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In this research thesis, we have analyzed further Ramanujan formulas and described 
new possible mathematical connections with some sectors of Particle Physics and 
Cosmology 
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http://www.giochicreativi.com/2012/01/pazze-formule-ramanujan.html 
 

 

 

https://www.famousscientists.org/srinivasa-ramanujan/ 

“It was his insight into algebraical formulae, 
transformations of infinite series, and so forth that was most amazing.  
On this side most certainly I have never met his equal,  
and I can compare him only with Euler or Jacobi.” 
G. H. HARDY, 1877 – 1947 (Mathematician) 
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Manuscript Book Of Srinivasa Ramanujan Volume 1  
 

Page 281 
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(((3sqrt3+1)^1/3+(3sqrt3-1)^1/3))^2 * (13)^1/6 * 1/(3*(2)^1/3) 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

4.8277165856693… 

Alternate forms: 

 

 

 

Minimal polynomial: 

 

 

e^(-13Pi) 
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Input: 

 

 
Decimal approximation: 

 

1.832767605671…*10-18 

Property: 

 

 
Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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e^(-13Pi)x = (((3sqrt3+1)^1/3+(3sqrt3-1)^1/3))^2 * (13)^1/6 * 1/(3*(2)^1/3) 

Input: 

 

 
Exact result: 

 

Plot: 

 

Alternate forms: 

 

 

 

Solution: 

 

 

1/6 13^(1/6) (4 13^(1/3) + (-2 + 6 sqrt(3))^(2/3) + (2 + 6 sqrt(3))^(2/3)) e^(13 π) 

Input: 
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Decimal approximation: 

 

2.634112786983…*1018 

Property: 

 

Alternate forms: 

 

 

 

 
Series representations: 
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3ln[1/6 13^(1/6) (4 13^(1/3) + (-2 + 6 sqrt(3))^(2/3) + (2 + 6 sqrt(3))^(2/3)) e^(13 
π)]-golden ratio 

Input: 

 

 

 

 
Decimal approximation: 

 

125.62720029912… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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((((1/6 13^(1/6) (4 13^(1/3) + (-2 + 6 sqrt(3))^(2/3) + (2 + 6 sqrt(3))^(2/3)) e^(13 
π)))))^1/88 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

1.61929821206… result that is a good approximation to the value of the golden ratio 
1,618033988749... 
 

Property: 

 

Alternate form: 
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All 88th roots of 1/6 13^(1/6) (4 13^(1/3) + (6 sqrt(3) - 2)^(2/3) + (2 + 6 
sqrt(3))^(2/3)) e^(13 π): 
 

 

 

 

 

 

 

Series representations: 
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Integral representation: 

 

 

 

(((1/((((1/6 13^(1/6) (4 13^(1/3) + (-2 + 6 sqrt(3))^(2/3) + (2 + 6 sqrt(3))^(2/3)) e^(13 
π)))))^1/88)))^1/32 

Input: 

 

 
Exact result: 
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Decimal approximation: 

 

0.98505069451737… result very near to the value of the following Rogers-
Ramanujan continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Property: 

 

Alternate forms: 

 

 

 
All 32nd roots of ((6/(4 13^(1/3) + (6 sqrt(3) - 2)^(2/3) + (2 + 6 
sqrt(3))^(2/3)))^(1/88) e^(-(13 π)/88))/13^(1/528): 
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Series representations: 
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Integral representation: 

 

 

 

 



14 
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1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

0.0771063127652… 

 

(Pi^4)/1263 

Input: 

 

 
Decimal approximation: 

 

0.077125171… 
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Property: 

 

 
Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4 = (Pi^4)/x 

Input: 

 

 
Exact result: 

 

Plot: 

 

Alternate form assuming x is real: 

 

Alternate form assuming x is positive: 

 

Solution: 

 

1263.30889833386 

 

(Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4) 

Input: 
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Result: 

 

Decimal approximation: 

 

1263.3088983386… 

Property: 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

 

(Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4) - 29 – 2 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1232.30889833386…. result practically equal to the rest mass of Delta baryon 1232 

Property: 

 

Alternate form: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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(Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4) +29^2-322 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1782.30889833386… result in the range of the hypothetical mass of Gluino (gluino = 
1785.16 GeV). 

