these two apparently different physical properties can 

mutually be expressed in one another, and therefore both can 

be expressed by using one single unit of measurement. Or: in 

nature distance and time jointly specify one single physical 

property.  

To avoid confusion with existing terminology, we will 

give that property a unique name: whereabouts.  

And we give the unit of measurement thereof also a 

unique name: the Crenel (symbol C): 

The physical property whereabouts is 

measured in C(renel). 
 

 

Fig. (1.5): Memory aid: Crenels on top of a castle wall. 

Their shape can be associated with time and with distance. 

 

Distance and time then are different appearances of the 

property whereabouts. (We will later justify the term 

appearance, as opposed to the commonly used term 

dimension.) 

We can specify the property whereabouts by spanning a 

Cartesian frame of reference, e.g. by using 4 appearances: X, 

Y, Z and T (also known as ‘Minkowski spacetime’). By using 

a Cartesian frame we ensure that whereabouts appearance 

values (=coordinates) are normalized: a change in e.g. the X 

coordinate does not impact any of the other coordinates. 

These 4 coordinates then jointly define the whereabouts of 

an object. Should in some experiment all 4 coordinates be 

found equal between two objects, we have a collision. 

From a mathematical perspective there is no requirement 

with regards to the number of whereabouts appearances that 

span a whereabouts frame of reference, thus fully define the 

whereabouts property. Human visual observations are 

however restricted to a 3 dimensional spatial space, so in 

many cases that will do. 

c) Velocity 

Velocity is expressed in distance/time. Per the above 

distance and time were found two different appearances of 

one and the same physical property: whereabouts. Thus the 

ratio distance/time is dimensionless and thereby velocity is 

dimensionless.  

A measured velocity can therefore not be subject to e.g. 

the Theory of Relativity. This theory only makes dimensions 

relative. But dimensionless properties are not affected. Other 

examples thereof are π, e, and the bit, which also are 

dimensionless and therefore equal to all. 
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This explains why light velocity ‘c’ -as any other velocity- 

is found equal between all observers. 

d) Light velocity ‘c’ 

It is a practical choice to then set a numerical value of 1 to 

light velocity ‘c’. Therefore we now define: 

𝒄 = 𝟏 
 

In doing so, velocity ranges from 0 to 1.  

e) Content 

The finding that velocity is a dimensionless property 

shines light on Einstein’s equation: 𝐸 = 𝑚. 𝑐2. With velocity 

‘c’ being dimensionless, ‘E’ and ‘m’ in this equation must be 

of same dimension and therefore both represent a shared -

more fundamental- physical property underneath.  

Again, to avoid confusion in terminology, we give that 

property a unique name: content (which term we already 

used on page 2). And we will give the unit of measurement 

thereof also a unique name: the Package (symbol P). 

 

The physical property content is measured in 

P(ackages). 
 

Energy and mass are two different appearances of the 

property content. (As said: we will later justify the term 

appearance, as opposed to the commonly used term 

dimension.) 

At this point we have completed the introduction of 

alternate physical properties 

f) Planck’s constant ‘h’  

In Planck’s equation: 

𝐸 = ℎ. 𝜐  

Energy ‘E’ is expressed in Packages.  

In the S.I. frequency ‘υ’ is expressed in seconds
-1

. The 

counterpart for seconds
-1 

is Crenel
-1

. Thus, in our system of 

units of measurement we find for Planck’s constant ‘h’: 

𝒉 = 𝟏 𝑪. 𝑷 

g) Gravitational constant ‘G’ 

Within the S.I. acceleration is expressed in m/s
2
. In our 

system acceleration therefore is to be expressed in C/C
2
 or  

C
-1

. Using Newton’s equation 𝐹 = 𝑚. 𝑎 we find that force is 

to be expressed in P/C. 

