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Abstract
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energy scenario and investigate its essential cosmological properties in a universe governed by
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is argued. Also, we check the validity of thermodynamical laws and reimpelement dynamics of

tachyons in the KK universe.
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I. INTRODUCTION

The type Ia supernovae (SNe-Ia)[1, 2], cosmic microwave background (CMB)[3], large

scale structure (LSS)[4], Wilkinson Microwave Anisotropy Probe (WMAP)[5–7], Sloan Digi-

tal Sky Survey (SDSS)[8] and the Planck-2015[9] astrophysical data show that the observable

universe expands faster than it should and is nearly flat. It is commonly believed that dark

matter and dark energy are the source of speedy expansion phase. In literature, many

theoretical models such as the cosmological constant[10], scalar fields[11–16], unified dark

matter-energy descriptions[17, 18], dark energy densities[19–23], modified gravity[24] and

extra dimensions[25–27] have been introduced in order to explain the dark matter-energy

effect. Cai et al.[28] prepared a convenient brief about some well-known theoretical dark

energy proposals. Although there are a large number of efforts to discuss of the speedy

expansion phase, which is still completely unknown.

Assuming the existence of extra dimensions is a very useful idea to understand the speedy

expansion of our universe. The KK theory of gravity is one of the most studied extra di-

mensional theories and it includes a coupling between electromagnetism and gravity[25, 26].

According to the idea of KK gravity, the universe may have five dimensions. Subsequently,

the well-known KK theory is divided into the compact and non-compact branches[29, 30].

The fifth dimension is length-like in the compact form of KK gravity while we have a mass-

like fifth dimension in the non-compact version of KK theory. As a matter of fact, the

non-compact form is an outcome of the Campbell theorem in which we cannot define any

matter in a five-dimensional manifold by hand[29–31]. In further investigations, the orig-

inal KK gravity turned out to be a base of other extra dimensional models in different

perspectives[32–34]. A useful review of extra dimensional unified theories can be found in

Ref.[35].

On the other hand, we have two more interesting proposals which emerge from the string

theory[36] and are known as Chaplygin gas (CG)[17, 37] and Polytropic gas (PG)[38] models.

It is very important to mention here that the CG and PG are unifications of the dark

matter and the dark energy. The unified CG description has also been developed into its

generalized[39–41], modified[42, 43], variable[44–48], variable generalized[49, 50], variable

modified[51] and extended[52–57] versions. Recently, Pourhassan investigated the extended

CG unified dark energy model in the Horava-Lifshitz theory of gravity[57] and discussed the
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unified universe history through the phantom extended CG model[56]. Next, Panigrahi and

Chatterjee studied cosmology via thermodynamics of the variable modified[50] and variable

generalized[51] CG models. Variable CG proposals are written and constrained by focusing

on the union supernovae sample and Barion acoustic oscillation (BAO)[49] considering the

B parameter to depend on the scale factor of Friedmann-Robertson-Walker (FRW) metric,

i.e. B → B0a
−n where B0 is an absolute constant. That is the reason why the extended CG

proposal[52–57] cannot be reduced to the variable CG models[49–51]. Although different

forms of the CG description were taken into account as dark energy model and used to

fit the varied symptoms of cosmological probes, it is not enough to be able to match the

observational data[51]. In this paper, we construct a five-dimensional form of the VGCG

formulation which can be reduced into the variable, modified and original CG proposals

under some limiting conditions. Indeed, it will be very interesting to investigate the CG

model and its cosmological implications in the compact KK universe.

The structure of this work is as following: in the next section we implement the KK

form of the VGCG model exactly. In the third section, we discuss some physical features of

the KK type VGCG definition in order to interpret the model cosmologically. The fourth

section is devoted to investigate cosmology via thermodynamical laws. In the last section,

we give our final remarks. All numerical calculations and analyzes will be performed by

using MATHEMATICA sofware[58].