 

Property: 

 

Alternate form: 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 

 

 

(Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4)/11+11 

Input: 

 

 
Result: 
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Decimal approximation: 

 

125.84626348489… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Property: 

 

Alternate form: 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

 

 

(Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4)-199-47+2 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1019.30889833386… result practically equal to the rest mass of Phi meson 1019.445 

Property: 

 

Alternate form: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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(Pi^4)*1/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4)*1/3^2-7+golden ratio 

Input: 

 

 

 
Result: 

 

Decimal approximation: 

 

134.9856893591… result practically equal to the rest mass of  Pion meson 134.9766 

Property: 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

Integral representations: 

 

 

 

 

 

(((((((((1/((((Pi^4)/(1/2^4 + 1/3^4 + 1/5^4 + 1/7^4 + 1/8^4))))^1/15)))^1/64))))))-
pi/10^3 

Input: 
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Exact result: 

 

Decimal approximation: 

 

0.98944695686… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Alternate forms: 

 

 

 
Alternative representations: 

 

 



28 
 

 

 
Series representations: 
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Integral representations: 
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ln0.352+ 1/(2)^1.352 + 1/(3)^1.352+1/(5)^1.352 

Input: 

 

 

 
Result: 

 

-0.312447… 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

  

From this expression, we obtain  also, for n = 0.0833 = 1/12 : 

-(((1+34/10^3+ln0.0833+ 1/(2)^1.0833 + 1/(3)^1.0833+1/(5)^1.0833))) 

Input interpretation: 

 

 

 
Result: 

 

0.500270… . ≅ 0.5 = 1/2    
 
Mathematical connection with Trans-Planckian Censorship and the Swampland 
(see “Ramanujan mathematics applied to the physics and cosmology”) 

 
 

(((gamma (((5/2)))))) * ((((2.3e-18)^3))) * 1 / ((2Pi^(4-1/2))) *1/((((i/ ((((((Pi^(4-
1/2))*1/((gamma (5/2))) * (1/(2.3e-18))^3))))))))) 

Input interpretation: 

 

 
 

 
Result: 

 
Polar coordinates: 

 
0.5 = 1/2   
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representation: 
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2/3(1sqrt1+2sqrt2+3sqrt3+x*sqrtx)-x/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3)) 

Input: 

 

 
Exact result: 

 

Plots: 

 

 

 
Alternate forms: 
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Expanded form: 

 

Roots: 
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Properties as a real function: 
 

 

Domain 

 

Range 

 

 

Derivative: 

 

Indefinite integral: 

 

Global minimum: 

 

 

For x = 29+4 = 33, where 29 and 4 are Lucas numbers, we obtain: 

Input: 

 

 
Result: 
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Decimal approximation: 

 

125.336872… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Property: 

 

Alternate forms: 

 

 

 

 

2/3(1sqrt1+2sqrt2+3sqrt3+(29+4)*sqrt(29+4))-
(29+4)/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))+11 

Where 11 is a Lucas number 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

139.336872… result practically equal to the rest mass of  Pion meson 139.57  
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Property: 

 

Alternate forms: 

 

 

 

 

[2/3(1sqrt1+2sqrt2+3sqrt3+(29+4)*sqrt(29+4))-
(29+4)/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))]*18+123+18 

Where 18, and 123 are Lucas numbers 

Input: 

 

 
Result: 

 

 
Decimal approximation: 

 

2451.063696… result very near to the rest mass of charmed Sigma baryon 2452.9 

Property: 
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Alternate forms: 

 

 

 

 

[2/3(1sqrt1+2sqrt2+3sqrt3+(29+4)*sqrt(29+4))-
(29+4)/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))]*18-521-7 

Where 521 and 7 are Lucas numbers 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1782.063696… result in the range of the hypothetical mass of Gluino (gluino = 
1785.16 GeV). 

 

Property: 
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Alternate forms: 

 

 

 

 

[2/3(1sqrt1+2sqrt2+3sqrt3+(29+4)*sqrt(29+4))-
(29+4)/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))]*18-(521+47+11+2) 

Where 521, 47, 11 and 2 are Lucas numbers 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1729.063696… 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 
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Property: 

 

Alternate forms: 

 

 

 

 

Or: 

Input: 

 

Where 3, 5 and 21 are Fibonacci numbers 

 

Result: 

 

Decimal approximation: 

 

1729.063696... as above 
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1/[2/3(1sqrt1+2sqrt2+3sqrt3+5*sqrt5)-
5/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))]^1/512 

Input: 

 

 
Exact result: 

 

 
Decimal approximation: 

 

0.995024687328… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Property: 
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Alternate forms: 

 

 

 

 

1/32*log base 0.9950246873282((1/[2/3(1sqrt1+2sqrt2+3sqrt3+5*sqrt5)-
5/(4Pi)(1/(1sqrt1)+1/(2sqrt2)+1/(3sqrt3))]))+1/golden ratio 

Input interpretation: 

 

 

 

 
Result: 

 

16.618033989… result very near to the mass of the hypothetical light particle, the 
boson mX = 16.84 MeV 
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Alternative representation: 

 

 
Series representations: 
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For x = 2, we obtain: 

1/(2*2^2) – (Pi*cot 2Pi)/(2*2) 

Input: 

 

 

Exact result: 
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Decimal approximation: 

 

1.2542247531765…. 