When we substitute the new units of measurement into 

Newton’s gravitational equation: 

𝐹 = 𝐺.
𝑀1. 𝑀2

𝑑2
 

We find for the Gravitational constant G: 

𝑮 ≡ 𝟏 
𝑪

𝑷
 

h) Conversion factors (Planck Units)  

With three natural constants c, G and h now being defined, 

we can explore the following three forthcoming equations: 

For light velocity c: 

1 (dimensionless) = c (m.s
-1

)    (1.5) 

For Planck’s constant h: 

1 P.C = ℎ (N.m.s)     (1.6) 

For the gravitational constant G: 

1 C.P
-1

 = G (N.m
2
.kg

-2
)          (1.7) 

 

The left side in these three equations expresses the 

universal natural constants (c, h and G respectively) in the 

newly defined fundamental units of measurement Crenel and 

Package, whereas the right side expresses these per the S.I.. 

Using 3 preparation steps, we can extract P and C, and 

express these in S.I. units of measurement as follows: 

 

Preparation step 1: 

Equation (1.5) can be rewritten as: 1 (𝑠) = 𝑐 (𝑚). 

  

Preparation step 2: 

Based on the above, in equation (1.6), ‘s’ can be replaced by 

c meter.  

This results in: 

1.P.C = ℎ.c (N.m
2
)               (1.8) 

 

Preparation step 3: 

Based on Einstein’s 𝐸 = 𝑚. 𝑐2 1 kg is equal to c
2
 Joule or c

2
 

(N.m). In equation (1.7) the kg
-2

 can therefore be replaced by 

c
-4

 (N
-2

.m
-2

): 

1 C.P
-1

 = G.c
-4

 (N.m
2
.N

-2
m

-2
) = G.c

-4
 (N

-1
)  (1.9) 

 

We divide equation (1.8) by equation (1.9): 

𝑃2 =  
ℎ. 𝑐5 

𝐺
 (𝑁2. 𝑚2) =  

ℎ. 𝑐5 

𝐺
 (𝐽𝑜𝑢𝑙𝑒2) 

Or: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √𝒉.𝒄𝟓

𝑮
 (𝑱𝒐𝒖𝒍𝒆𝒔)   (1.10) 

   =4.9033x10
9
 J 

 

From here onwards some other conversion factors can be 

derived. Because 1 Joule equals c
-2

 kg: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √
𝒉.𝒄

𝑮
  (𝒌𝒊𝒍𝒐𝒈𝒓𝒂𝒎𝒔)  (1.11) 

   =5.4557x10
-8

 kg 
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Based on Planck’s 𝐸 =  ℎ. 𝜐, equation (1.10) can likewise 

be converted to frequency (in seconds
-1

): 

1 𝑃𝑎𝑐𝑘𝑎𝑔𝑒 =  √
ℎ. 𝑐5

𝐺
 × 

1

ℎ
 (𝑠−1) =  √

𝑐5

ℎ. 𝐺
 (𝑠−1 ) 

or: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √ 𝒄𝟓

𝒉.𝑮
 (𝑯𝒆𝒓𝒕𝒛)     (1.12) 

=7.4001x10
42

 Hz 

 

Equation (1.12) delivers frequency as the third 

appearance in the content arena, besides the already defined 

appearances mass and energy. 

 

The step from the content arena towards the whereabouts 

arena is found by multiplying equation (1.8) with equation 

(1.9): 

𝐶2 =
ℎ. 𝐺

𝑐3
 (𝑚𝑒𝑡𝑒𝑟2) 

Or: 

 

𝟏 𝑪𝒓𝒆𝒏𝒆𝒍 =  √
𝒉.𝑮

𝒄𝟑  (𝒎𝒆𝒕𝒆𝒓)   (1.13) 

   =4.0512x10
-35

m 

 

And, because one meter corresponds to c
-1

 seconds: 

 

𝟏 𝑪𝒓𝒆𝒏𝒆𝒍 =  √
𝒉.𝑮

𝒄𝟓  (𝒔𝒆𝒄𝒐𝒏𝒅𝒔)   (1.14) 

   =1.3513x10
-43

s 

 

Our limited system of only two physical properties -

content (in Packages) and whereabouts (in Crenel)- thus 

delivered a set of yardsticks for energy, mass  and frequency 

in the content arena, and time, distance in the whereabouts 

arena.  