II. KK TYPE VGCG

One of the most studied proposals for the role of dark energy is a tachyon scalar field

which is defined by a Born-Infeld type lagrangian density[59]

£ = υ(φ)
√
1 + gµν∂µφ∂νφ (1)

where φ is a scalar field having a self-interacting potential υ(φ) and gµν shows the inverse

metric tensor. In a spatially flat KK type FRW (KKFRW) universe, the corresponding

energy density and pressure of the tachyon field are defined by

ρφ =
υ(φ)√
1− φ̇2

, (2)

and

pφ = −υ(φ)
√
1− φ̇2, (3)
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respectively. Formally, the corresponding equation of state (EoS) is written as

pφ = −υ(φ)

ρφ
. (4)

One can easily show that for the potential υ(φ) = B = constant the energy density (2)

and the pressure (3) are connected by the original Chaplygin gas (OCG) state equation, i.e.

p = −B
ρ
. From this point of view, it is concluded that the OCG definition coincides with

the simplest form of the tachyon scalar field model. Moreover, redefining the self-interacting

potential as υ(φ) = Ba−n, where n is another constant and a denotes the time-dependent

cosmic scale factor, yields the variable Chaplygin gas (VCG) model. Note that, n = 0

reduces this model into the OCG proposal. Here, we consider an extended form of the

VCG, which is known as the VGCG, and assume[60] that

p = −Ba−n

ρα
, (5)

where α is a positive parameter with 0 < α ≤ 1.

The KKFRW universe is represented by[61] the following line-element

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2) + (1− kr2)dx2

5

]
, (6)

where k implies the cosmic curvature parameter for the closed (k = −1), flat (k = 0) and

open (k = +1) universes. Due to the recent astronomical and cosmological data observed

by SNe-Ia[2], WMAP[5], SDSS[8], Planck-2015[9] and X-ray[62] have strongly suggested a

spatially flat spacetime, we assume that k = 0 for further investigations. Next, we suppose

that the KKFRW universe is filled with the VGCG, which is defined by the energy momen-

tum tensor Tµν = (ρ+ p)uµuν − gµνp with uµ, describing the five-velocity vector. Remember

that the VGCG (or any other forms of the CG) is a combination of the dark matter and the

dark energy, i.e. ρ = ρm + ρe and p = pm + pe where the subscripts m and e imply the dark

matter and the dark energy, respectively.

The corresponding Friedmann equations, which govern the evolution of cosmic scale pa-

rameter, are obtained as

H2 =
ȧ2

a2
=

4πG

3
ρ, (7)

2H2 + Ḣ =
ä

a
+

ȧ2

a2
= −8πG

3
p, (8)
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where the over-dot indicates a time-derivative. In the KKFRW framework, a fluid with an

energy density ρ and pressure p satisfies the following conservation law

ρ̇+ 4H(1 + ω)ρ = 0, (9)

with the fact that EoS parameter of the KK type VGCG (KKVGCG) is defined as ω = p
ρ
.

It is easy to see that the above conservation relation can be rewritten in a very elegant form

d(ρa4) + pd(a4) = 0. (10)

This equation can be integrated easily and it can be shown that the energy density of the

KKVGCG evolves as

ρ =
1

a4
1+α

√
4(1 + α)

∫
Ba4α+3−nda+ c, (11)

where c is an integration constant. Hence, taking explicitly the above integral, it yields

ρ =

[
4(1 + α)

4(1 + α)− n

B

an
+

c

a4(1+α)

] 1
1+α

. (12)

It can be seen from the KK form of the Friedmann equations that the speedy expansion

phase ä > 0 is equivalent to[
1− (1 + α)

4(1 + α)− n

]
a4(1+α)−n >

c

4B
(13)

which requires n < 3(1 + α). Besides, it is known that the cosmological and present energy

densities are connected to each other by ρ = 1.31ρc[56]. Thus, the integration constant c

can be expressed in terms of current value of the cosmic scale factor a0. In the entire work,

we assume that a0 = 1 for convenience. Thence, it follows that

c = 1.72− 4(1 + α)B

4(1 + α)− n
. (14)

At this step, we introduce a new parameter written as

Ω =
c

c+ 4(1+α)B
4(1+α)−n

. (15)

This new parameter transforms the equation (12) into a more convenient form like

ρ = 1+α

√
Ωa−4(1+α) + (1− Ω)a−n. (16)

5



Using the cosmic red shift parameter z in relations helps us to fix free parameters of a

theoretical model according to the recent astrophysical data. The red shift parameter and

the cosmic scale factor are connected to each other by z = 1
a
− 1. Making use of