 

Alternate forms: 

 

 

 

 
Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representation: 
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0.5(((1/(2*2^2) – (Pi*cot 2Pi)/(2*2)))) 

Input: 

 

 

Result: 

 

0.62711237658… 
 

Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representation: 
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(((((0.5(((1/(2*2^2) – (Pi*cot 2Pi)/(2*2)))))))))^1/64 

Input: 

 

 

 
Result: 

 

0.99273543... result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

2*log base 0.99273543 (((((0.5(((1/(2*2^2) – (Pi*cot 2Pi)/(2*2)))))))))-Pi+1/golden 
ratio 

Input interpretation: 

 

 
Result: 

 

125.476… result very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 

 



49 
 

 
Alternative representations: 

 

 

 

Series representations: 

 

 

 

 
Integral representation: 
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1/4 log base 0.99273543 (((((0.5(((1/(2*2^2) – (Pi*cot 2Pi)/(2*2)))))))))+1/golden 
ratio 

Input interpretation: 

 

 
Result: 

 

16.6180… result very near to the mass of the hypothetical light particle, the boson mX 
= 16.84 MeV 

 

 

Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 
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3*(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) + 1/(1+(10/9)^4)+1/(1+(10/9)^5)))) 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

6.33079108843... 

((5/((21-2))))* 3*(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) + 
1/(1+(10/9)^4)+1/(1+(10/9)^5))))+7/10^3 

Where 7 is a Lucas number 
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Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

1.672997654... result very near to the proton mass 

 

1/ [3(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) + 
1/(1+(10/9)^4)+1/(1+(10/9)^5))))]^1/256 

Input: 

 

 
Result: 

 

 
Decimal approximation: 

 

0.992817228101… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
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and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Alternate form: 

 

 

1/2*log base 0.9928172281(((1/ [3(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) + 
1/(1+(10/9)^4)+1/(1+(10/9)^5))))])))-Pi+1/golden ratio 

Input interpretation: 

 

 
Result: 

 

125.4764413… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Alternative representation: 
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Series representations: 

 

 

 

 

1/16*log base 0.9928172281(((1/ [3(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) + 
1/(1+(10/9)^4)+1/(1+(10/9)^5))))])))+1/golden ratio 

Input interpretation: 

 

 

 

 
Result: 

 

16.618034… result very near to the mass of the hypothetical light particle, the boson 
mX = 16.84 MeV 
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Alternative representation: 

 

 
Series representations: 

 

 

 

Or, precisely: 

 1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) +... 
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Input interpretation: 

 

 
Infinite sum: 

 

 

Decimal approximation: 

 

6.33100869286… = 2𝜋r, with r = 1.0076113282271... 

Note that from 1/r, we obtain: 

1/1.0076113282271832 

Input interpretation: 

 

 
Result: 

 

0.992446166… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 
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this result could mean that the dilaton, obtained by inverting the formula of a 
circumference of radius 1.0076113282271 ..., is a string having the perimeter of an 
ellipse 
 

Possible closed forms: 

 

 

 

 

Convergence tests: 

 

Partial sum formula: 

 

Partial sums: 

 

Alternate forms: 
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Series representations: 
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60 
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((((1/((10/9)^1-1) + 1/((10/9)^2-1) + 1/((10/9)^3-1) +...)))) 

Input interpretation: 
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Infinite sum: 

 

 

 

Decimal approximation: 

 

27.08648503… note that the square of result is: 

733.6776712804141009  ≈ 729 = 93 (Ramanujan cube 93 – 1) 

Convergence tests: 

 

Partial sum formula: 

 

Partial sums: 

 

Alternate forms: 
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Series representations: 

 

 

 

 

And: 

((((1/((10/9)^1-1) + 1/((10/9)^2-1) + 1/((10/9)^3-1) +...))))^2+10^3 

Input interpretation: 

 

 
Result: 
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Alternate forms: 

 

 

 

 

Thence: 

 

1000 + (log(10) - QPolyGamma(0, 1, 9/10))^2/(log^2(10/9))-5 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

1728.677671… 
 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
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Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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Multiplying the two results, we obtain: 