These yardsticks are consistent with the historically 

known ‘Planck units’, albeit that the above equations hold 

Planck’s constant ‘h’, whereas the ‘Planck units’ hold the 

reduced Planck constant ‘h/2.’ (‘ℏ’). Had for Planck’s 

equation E = ℎ. 𝜐 the alternate and equally valid version 

E = ℏ𝜔 been used in the above, this would have resulted in 

full consistency with the ‘Planck units’.  

 

When we now express an object’s content in Packages, 

the numerical value thereof will be found equal regardless 

one expresses this in the mass, the energy or the frequency 

appearance. For example: the content of an electron equals 

1.6697x10−23 Packages, regardless one is measuring or 

expressing this as mass, as energy, or as frequency. This 

feature of numerical equality justifies our usage of the term 

‘appearance’ of content, rather than ‘dimension’ of content. 

One can freely swap between appearances without numerical 

impact. In comparison, in the S.I. for example one kg of mass 

does not equal 1 Joule of energy or 1 Hertz. 

 

With c being normalized to the dimensionless 1, within 

our system of units of measurement we can simplify the 

found conversion factors: 

𝟏 𝑷 =  √
𝒉

𝑮
    Energy appearance  (1.15) 

𝟏 𝑷 =  √
𝒉

𝑮
    Mass appearance  (1.16) 

𝟏 𝑷 =  √
𝟏

𝒉.𝑮
   Frequency appearance   (1.17) 

𝟏 𝑪 =  √𝒉. 𝑮   Distance appearance  (1.18) 

𝟏 𝑪 =  √𝒉. 𝑮   Time appearance  (1.19) 

 

Equation (1.17) is of key relevance: it shows how content 

(in Packages) can appear as frequency, which is expressed in 

Crenel
-1

, that is: in the inverse of whereabouts.  

This conversion option implies that the two base physical 

properties content and whereabouts are related to one 

another. And thus these properties are not necessarily 

normalized. We need to explore that. 

i) Normalization 

For that, we start with reviewing the mathematical (and 

thus universal) steps to convert content into whereabouts: 

 

1. INVERT the conversion factor for content (per 

either equation (1.15) or (1.16)).  

This results in: 

 √
𝐺

ℎ
 

2. MULTIPLY the result with Planck’s constant 

‘h’. This results in: 

√ℎ. 𝐺 
which matches equations (1.18) and (1.19). 

 

The exact same steps can be used to reconvert 

whereabouts into content:  

 

1. INVERT the conversion factor for whereabouts 

(per either equation (1.18) or (1.19).  

This results in: 

 √
1

ℎ.𝐺
 

2. MULTIPLY the result with Planck’s constant 

‘h’. This results in: 

 √
ℎ

𝐺
  

which matches equations (1.15) and (1.16). 
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The equality between the conversion and reconversion 

steps is remarkable. The failsafe approach to reconvert to the 

original is to undo each conversion step in reverse order. In 

this case however, each of the following statements hold 

true: 

a. Applying the conversion procedure twice results 

in the original value, regardless of whether one 

starts with the Package or with the Crenel. 

b.  Applying the conversion procedure twice has the 

same impact as a multiplication with 

dimensionless 1.  

From a mathematical perspective it is exclusively the 

‘multiplicative inverse’ operation which has this property. 

We apply this mathematical insight to the above two equal 

conversion procedures. Mathematics says that: 

 

Content (in Packages) is equal to  

inverted whereabouts (in Crenel) 

 

And vice versa: 

 

Whereabouts (in Crenel) is equal to  

inverted content (in Packages) 

 

However, the conversion/reconversion procedure that we 

found consists of two mathematical steps rather than one 

single step. This does not contradict the above mathematical 

conclusion. To verify this, we take a closer look at the 

second step of the procedure. 