E(z) ≡ H−1
0 H(z) (17)

where H0 = 67.8± 0.9 km s−1 Mpc−1[9] is the recent observable value of the Hubble param-

eter, one gets

H(z) = H0

[
Ω(1 + z)4(1+α) + (1− Ω)(1 + z)n

] 1
2(1+α) . (18)

So that there are three free parameters in the KKVGCG model: B, α and n. In FIG. 1,

we analyze the cosmic Hubble parameter H against the red shift parameter z. We consider

five different n cases in order to discuss our result numerically. Here, the n = 0 case (red

dashed line) represents the OCG solution and the black squares represent the experimental

data[63]. We see that the set (n, α,B) ≡ (0.5, 0.3, 1.4) represented by the blue solid line,

denotes the best fit and describes a more meaningful model than the other cases including

the OCG proposal.
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FIG. 1: H ∼ z relation with auxiliary parameters α = 0.3 and B = 1.4.
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III. PHYSICAL PROPERTIES OF THE KKVGCG

A. EoS parameter

Making use of equations (5) and (16), EoS parameter, describing the KKVGCG, is cal-

culated as

ω ≈ −1 +
n

4(1 + α)
, (19)

where the parameter n has a prominent influence. Depending on the signature of n, the

above result implies three different possibilities for the EoS parameter ω. One can see that

the Universe tends to be (i) phantom dominated[64], i.e. ω < −1 for n < 0, (ii) quintessence

dominated[65, 66], i.e. ω > −1 for n > 0 or (iii) ΛCDM (cosmological constant plus cold

dark matter) dominated, i.e. ω = −1 for n = 0. This conclusion is compatible with the

recent astrophysical data[67, 68].

B. Deceleration parameter

In order to analyze the KKVGCG cosmologically in a different way, one can also calculate

the deceleration parameter. Using the relation q = − ä
aH2 with (19) gives

q =
1

2
+

3

2

p

ρ
= −1 +

3n

8(1 + α)
. (20)

So we must have n < 8
3
(1+α) which does not violate the previous restriction on n, otherwise

we get positive q values describing a decelerating universe. See the q ∼ n relation for α = 0.3

in FIG. 2.

As a matter of fact, we will not mention much in further investigations about the case

n < 0, because later we will show that checking the thermodynamical stability of the model

indicates that the value of n > 0.

C. Statefinder diagnostic

The statefinder parameter cosmology is used to discriminate between different theoretical

dark energy candidates. Trajectories in the (r, s)-plane corresponding to different cosmo-

logical proposals imply qualitatively different behaviors. The statefinders are implemented
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FIG. 2: q ∼ n relation with auxiliary parameter α = 0.3.

from the cosmic scale factor a as

r ≡ a···

aH3
, s =

r − 1

3(q − 1
2
)
. (21)

To begin with, we will write the above relations in a more convenient form as follows

r = 1− 6(1 + ω) + 8(1 + ω)2, (22)

s =
4

9ω
(1 + ω)(1 + 4ω). (23)

The ΛCDM model includes a fixed point (r, s) ≡ (1, 0). The well-known quintessence pro-

posals are given by vertical parts with r decreasing from r = 1 to some definite values[69, 70].

If q = −0.5, then the current values of statefinders (within the KKVGCG description) are

obtained as r = −1
9
and s = 10

27
. Making use of equations (22) and (23), we find

r1 = 1− 9s

64

[
20− 9s− 3

√
(s− 4)(9s− 4)

]
. (24)

r2 = 1− 9s

64

[
20− 9s+ 3

√
(s− 4)(9s− 4)

]
. (25)

In FIG. 3, we depict the (r, s)-plane for the KKVGCG model and conclude that the r = r1

case includes current values of the statefinders. Thus, we further ignore the case r = r2. It

is seen that r first decreases from the ΛCDM fixed point r = 1, s = 0 to its minimum value

and then increases.
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FIG. 3: r-s evolution diagram for the KKVGCG model.