(log(10) - QPolyGamma(0, 1, 9/10))/log(10/9) * -(log(10) - QPolyGamma(0, 1 - (i 
π)/log(10/9), 9/10))/log(10/9) 

Input: 

 

 
 
Exact result: 

 

Decimal approximation: 

 

171.4847722098… 

 
Alternate forms: 

 



67 
 

 

 

Alternative representations: 
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Series representations: 
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Integral representations: 
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And: 

 

(log(10) - QPolyGamma(0, 1, 9/10))/log(10/9) * -(log(10) - QPolyGamma(0, 1 - (i 
π)/log(10/9), 9/10))/log(10/9)-29-7 

Where 29 and 7 are Lucas number 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

135.4847722098… result very near to the rest mass of  Pion meson 134.9766   
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Alternate forms: 

 

 

 

Expanded form: 

 

 
Alternative representations: 
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Series representations: 
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75 
 

 

 

 

Dividing the two results, we obtain: 

((((1/((10/9)^1-1) + 1/((10/9)^2-1) + 1/((10/9)^3-1) +...)))) / 
(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) +...))) 

 

Input interpretation: 

 



76 
 

 
Result: 

 

 

 

Alternate forms: 

 

 

 

 

(log(10) - QPolyGamma(0, 1, 9/10))/(-log(10) + QPolyGamma(0, 1 - (i π)/log(10/9), 
9/10)) 

Input: 

 

 
Decimal approximation: 

 

4.2783838007… 
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Alternate forms: 

 

 

 

Alternative representations: 
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Series representations: 
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80 
 

 

 
Integral representations: 

 

 

 

And: 
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7*((((-log(10) + QPolyGamma(0, 1 - (i π)/log(10/9), 9/10)) / (log(10) - 
QPolyGamma(0, 1, 9/10)))))-18/10^3 

Where 7 and 18 are Lucas numbers 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

1.618131849... result that is a very good approximation to the value of the golden 
ratio 1,618033988749... 
 
 

Alternate forms: 
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Alternative representations: 
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Series representations: 
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Integral representations: 
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Subtracting the two results, we obtain: 

((((1/((10/9)^1-1) + 1/((10/9)^2-1) + 1/((10/9)^3-1) +...)))) - 
(((1/(1+10/9)+1/(1+(10/9)^2) + 1/(1+(10/9)^3) +...))) 

Input interpretation: 

 

 
Result: 

 

 

 

Alternate forms: 

 



87 
 

 

 

 

 

-(-log(100) + QPolyGamma(0, 1, 9/10) + QPolyGamma(0, 1 - (i π)/log(10/9), 
9/10))/log(10/9) 

Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

20.75547634… 
 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

And: 

 

6(((-(-log(100) + QPolyGamma(0, 1, 9/10) + QPolyGamma(0, 1 - (i π)/log(10/9), 
9/10))/log(10/9))))+1/golden ratio 

Input: 

 

 
 
Exact result: 

 

Decimal approximation: 

 

125.150892035… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 
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Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 
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Pi *( 1/(sqrt2)-1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)-1/(sqrt6+sqrt8)) 
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Input: 

 

 
Result: 

 

Decimal approximation: 

 

1.41211367379…. 

Property: 

 

Alternate forms: 
 

 

 

 

 

Series representations: 

 



97 
 

 

 

 

1/(1sqrt1)+1/(3sqrt3)+1/(5sqrt5)+1/(7sqrt7)+... 

1/(1sqrt1)+1/(3sqrt3)+1/(5sqrt5)+1/(7sqrt7)+1/(11sqrt11)+1/(13sqrt13)+1/(17sqrt17)
+1/(19sqrt19) 
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Input: 

 

 
Result: 

 

Decimal approximation: 
 

 

1.41097379249… 

Alternate forms: 
 

 

 

 

 

From the previous expression, we obtain: 

1/((((Pi *( 1/(sqrt2)-1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)-1/(sqrt6+sqrt8))))))^1/64 

Input: 
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Exact result: 

 

Decimal approximation: 
 

 

0.99462251631343947….. result very near to the value of the following Rogers-
Ramanujan continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

 

Property: 

 

Alternate forms: 
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2log base 0.994622516313439 (((1/((((Pi *( 1/(sqrt2)-
1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)-1/(sqrt6+sqrt8)))))))))-Pi+1/golden ratio 

Input interpretation: 

 

 

 

Result: 
 

 

125.4764413351… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

 
Alternative representation: 

 

 

Series representations: 
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1/4 log base 0.994622516313439 (((1/((((Pi *( 1/(sqrt2)-
1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)-1/(sqrt6+sqrt8)))))))))+1/golden ratio 
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Input interpretation: 