Given the above mathematical perspective that the 

Package and Crenel are found reciprocal, their product C.P 

must equal a dimensionless 1. This implies that Planck’s 

constant: 

 

𝒉 = 𝟏 𝑪. 𝑷 ≡ 𝟏  

 

Within our model Planck’s constant h (mathematically) 

therefore equals the dimensionless 1, and a multiplication 

with Planck’s constant (step 2 of the procedure) has no 

mathematical impact on the outcome. Yet we found that such 

multiplication nevertheless results in a physical property 

swap between Crenel and Package.  

This gives a deeper insight into the conversion procedure. 

From a mathematical perspective, the first step (the inversion 

step) is the swap between Crenel and Package. The second 

step (multiply with Planck’s constant ‘h’) only ensures that 

this swap is processed dimensionally without impacting the 

result. After all, from a mathematical perspective this second 

step is indeed no more than a multiplication by 1.  

Planck’s constant is the ‘inner product’ (also referred to as 

‘scalar product’) ‘P.C’ of the two physical properties ‘P’ and 

‘C’ respectively. This inner product ‘P.C’ must equal 

dimensionless 1. If not, the sequential applying of the 

conversion and reconversion procedures would not result in 

the original result, as demanded by mathematical rules. From 

a physical perspective it would violate the conservation 

principle should the original result not materialize.  

The inner product of ‘P(ackage)’ and ‘C(renel)’ being 

equal to dimensionless 1 implies that these properties are 

perpendicular (independent) relative to one another. 

 

In conclusion: 

The currently defined system of units of measurement 

with two fundamental physical properties (content and 

whereabouts) is indeed normalized.  

 

j) The conservation principle’s bottom 

line. 

By revealing that content (in Packages) is inverted 

whereabouts (in Crenel), and vice versa, our model gives the 

deepest view on the conservation principle. 

 

The exchange rate between whereabouts and content can 

be found by rewriting the definition of the gravitational 

constant G=1 C/P as: 

 

𝐶 = 𝐺 × 𝑃     (1.20) 

 

Or: whereabouts (in Crenel) equals the gravitational 

constant (G) multiplied with content (in Packages). This 

finding is our first glimpse of the physical meaning of the 

gravitational constant G. 
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2. Gravity. 

We found why at orbiting systems distances appear 

stretched when remotely observed (see equation (1.3)). And 

we concluded that -based on the conservation principle- time 

must appear to run proportionally slower (see equation (1.4)).  

Thus at the orbiting system we see an apparent widening 

of whereabouts gridlines relative to these same gridlines in 

empty deep space, and also relative to our own Cartesian 

frame of reference. Apparently whereabouts embed a 

physical property that can be compared to e.g. a pressure in 

the Earth’s atmosphere. In this comparison we would 

describe the widening of gridlines as a whereabouts 

depression at the orbiting system.  

And as air moves from high pressure regions to low 

pressure regions whereby the (local) gradient in air pressure 

is the driving force, we can explain the gravitational force in 

that content will be likewise pulled towards a whereabouts 

depression, whereby the driving force is the gradient in the 

widening of gridlines. 

At the same time, we associated orbiting systems with 

‘Planck content’.  

If now we hypothesize that the orbiting objects had zero 

content prior to the start of the orbiting so that there is no 

bias to take into account, and that thus all embedded  content 

is orbiting induced ‘Planck content’, we have a case to test 

this hypothesis for its consistency and outcome. 

a) A Photon’s Path curving 

In the previous paragraph we found that we see orbiting 

systems magnified: 

𝐿𝑂𝐷 = 𝑅𝑂𝐷 ×  cos (
vorbit

𝑐
)   (2.1) 

Although we see the photon incoming from an orbit with 

diameter ROD, within our own Cartesian frame of reference 

we must reckon that it was locally emitted from an orbit with 

the shorter diameter LOD. 

The difference between ROD and LOD tells us how the 

photon changed course within our own Cartesian frame of 

reference. We will name the angle of the course change dα.  

Within our Cartesian frame of reference, this angle dα 

equals the total curving of the photon’s path, which curving 

implicitly equals the total curving of the whereabouts 

gridline which connects the reckoned local emission point to 

our remote observation point.  