D. Density perturbations

Density perturbations can be used in order to check the instability of the unified

KKVGCG model. Assuming the following definitions[71]

g̃µν = gµν + hµν , ũµ = uµ + δuµ, (26)

ρ̃µ = ρµ + δρµ, p̃µ = pµ + δpµ, (27)

where hµν , δuµ, δρµ and δpµ imply small perturbations around gµν , uµ, ρµ and pµ, respec-

tively, the evolution equation for perturbation is written in the Newtonian framework as[71]

δ̈ + 2Hδ̇ +

[
λ2

a2
ϑ2
s + 3

ä

a

]
δ = 0. (28)

Here δ = δρ
ρ
, λ shows the wavelength of the perturbations and ϑs is the speed of sound which

is defined as

ϑ2
s =

∂p

∂ρ
=

ṗ

ρ̇
=

p′

ρ′
, (29)

where the prime shows derivative with respect to z. Now, making corresponding computation

gives

ϑ2
s =

4α(1 + α)− nα

4(1 + α)

[
1− (1 + z)4(1+α)−n

(
4(1 + α)− n

1 + α

0.43

B
− 1

)]
, (30)

which is implying that ϑ2
s remains always positive if we have

B ≤ 0.43
[
4− n

1 + α

]
. (31)

Thus, under this condition, there is no concern about instability of the model or imaginary

sound speed.
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E. Scaling solution

One can easily show that the background evolution for the KKVGCG description is

equivalent to that for an interaction between the dark energy and the dark matter with

the EoS parameter ω = −1 + n
4(1+α)

. Taking into account the scaling case for the dark

matter-energy density, i.e. ρ = ρm + ρe with ρe ∝ ρma
4(1+α)−n, in the KKFRW framework

yields

ρm + ρe = ρcr
1+α

√
(1− Ω0

m)(1 + z)n + Ω0
m(1 + z)4(1+α), (32)

where ρcr defines the critical energy density while Ω0
m denotes the matter density parameter.

Comparing the equation (32) with (16), it is concluded that Ω can be interpreted as an

effective matter density Ω0
m. If the coupled case is described by

ρ̇m + 4Hρm = Σ, (33)

ρ̇e +
n

1 + α
ρe = −Σ, (34)

then we can characterize the interaction term by [72]

Σ = 4H

[
n

4(1 + α)
− 1

]
ρm

1 + ρm
ρe

, (35)

which describes the interaction between the dark matter and the dark energy. Hence, we

can say that background evolution of the KKVGCG is identical to that of dark matter

interacting with dark energy. Note that negative values of Σ imply energy transition from

the dark matter territory to the dark energy one, and positive Σ values describe the vice

versa situation. This significant event has been observed recently in the Cluster Abell

A586[73, 74], however its importance has not been clarified yet.

IV. THERMODYNAMICS OF THE KKVGCG

We start with the relation of some thermodynamical quantities with the energy density[75]

ρ = U
V

where U denotes the internal energy and V = 1
2
π2R4

h with the dynamical apparent

horizon Rh = [H2 + k(1 + z)2]
− 1

2 is an extra-dimensional volume of the system. Another

significant thermodynamical quantity is the entropy, which is written as S = A
4G

where

A = 2π2R3
h is the surface area of 4-sphere. For the flat KKU, we get Rh = H−1 which is

10



known as the Hubble horizon. Therefore, making use of equation (18), we obtain

S =
π2

2GH0

[
Ω(1 + z)4(1+α) + (1− Ω)(1 + z)n

]− 3
2(1+α) =

π
3
2

4
√
V

2
3
4GH0

. (36)

It is clear that the entropy is an incensing function of V (and therefore is an increasing

function of time) which shows that the generalized second law of thermodynamics is valid

as expected.

On the other hand, focusing on the first law of thermodynamics, tells the temperature is

defined as T = (ρ + p)V/S. It is interesting to write relations among energy density of the

KKVGCG, temperature and entropy. Using our calculations given in the previous sections,

it can be obtained that

T (ρ) =

√
3G

4π

nρ1/2

4(1 + α)
, (37)

and

T (S) =
3nS5

(2π)9(1 + α)G7H6
0

. (38)
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FIG. 4: Graphical analyzes of T (ρ) and T (S) according to three different cases of α with auxiliary

parameters n = 2, H0 = 67.8 and 8πG = 1.

In FIG. 4, we plot T ∼ ρ and T ∼ S relations with three different α values. One

can see that the temperature of VGCG dominated the KK universe, which increases by

increasing energy density just as it is expected. Additionally, it is concluded that the

entropy approaches zero as the temperature approaches zero or conversely the temperature

approaches zero when the entropy approaches zero. From this point of view, the third law

of thermodynamics is satisfied for the KK type VGCG.
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At this step, we check the thermodynamical stability condition of the KKVGCG model.