 

 

 

 
Result: 
 

 

16.61803398… result very near to the mass of the hypothetical light particle, the 
boson mX = 16.84 MeV 

 

 
Alternative representation: 

 

 
Series representations: 
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3/(16Pi^2)*((((1/(1sqrt1)+1/(4sqrt2)+1/(9sqrt3)+1/(16sqrt4)))) 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

0.024168459675… 
 
Property: 

 

Alternate forms: 
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Series representations: 
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1/((((3/(16Pi^2)*((((1/(1sqrt1)+1/(4sqrt2)+1/(9sqrt3)+1/(16sqrt4))))))))) * 18 +29 

Input: 

 

 
Result: 

 

Decimal approximation: 
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773.772328978… result very near to the rest mass of Charged rho meson 775.4 

Property: 

 

Alternate forms: 

 

 

 

Series representations: 
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((((3/(16Pi^2)*((((1/(1sqrt1)+1/(4sqrt2)+1/(9sqrt3)+1/(16sqrt4)))))))))^1/512 
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Input: 

 

 
Exact result: 

 

Decimal approximation: 

 

0.99275545738… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

 

Property: 

 

Alternate forms: 
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All 512th roots of (3 (33/32 + 1/(4 sqrt(2)) + 1/(9 sqrt(3))))/(16 π^2): 

 

 

 

 

 

 

Series representations: 
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Integral representation: 

 

 

1/4 log base 0.9927554573826 
((((3/(16Pi^2)*((((1/(1sqrt1)+1/(4sqrt2)+1/(9sqrt3)+1/(16sqrt4)))))))))-Pi+1/golden 
ratio 
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Input interpretation: 

 

 

 

 
Result: 

 

125.47644133… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

 
Alternative representation: 

 

 
Series representations: 
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1/32 log base 0.9927554573826 
((((3/(16Pi^2)*((((1/(1sqrt1)+1/(4sqrt2)+1/(9sqrt3)+1/(16sqrt4)))))))))+1/golden ratio 

Input interpretation: 

 

 

 

Result: 

 

16.618033989… result very near to the mass of the hypothetical light particle, the 
boson mX = 16.84 MeV 
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Alternative representation: 

 

 
Series representations: 
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Page 97 

 

 

 

1/2 - 1/(4*2^4) + 1/(7*2^7) 

Input: 

 

Exact result: 

 

 
Decimal approximation: 

 

0.4854910714…. 

 

Pi/(6sqrt3) + 1/6 ln 3 

Input: 
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Exact result: 

 

Decimal approximation: 

 

0.48540194215….. 

Alternate forms: 

 

 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

11/10^3-6/(((5ln(((Pi/(6sqrt3) + 1/6 ln 3)))))) 

Where 11 is a Lucas number 

Input: 

 

 

Exact result: 

 

 
Decimal approximation: 

 

1.67126086243… result practically equal to the value of the formula:             

 

𝑚ᇱ = 2 ×
ఎ

ோ
𝑚 = 1.6714213 × 10ିଶସ gm              

 
that is the holographic proton mass (N. Haramein) 
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Alternate forms: 

 

 

 

Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

And: 

10^3* (((11/10^3-6/(((5ln(((Pi/(6sqrt3) + 1/6 ln 3)))))))))+sqrt2 

Input: 

 

 

Exact result: 

 

 
Decimal approximation: 

 

1672.675075996… result practically equal to the rest mass of Omega baryon 1672.45 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

 

10^3* (((11/10^3-6/(((5ln(((Pi/(6sqrt3) + 1/6 ln 3)))))))))+sqrt2+(47+7+2) 

Where 2, 7 and 47 are Lucas numbers 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1728.6750759…. 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
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Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

Integral representation: 

 

 

10^3* (((11/10^3-6/(((5ln(((Pi/(6sqrt3) + 1/6 ln 3)))))))))+sqrt2+123-11 

Where 2, 11 and 123 are Lucas numbers 

Input: 
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Exact result: 

 

Decimal approximation: 

 

1784.675075996…. result in the range of the hypothetical mass of Gluino (gluino = 
1785.16 GeV). 