We use the following figure to calculate aforementioned 

angle dα. As the figure makes clear, this angle depends on 

the distance x towards the centre of the orbiting system: 

 
Fig. 2.1: photon course change dα. 
 

In figure (2.1): 

 Angle α(ROD) is the angle relative to the orbit 

axis, at which we actually see the photon 

incoming.  

 Angle α(LOD) is the angle towards the reckoned 

emission point. 

 Angle dα is the difference between both.  

 
We define RR as the remotely observed orbit radius: 

RR =ROD/2     (2.2) 

And we define RL as the locally observed orbit radius: 

RL =LOD/2     (2.3) 

The tangent of α(ROD) then equals: 

tan(𝛼𝑅𝑂𝐷) =  
𝑅𝑅

𝑥
     (2.4) 

And the tangent of α(LOD) equals: 

tan(𝛼𝐿𝑂𝐷) =  
𝑅𝐿

𝑥
     (2.5) 

Per equation (2.1): 𝐿𝑂𝐷 =  cos (
v𝑜𝑟𝑏𝑖𝑡

𝑐
) . 𝑅𝑂𝐷         

Or: 
𝐿𝑂𝐷

2
 =  cos (

v𝑜𝑟𝑏𝑖𝑡

𝑐
) .

𝑅𝑂𝐷

2
         

Or: 𝑅𝐿  =  cos (
v𝑜𝑟𝑏𝑖𝑡

𝑐
) . 𝑅𝑅         

We substitute this in equation (2.5): 

tan(𝛼𝐿𝑂𝐷) =  
cos(

v𝑜𝑟𝑏𝑖𝑡
𝑐

).𝑅𝑅

𝑥
   (2.6) 

The angle dα equals: 

𝑑𝛼 = 𝑡𝑎𝑛−1 {
𝑅𝑅

𝑥
} − 𝑡𝑎𝑛−1 {

cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
).𝑅𝑅

𝑥
}  (2.7) 

This equation can be normalized by expressing distance x 

in number of RR’s. This makes RR the new measure for 

distance. To achieve this, we define a new distance unit of 

measurement named xR, whereby xR=x/RR.  

 

Equation (2.7) then normalizes to: 

𝑑𝛼 = 𝑡𝑎𝑛−1 {
1

𝑥𝑅
} − 𝑡𝑎𝑛−1 {

cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)

𝑥𝑅
}   (2.8) 

  (xR expressed in orbit radiuses RR) 

 

Figure (2.3) shows dα per this equation as a function of 

distance 𝑥𝑅 from the orbit centre.  

dα
α(ROD)

α(LOD)

ROD

LOD

Distance 'x' 

X
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We thereby opted for the maximum possible orbit velocity 

case whereby vorbit=c.  

 

 
Fig. 2.2: dα as a function of distance 𝑥𝑅 (𝑥𝑅 expressed in 

number of RR’s from the orbit centre, whereby the orbit velocity vorbit=c). 

 

The gradient in whereabouts is quantified by the steepness 

and direction of the slope in the above shown curve of 𝑑𝛼. It 

equals:  

 

𝑑𝛼

𝑑𝑥𝑅
=

𝑥𝑅
2.(cos(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)−1)+(𝑐𝑜𝑠(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)−𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

))

𝑥𝑅
2.(𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)+1)+𝑥𝑅
4+𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)
   

(𝑥𝑅 expressed in remotely observed orbit radiuses RR) (2.9) 

 

The following figure embeds the value thereof, again 

based on the maximum possible orbit velocity case whereby 

vorbit=c: 

 

 

Figure 2.3: Gradient 
𝑑𝛼

𝑑𝑥𝑅
 

(as a function of distance xR expressed in RR’s, based on an orbit velocity 

vorbit=c). 

