The marked decrease of protons flux in cosmic rays beyond 3 GeV kinetic energy analyzed through a vortex model for the proton.

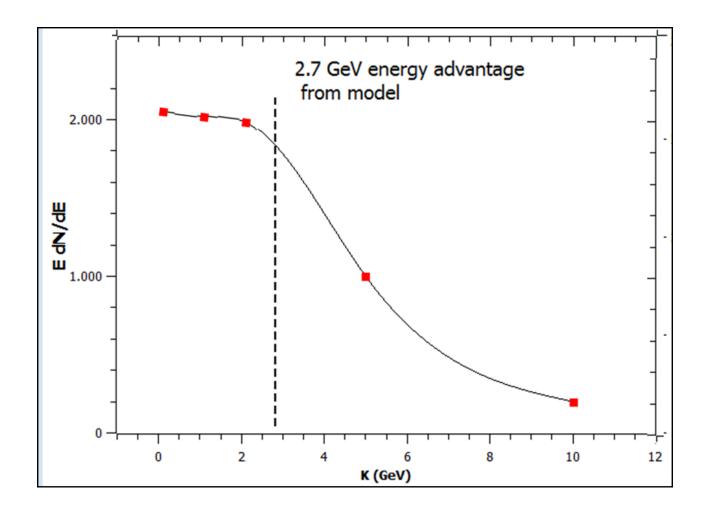
Osvaldo F. Schilling

Departamento de Física, UFSC, 88040-900, Florianópolis, SC. Brazil

Abstract:

We analyze available data for cosmic rays protons below 10 GeV and find evidence for instability of these particles as their kinetic energy increases beyond about 3 GeV, as expected from our recent model [1] which proposes there exists a parent state at about 3.7 GeV from which protons would condense in the form of flux-confining vortices. As the kinetic energy increases such vortex states lose stability compared to the parent, and thus protons of higher energy become very rare in cosmic rays.

1. Analysis of cosmic rays data in the light of the vortex model for baryons.


We have recently developed a model for baryons in which such particles are modelled as vortices confining magnetic flux, which would "condense" from a parent state at about 3.7 GeV, under the effect of electromagnetic instabilities of such state[1,2]. This model has been shown to reproduce the dependence of mass of baryons with their magnetic moments (through an amount of confined flux) in a consistent, quantitative way. Since the particles are assumed to be the result of the creation of states stabilized from a higher energy level, it should be expected that their numbers will decrease in cosmic rays for excessive kinetic energies.

In Figure 1 we show data for the flux of protons from cosmic rays below 10 GeV kinetic energy, taken from Figure 1.1 of ref. [3]. Below about 2 GeV kinetic energy there is an approximate plateau. From 2 GeV on a marked decrease in the flux of protons is observed, which reaches 50% of the maximum at 5 GeV, and falls to 10% of the maximum at 10 GeV, decreasing to much smaller fractions beyond such energy[3]. According to our model in ref [1], protons accelerated beyond 2.7 GeV kinetic energy (which comes from the difference between 3.7 GeV and the proton rest mass of about 1 GeV, i.e., the "energy advantage") should become unstable since they lose the energy advantage acquired by settling in the lower energy vortex state. A related effect breaks Cooper pairs in superconductors if their kinetic energy gets greater than the pairing interaction provided by phonon-intermediated coupling.

2. References

- 1. O.F.Schilling, Progress in Physics, **15**(3), 185 (2019). Correction: In eq. 7 one should include "+ $m_{\rm p}^2$ c^2 " between the curly brackets. http://www.ptep-online.com/2019/PP-58-08.PDF
 - See also previous work by the author in vixra.org
- 2. O.F.Schilling, Annales de la Fondation Louis de Broglie, **43**-1, 1 (2018).
- 3. T.K.Gaisser, R. Engel and E. Resconi, Cosmic Rays and Particle Physics, Cambridge, 2016(see pages 4 and 8).

Figure 1: Reproduction of the upper left part of the double-log plots in Figure 1.1 of ref.[3 (linearized scales are adopted here)]. The flux of protons in 10^3 m⁻² (sr. s)⁻¹ units is plotted against the protons kinetic energy in GeV. The vertical line is placed at the value of K that corresponds to total loss of the vortex energy advantage compared to the vacuum parent state(see [1]). The solid line is a guide.