 

 

Alternate forms: 

 

 

 

 
 

 

Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 
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Now, we have that: 

 

(2-sqrt3)/1 – ((2-sqrt3)^3)/5 + ((2-sqrt3)^5)/9 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

0.264255083… 

Alternate forms: 

 

 

 

Minimal polynomial: 

 

 

Pi/16 (sqrt3-1)-(sqrt3-1)/4 ln(sqrt3-1) 

Input: 

 

 

Exact result: 

 



128 
 

 
Decimal approximation: 

 

0.2008204822… 

Alternate forms: 

 

 

Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

 

colog(((Pi/16 (sqrt3-1)-(sqrt3-1)/4 ln(sqrt3-1))) 

Input: 

 

 

 
Exact result: 

 

Decimal approximation: 

 

1.6053438929…. result very near to the elementary charge 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 

 

 

 

((Pi/16 (sqrt3-1)-(sqrt3-1)/4 ln(sqrt3-1)))^1/256 

Input: 
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Exact result: 

 

Decimal approximation: 

 

0.9937487463172… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 
 

and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Alternate forms: 

 

 

 
All 256th roots of 1/16 (sqrt(3) - 1) π - 1/4 (sqrt(3) - 1) log(sqrt(3) - 1): 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

1/2 * log base 0.9937487463172 ((Pi/16 (sqrt3-1)-(sqrt3-1)/4 ln(sqrt3-1)))-
Pi+1/golden ratio 

Input interpretation: 

 

 

 

 

 
Result: 

 

125.47644133… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representation: 

 

 

 

1/16 * log base 0.9937487463172 ((Pi/16 (sqrt3-1)-(sqrt3-1)/4 ln(sqrt3-1)))+1/golden 
ratio 

Input interpretation: 

 

 

Result: 

 

16.618033989… result very near to the mass of the hypothetical light particle, the 
boson mX = 16.84 MeV 
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Alternative representations: 

 

 

 

Series representations: 

 

 



137 
 

 

 
Integral representation: 

 

 

Now, we have: 

(sqrt3-1)/1 – ((sqrt3-1)^4)/4 + ((sqrt3-1)^7)/7 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

0.67634902107… 
 

Alternate forms: 
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Minimal polynomial: 

 

 

 

Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2)) 

Input: 

 

 

Decimal approximation: 

 

0.672942823879… 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 

 

1/10^27*(((1+ Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2))))) 
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Input: 

 

 

 
Exact result: 

 

 
Decimal approximation: 

 

1.672942823…*10-27 result practically equal to the proton mass 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Integral representations: 

 

 

 

 

10^3* (((1+ Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2))))) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1672.942823879…. result practically equal  to the rest mass of Omega baryon 
1672.45 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 

 



143 
 

 

 

 

10^3* (((1+ Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2))))) + (47+7+2) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1728.9428238… 

This result is very near to the mass of candidate glueball f0(1710) meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729 

 

 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

(((Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2))))^1/64 

Input: 

 

 

Decimal approximation: 

 

0.9938301293…. result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
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and to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Alternate forms: 

 

 

 

 

 
All 64th roots of π/(4 sqrt(3)) + 1/3 log((1 + sqrt(3))/sqrt(2)): 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

2 log base 0.9938301293368 (((((Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2)))))))-
Pi+1/golden ratio 

Input interpretation: 

 

 

Result: 

 

125.47644133… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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Note that, this result, the dilaton mass calculated as a type of Higgs boson, is 
ALWAYS linked to the golden ratio. Indeed, we have that: 

2 log base 0.9938301293368 (((((Pi/(4sqrt3)+1/3 ln (((1+sqrt3)/sqrt2)))))))-Pi+1/x = 
125.47644133 

Input interpretation: 

 

 

 

 
Result: 

 

Plot: 

 

Alternate form assuming x is real: 
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Alternate form: 

 

Alternate form assuming x is positive: 

 

Solution: 

 

1.6180340 = golden ratio 

 

1/4 log base 0.9938301293368 (((((Pi/(4sqrt3)+1/3 ln 
(((1+sqrt3)/sqrt2)))))))+1/golden ratio 

 

Input interpretation: 

 

 

Result: 

 

16.61803398… result very near to the mass of the hypothetical light particle, the 
boson mX = 16.84 MeV 

 

 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 
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Ramanujan mathematics applied to the physics and cosmology 

 

From: 

Trans-Planckian Censorship and the Swampland 
Alek Bedroya and Cumrun Vafa 
Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 
arXiv:1909.11063v2 [hep-th] 15 Oct 2019 
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If  

 

We have that, for d = 4: 

Vmax = ((((4-1)(4-2) (2.3e-18)^2)))/2 

Input interpretation: 

 
 
Result: 

 
1.587 * 10-35 = Vmax = V0 

For  

   c = 1/8 = 0.125, we obtain: 

Vmin = c* V0 = c * Vmax = 1/8 * (((((((4-1)(4-2) (2.3e-18)^2)))/2))) 