For this purpose, we need to check the validity of T ∂S
∂T

> 0. Actually, this relation denotes

heat capacity which can be rewritten in terms of volume[76]

C(V ) = V
∂ρ

∂V

(
∂T

∂V

)−1

. (39)

Thus, for the KK type VGCG model, we find

C =
8(1 + α)

nG
4

√
π2

2
V

3
4 , (40)

and consequently conclude that we should use positive n values in order to describe a ther-

modynamically stable model. See FIG. 5. So, we can reach a significant result for the free

parameter n and write 0 < n < 8
3
(1 + α) for completeness.
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FIG. 5: Heat capacity in terms of V. Here, we take n = 2 and 8πG = 1.

V. 5D TACHYONS

Using equations (2) and (3), we can rewrite the KK form of the Friedmann equations (7)

and (8) as

6H2 =
υ(φ)√
1− φ̇2

, (41)

and

6H2 + 3Ḣ = υ(φ)
√
1− φ̇2, (42)

with 8πG = 1.

12



In addition to this, the conservation relation (9) (or (10) of course) is, in turn, identical

to the equation of motion for the tachyon field φ

dυ

dφ
+ υφ̈+ 4Hυφ̇ = 0. (43)

Substituting υ from the KK form of Friedmann equations together with the relations for the

energy density and pressure into the conservation equation we find the following interesting

result, expressing the change of υ in terms of the cosmic Hubble parameter and its time

derivative

φ̇2 = − Ḣ

2H2
, (44)

and using the Friedmann equation (41) with (44) gives(
dH

dφ

)2

− 4H4 +
1

9
υ2 = 0. (45)

Now, considering the relation υ = Ba−n assumed in the second section, we obtain that(
dH

da

)3

− 4H3

a3
− B

9

a−2n−3

H
= 0, (46)

and solving this equation gives H(a). After some algebra, we get

a(t) =

(
− n

2β

) 2
n

t−
2
n (47)

where

β = 4

√
8B

9(32− n3)
. (48)

Substituting this solution into the definition υ(a) = Ba−n, we find that the tachyon field

has the following time-dependency:

φ(t) =

[
n(4− n)

8β

] 2
4−n

t
2

4−n . (49)

Inverting φ(t) to get t(φ) we finally obtain υ(φ). So, in terms of φ(t), the potential becomes

υ(φ) =

[
32B

3n2(4− n)2

]2
2φ4−n

32− n3
. (50)

Note that we previously concluded that n ̸= 0 and the special case n = 4 must be interpreted

separately, because it implies divergent tachyons.

In FIG. 6, we plot φ(t) and υ(φ) for three different values of the free parameter n. We

see that the scalar field function φ increases in time and also conclude that the tachyonic

self-interaction potential υ increases by increasing scalar field φ.
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FIG. 6: Graphical analyzes of φ(t) and υ(φ) according to three different cases of n with B = 0.1.

VI. FINAL REMARKS

In this paper, we investigate the KKVGCG unified dark matter-energy model and its

cosmological features in the compact KK universe. First, we calculate the corresponding

energy density in terms of the cosmic scale factor and then obtain an analytical expression

for the Hubble parameter in terms of the red shift parameter. Next, considering these

results we discuss some physical properties of the proposal in order to find some constraints

for the free parameters used to describe the model. We also focus on thermodynamical

quantities of the proposal such as entropy, temperature and heat capacity. We confirm that

the thermodynamical laws are satisfied and the model can be stabilized at all times by using

positive values of the free parameter n. The stability condition of the unified dark matter-

energy description is also checked by making use of the speed of sound and it is concluded

that there is no concern about instability of the model or imaginary sound speed, if we

assume suitable values of B.

Furthermore, due to the KKVGCG unified dark matter-energy description is identical to

that of a tachyonic scalar field φ having self-interacting potential υ(φ), we also investigate

the KKVGCG type reconstruction of tachyon field in order to determine self-interacting

potential.

We can summarize our main conclusions in the following way: (i) the KK type VGCG

model is consistent with the recent experimental data, (ii) the free parameter Ω can be

interpreted as an effective matter density, (iii) the background evolution of the KK type

VGCG model matches with an interaction between the dark energy and the dark matter,
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(iv) KK form of the VGCG description is equivalent to a model including a tachyon field

and its self-interacting potential.
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