 

The whereabouts gradient curve 
𝑑𝛼

𝑑𝑥𝑅
 was previously 

identified as the cause of gravity, not necessarily 

representing the strength of the gravitational force. We will 

explore that later. Yet, at this point and based on above 

figure we find a change of sign at the point marked B (at 

either side of the orbiting centre).  

This indicates that at this point B the gravitational force 

changes from attracting towards repelling. 

 

This is a major finding. It explains why objects -when 

approaching the centre of orbiting induced content- will not 

gravitate under ever growing gravitational force, as would be 

the case per Newton’s gravitational equation. Instead, figure 

(2.3) shows a finite maximum repelling force at the content 

centre (that is: the centre of the orbiting system, the point 

marked C). 

 

The exact location of point B is found where the 

nominator in equation (2.9) equals 0: 

 

𝑥𝑅
2. (cos (

v𝑜𝑟𝑏𝑖𝑡

𝑐
) − 1) + (𝑐𝑜𝑠 (

v𝑜𝑟𝑏𝑖𝑡

𝑐
) − 𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡

𝑐
)) = 0 (2.10) 

 

Equation (2.10) gives the following two values for 

distance xR: 

 

𝑥𝑅 = ±
√−4.(cos(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)−1).(cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)−𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

))

2.(cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)−1)

 (2.11) 

 

b) Distance x. 

Rather than normalizing equation (2.7), we can also 

specify the gradient 
𝑑𝛼

𝑑𝑥
 thereof: 

 

𝑑𝛼

𝑑𝑥
=

𝑅𝑅.𝑥2.(cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)−1)+𝑅𝑅

3.(𝑐𝑜𝑠(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)−𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

))

𝑅𝑅
2.𝑥2.(𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)+1)+𝑥4+𝑅𝑅
4.𝑐𝑜𝑠2(

v𝑜𝑟𝑏𝑖𝑡
𝑐

)

      (2.12) 

 

For very large values of distance x as well as for very 

small values of RR, equation (2.12) is estimated by: 

 

𝑑𝛼

𝑑𝑥
≈ (1 − cos (

v𝑜𝑟𝑏𝑖𝑡

𝑐
)) ×

𝑅𝑂𝐷

𝑥2       (large x) (2.13) 

 

Per equation (2.1) the term ‘cos (
v𝑜𝑟𝑏𝑖𝑡

𝑐
)’ can be replaced 

by LOD/ROD: 

 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
≈ (1 −

𝐿𝑂𝐷

𝑅𝑂𝐷
) ×

𝑅𝑂𝐷

𝑥2   

 

Or: 

 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
≈ (𝑅𝑂𝐷 − 𝐿𝑂𝐷) ×

1

𝑥2 (2.14) 

 

In the above equation the term (ROD-LOD) reflects the 

amount of ‘fake’ whereabouts: from a remote perspective we 
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‘see’ an orbit diameter equal to the ROD, but we know that 

we see it stretched, as if looking through a magnifying glass. 

The difference (ROD-LOD), being ‘fake’ whereabouts, is 

to be interpreted as whereabouts that has been converted into 

content. Thereby, our model demands that one unit of 

whereabouts converts one-on-one into one unit of content.  

 

We can therefore write equation (2.14) as: 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
≈

𝐶𝑜𝑛𝑡𝑒𝑛𝑡

𝑥2    (2.15) 

 

With -per our model- the gradient 
𝑑𝛼

𝑑𝑥
 being identified as 

the cause of the gravitational force, we can now make a 

direct comparison with Newton’s gravitational equation: 

 

𝐹𝐺 = 𝐺 ×
𝐶𝑜𝑛𝑡𝑒𝑛𝑡1×𝐶𝑜𝑛𝑡𝑒𝑛𝑡2

𝑥2    (2.16) 

 

Newton’s equation says that if we place a content2 at a 

distance x from a content1, the gravitational force is given by 

equation (2.16). Newton’s equation is a fundamental 

equation that must hold within any system of UoM, thus also 

within our model. Here, the equation holds, even though our 

model demonstrates that it is no more than a good 

approximation of the gravitational force at large distances 

(large, relative to the orbit diameter of orbiting induced 

content). 