 Input interpretation: 

 
 
Result: 

 
1.98375 * 10-36 = Vmin 
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Now, from: 

 

We obtain: 

((((gamma (((5/2)^1/2)) 2^2)))) / ((Pi^(3/4) ((4-1)(4-2))^(3/4))) 

Input: 
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Exact result: 

 
 
Decimal approximation: 

 
0.394203368273…. = B1(d) 

 

Alternate form: 

 

 
 
Alternative representations: 

 

 

 
 
Series representations: 
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Integral representations: 

 

 

 
 

 

 

4/(4-1)(4-2) 
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Input: 

 
 
Exact result: 

 
Decimal approximation: 

 
 

Repeating decimal: 

 
0.666666…. = B2(d) 

 

 

(((((4-1)(4-2))/2)))^1/2 

Input: 

 
Result: 

 
 
Decimal approximation: 

 
1.7320508075688….. = B3(d) 

 
All 2nd roots of 3: 

 

 
 

 

Now, we have that: 
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For c = 1/8 ;  1.587 * 10-35 = Vmax = V0 ;  0.394203368273…. = B1(d);  

0.666666…. = B2(d);  1.7320508075688….. = B3(d) , we obtain: 

 

sqrt(0.125) * sqrt(0.666666) * (0.394203368273)^2 * (1.587e-35) * 1/(4(1-0.125)) * 
ln (((1.7320508075688) / (sqrt(0.125*0.394203368273)))^-1 

 

Input interpretation: 

 

 
 
Result: 

 
-4.17887…*10-37 

 

Now, we have that: 

 

 
i/ ((((((Pi^(4-1/2))/((gamma (5/2))) * (1/(2.3e-18))^3)))) 

Input interpretation: 

 

 
 

 
 
Result: 

 
Polar coordinates: 
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2.94303…*10-55  

 

And: 

 

 
 

(((gamma (((5/2)))))) * ((((2.3e-18)^3))) * 1 / ((2Pi^(4-1/2))) 

Input interpretation: 

 

 
 
Result: 

 
1.47152…*10-55 

 We note that: 

[1/ ((((((Pi^(4-1/2))/((gamma (5/2))) * (1/(2.3e-18))^3)))))] *1/[(((gamma (((5/2)))))) 
* ((((2.3e-18)^3))) * 1 / ((2Pi^(4-1/2)))] 

Input interpretation: 

 

 
 
Result: 

 
2   result equal to the graviton spin 

Or: 

(((gamma (((5/2)))))) * ((((2.3e-18)^3))) * 1 / ((2Pi^(4-1/2))) *1/((((i/ ((((((Pi^(4-
1/2))*1/((gamma (5/2))) * (1/(2.3e-18))^3))))))))) 

Input interpretation: 
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Result: 

 
Polar coordinates: 

 
0.5 = 1/2   result equal to the electron spin 

 

From: 

EVALUATIONS OF RAMANUJAN-WEBER 
CLASS INVARIANT gn 
S.Bhargava 1 , K. R. Vasuki and B. R. Srivatsa Kumar 
2000 Mathematics subject classification: 11F20, 11Y99 

 

 

 

2^(1/8) (3+sqrt7)^1/4 

Input: 
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Decimal approximation: 

 
1.6809669915… 

 

Alternate form: 

 
Minimal polynomial: 

 
 

 

 

 

 

32*((1.68096699^10+1/(1.68096699^10)))+352(((1.68096699^8+1/(1.68096699^8))
)+1672((1.68096699^6+1/(1.68096699)^6))+4576(((1.68096699^4+1/(1.68096699)^
4)))+8096(1.68096699^2+1/(1.68096699)^2)))+9744 

Input interpretation: 

 
 
Result: 

 
3.5465605543511124…*107 
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(1/1.68096699)^12+(1.68096699)^12 

Input interpretation: 

 
 
Result: 

 
508.9931024… 

3.54656055435111249952510626904885558099066308363952005 × 10^7 / 
508.9931024493161196452074821479830564697428180678055597357 

Input interpretation: 

 
 
Result: 

 
69677.9688621… 

 

(69677.9688621471542)*1/128 – 48 

Input interpretation: 

 
 
Result: 

 
496.3591317… result concerning the dimension of the gauge group of type I string 
theory that is 496. 