 

To verify Newton’s equation within our model, we 

rename content in equation (2.15) to content1, and we 

substitute this in Newton’s equation (2.16): 

 

 𝐹𝐺 = 𝐺 ×
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
× 𝐶𝑜𝑛𝑡𝑒𝑛𝑡2  (2.17) 

 

Prior to interpreting the physical meaning of this equation, 

let’s check its dimensional integrity within our model: 

 

𝐹𝐺is to be expressed in P/C (see chapter 1) 

𝐺 equals 1 C/P 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
 is in 𝑃 𝐶2⁄   

𝐶𝑜𝑛𝑡𝑒𝑛𝑡2 is in P 

 

Substituting these dimensions into equation (CP9.23) 

gives: 
𝑃

𝐶
=  

𝐶

𝑃
 ×  

𝑃

𝐶2  × 𝑃 =  
𝑃

𝐶
    (2.18) 

Thus we confirm the dimensional integrity of equation 

(2.17). 

 

As said, per our model the term 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒 𝑥 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑅
 in 

equation (2.17), being the local gradient in whereabouts 

pressure, was introduced as the cause of the gravitational 

force. Based on equation (2.17) we can now upgrade the 

meaning of this gradient: per our model the gradient in 

whereabouts pressure exactly represents gravity at large 

distances, without demanding a weight factor. Or: for the 

term G in equation (2.17) we can indeed substitute the 

gravitational constant per our model: G (being equal to 1 

C/P). 

 

In conclusion: 

The following equation quantifies the exact gravitational 

force between an orbiting induced content and some remote 

content at distance x: 

 

𝑭𝒈 = 

𝑅𝑅 . 𝑥2. (cos (
v𝑜𝑟𝑏𝑖𝑡

𝑐 ) − 1) + 𝑅𝑅
3. (𝑐𝑜𝑠 (

v𝑜𝑟𝑏𝑖𝑡
𝑐 ) − 𝑐𝑜𝑠2(1))

𝑅𝑅
2. 𝑥2. (𝑐𝑜𝑠2 (

v𝑜𝑟𝑏𝑖𝑡
𝑐

) + 1) + 𝑥4 + 𝑅𝑅
4. 𝑐𝑜𝑠2 (

v𝑜𝑟𝑏𝑖𝑡
𝑐

)
 

× 𝑪𝒐𝒏𝒕𝒆𝒏𝒕  
(2.19) 

c) Case studies. 

1. Imagine an orbiting galactic system, consisting of 

numerous and homogeneously distributed 

masses. Per Newtonian laws the net gravitational 

force at the centre of this system would be equal 

to 0, since the added gravitational forces of all 

surrounding masses would compensate each 

other. And in the vicinity of this centre any 

object would be pulled towards this centre, so 

that such system should ultimately take the shape 

of a perfectly flat disc. In fact we see galactic 

systems not completely flattened, despite their 

age. 

Per our model, an object which is located near 

the centre of such galactic system would 

experience a gravitational repelling force, 

directed away from the centre. In the regional 

absence of any other forces (which would 

virtually be valid near the centre of such a 

galactic system) this orbiting induced 

gravitational repelling force would prevent the 

system to ultimately flatten completely. This fits 

the actual observations. 

2. Imagine a proton and an electron in orbit around 

their centre of gravity. Per our model an 

approaching electrically neutral particle would 

not settle itself at that centre. Here, it would be 

subject to a repelling gravitational force.  

We observe atoms as 3-dimensional objects, not 

being flat. This observation conceptually fits our 

model. 
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3. Imagine a space ship on its way from the Earth 

towards the Moon. It would thereby pass the 

centre of gravity of the Earth/Moon orbiting 

system at relatively close range. 

Per our model it would thereby experience a 

(small) non-Newtonian gravitational force which 

is directed away from the centre of gravity. Such 

space ship would -on its way- therefore 

experience a minor force away from the targeted 

Moon. 

It is not known if such (small) deviation can be 

confirmed by actual data. 