 

(69677.9688621471542)+64^2-322+29+11 

Input interpretation: 
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Result: 

 
73491.968862… 

Thence, we have the following mathematical connections: 

൫ ൯ =73491.968... ⇒ 

⇒ −3927 + 2

⎝

⎜
⎛
ඪ

+
భయ

⎠

⎟
⎞
= 

 

                      
     
                     = 73490.8437525.... ⇒ 
 
 

⇒ ൬𝐴(𝑟) ×
1

𝐵(𝑟)
൬−

1

𝜙(𝑟)
൰ ×

1

𝑒Λ()
൰ ⇒ 

 

⇒ ቌ ቍ = 

               =   
 
               =  73491.7883254... ⇒ 
 
 

⎝

⎜
⎛

⎠

⎟
⎞

/ 

 

       /(26 × 4)ଶ −24  = ቌ ቍ = 73493.30662… 
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Mathematical connections with the boundary state corresponding to the NSNS-sector 
of N Dp-branes in the limit of u → ∞, with the ratio concerning the general 
asymptotically flat solution of the equations of motion of the p-brane and with the  
Karatsuba’s equation concerning the zeros of a special type of function 
connected with Dirichlet series. 
 

 

From: 

STRING THEORY VOLUME II - Superstring Theory and Beyond 
JOSEPH POLCHINSKI 
Institute for Theoretical Physics - University of California at Santa Barbara 
CAMBRIDGE UNIVERSITY PRESS 
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo 
Cambridge University Press - © Cambridge University Press 2001, 2005 – 1998 
 
 

 

 

                    496 * 16 = 8*496 + 8*496 = 7936;  7936/16 = 496 

 



166 
 

 

 

 

1/1440(-1+1/48-1/14400)+(((1-1/30)*(1+1/4-1/30+1/3-1/900)*1/768)) 

Input: 

 
 
Exact result: 
 

 
 
Decimal form: 

 
0.00126953125 

 

1/(((1/1440(-1+1/48-1/14400)+(((1-1/30)*(1+1/4-1/30+1/3-1/900)*1/768))))) 

Input: 
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Exact result: 
 

 
 
Decimal approximation: 

 
787.692307… result in the range of the rest mass of Omega meson 782.65 

 

1/(2Pi)*1/(((1/1440(-1+1/48-1/14400)+(((1-1/30)*(1+1/4-1/30+1/3-1/900)*1/768))))) 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

125.3651244… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Property: 
 

 

 
Alternative representations: 

 



168 
 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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(((1/1440(-1+1/48-1/14400)+(((1-1/30)*(1+1/4-1/30+1/3-1/900)*1/768)))))^1/4096 

Input: 

 
 
Result: 

 
 
Decimal approximation: 

 
0.9983731247… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 

 
Alternate form: 

 
 
All 4096th roots of 13/10240: 
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From: 

ANOMALY CANCELLATIONS IN SUPERSYMMETRIC D = 10 GAUGE THEORY 
AND SUPERSTRING THEORY  
Michael B. GREEN 
Queen Mary College, University of London, London E1 4NS, UK 
and California Institute of Technology, Pasadena, CA 91125, USA 
and 
John H. SCHWARZ 
California Institute of Technology, Pasadena, CA 91125, USA 
Received 10 September 1984 

 

Now: 
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For n = 496, from (20), we obtain: 

 

-(1/32+0)*(trace R^2)^3-(1/8+0)*trace R^2 trace R^4 -0*trace R^6 

Input: 

 
 
 
Result: 

 
 

Without tr, we obtain: 

-(1/32+0)*(R^2)^3-(1/8+0)* R^2  R^4 -0* R^6 

Input: 

 
 
Result: 
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Plot: 

 
 
Geometric figure: 

 
Root: 

 
Polynomial discriminant: 

 
Property as a function: 

Parity 

 
Derivative: 

 
 
Indefinite integral: 

 
 
Global maximum: 

 
 

For R = 2, we obtain: 

-(5 2^6)/32 

Input: 

 
 
Result: 

 
-10 
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For R = -8, we obtain: 

Input: 

 
 
Result: 

 
40960 = 642 * 10 = 4096 * 10 

 

2sqrt((1/10*-(5 *-8^6)/32))-Pi+1/golden ratio 

Input: 

 

 

Result: 

 

Decimal approximation: 

 

125.476441335… result very near to the dilaton mass calculated as a type of Higgs 
boson: 125 GeV for T = 0 

 

Property: 

 

Alternate forms: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 

 

And also, we obtain: 

((((-1/(((-(5*2^6)/32)))))))^1/4096 

Input: 

 
 
Result: 

 
 
Decimal approximation: 
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0.999438003… result very near to the value of the following Rogers-Ramanujan 
continued fraction: 
 

 
 

 

Alternate form: 

 
 
All 4096th roots of 1/10: 
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