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Abstract

The technique of classical mathematics involves only potential infinity, i.e.
infinity is understood only as a limit, and, as a rule, legitimacy of every limit
is thoroughly investigated. However, the basis of classical mathematics does
involve actual infinity: the infinite ring of integers Z is the starting point for
constructing infinite sets with different cardinalities, and, even in standard
textbooks on classical mathematics, it is not even posed a problem whether Z
can be treated as a limit of finite sets. On the other hand, finite mathematics
starts from the ring Rp = (0, 1, ...p − 1) (where all operations are modulo p)
and the theory deals only with a finite number of elements. We give a direct
proof that Z can be treated as a limit of Rp when p → ∞, and the proof
does not involve actual infinity. Then we explain that, as a consequence, finite
mathematics is more fundamental than classical one.
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1 Introduction

According to Wikipedia: ”In the philosophy of mathematics, the abstraction of actual
infinity involves the acceptance (if the axiom of infinity is included) of infinite entities,
such as the set of all natural numbers or an infinite sequence of rational numbers,
as given, actual, completed objects. This is contrasted with potential infinity, in
which a non-terminating process (such as ”add 1 to the previous number”) produces
a sequence with no last element, and each individual result is finite and is achieved
in a finite number of steps.”.

The technique of classical mathematics involves only potential infinity, i.e.
infinity is understood only as a limit. However, the basis of classical mathematics
does involve actual infinity: the infinite ring of integers Z is the starting point for
constructing infinite sets with different cardinalities, and, even in standard text(books
on classical mathematics, it is not even posed a problem whether Z can be treated
as a limit of finite sets. In finitistic mathematics all natural numbers are considered
but only finite sets are allowed. On the other hand, by definition, finite mathematics
is a branch of mathematics which contains theories dealing only with a finite number
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of elements. Known examples are theories of finite fields and finite rings described in
a vast literature.

Finite mathematics starts from the ring Rp = (0, 1, ...p − 1) where all
operations are modulo p. In the literature the notation Z/p for Rp is often used.
We believe that this notation is not quite consistent because it might give a wrong
impression that finite mathematics starts from the infinite set Z and that Z is more
fundamental than Rp. However, as proved in Sec. 5, the situation is the opposite:
although Rp has less elements than Z, Rp is more fundamental than Z. Then, as
explained in Sec. 6, as a consequence, finite mathematics is more fundamental than
classical one, and, in particular, theories with actual infinity can be only special
degenerated cases of theories based on finite mathematics. We believe that to better
understand the above problems it is important first to discuss in Sec. 2 philosophical
aspects of such a simple problem as operations with natural numbers.

2 Remarks on arithmetic

In the 20s of the 20th century the Viennese circle of philosophers under the leadership
of Schlick developed an approach called logical positivism which contains verification
principle: A proposition is only cognitively meaningful if it can be definitively and
conclusively determined to be either true or false (see e.g. Refs. [1]). On the other
hand, as noted by Grayling [2], ”The general laws of science are not, even in principle,
verifiable, if verifying means furnishing conclusive proof of their truth. They can be
strongly supported by repeated experiments and accumulated evidence but they cannot
be verified completely”. Popper proposed the concept of falsificationism [3]: If no cases
where a claim is false can be found, then the hypothesis is accepted as provisionally
true.

According to the principles of quantum theory, there should be no state-
ments accepted without proof and based on belief in their correctness (i.e. axioms).
The theory should contain only those statements that can be verified, at least in
principle, where by ”verified” physicists mean experiments involving only a finite
number of steps. So the philosophy of quantum theory is similar to verificationism,
not falsificationism. Note that Popper was a strong opponent of quantum theory and
supported Einstein in his dispute with Bohr.

The verification principle does not work in standard classical mathematics.
For example, it cannot be determined whether the statement that a + b = b + a
for all natural numbers a and b is true or false. According to falsificationism, this
statement is provisionally true until one has found some numbers a and b for which
a + b 6= b + a. There exist different theories of arithmetic (e.g. Peano arithmetic or
Robinson arithmetic) aiming to solve foundational problems of standard arithmetic.
However, those theories are incomplete and are not used in applications.

From the point of view of verificationism and principles of quantum theory,
classical mathematics is not well defined not only because it contains an infinite
number of numbers. For example, let us pose a problem whether 10+20 equals 30.
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Then one should describe an experiment which gives the answer to this problem.
Any computing device can operate only with a finite amount of resources and can
perform calculations only modulo some number p. Say p = 40, then the experiment
will confirm that 10+20=30 while if p = 25 then one will get that 10+20=5. So
the statements that 10+20=30 and even that 2 · 2 = 4 are ambiguous because they
do not contain information on how they should be verified. On the other hands, the
statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25),

2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So, from the point of
view of verificationism and principles of quantum theory, only operations modulo a
number are well defined.

We believe the following observation is very important: although classical
mathematics (including its constructive version) is a part of our everyday life, people
typically do not realize that classical mathematics is implicitly based on the assump-
tion that one can have any desired amount of resources. In other words, standard
operations with natural numbers are implicitly treated as limits of operations mod-
ulo p when p → ∞. Usually in mathematics, legitimacy of every limit is thoroughly
investigated, but in the simplest case of standard operations with natural numbers
it is not even mentioned that those operations can be treated as limits of operations
modulo p. In real life such limits even might not exist if, for example, the Universe
contains a finite number of elementary particles.

Classical mathematics proceeds from standard arithmetic which does not
contain operations modulo a number while finite mathematics necessarily involves
such operations. In the present paper we explain that, regardless of philosophical
preferences, finite mathematics is more fundamental than classical one.

3 Comparison of different theories

A belief of the overwhelming majority of scientists is that classical mathematics (in-
volving the notions of infinitely small/large and continuity) is fundamental while finite
mathematics is something inferior what is used only in special applications. This be-
lief is based on the fact that the history of mankind undoubtedly shows that classical
mathematics has demonstrated its power in many areas of science.

The notions of infinitely small/large, continuity etc. were proposed by
Newton and Leibniz more than 300 years ago. At that time people did not know
about existence of atoms and elementary particles and believed that any body can be
divided by an arbitrarily large number of arbitrarily small parts. However, now it is
obvious that standard division has only a limited applicability because when we reach
the level of atoms and elementary particles the division operation loses its meaning.
In nature there are no infinitely small objects and no continuity because on the very
fundamental level nature is discrete. So, as far as application of mathematics to
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physics is concerned, classical mathematics is only an approximation which in many
cases works with very high accuracy but the ultimate quantum theory cannot be
based on classical mathematics.

In view of those remarks, the fact that even standard quantum theory is
based on continuous mathematics is not natural but it is probably a consequence of
historical reasons. The founders of quantum theory were highly educated scientists
but they used only classical mathematics, and even now discrete and finite mathe-
matics is not a part of standard mathematical education at physics departments.

Theories dealing with foundation of mathematics and/or physics are called
fundamental, and in the present paper we consider only such theories. In abstract
mathematics there is no notion that one branch of mathematics is more fundamental
than the other. For example, classical and finite mathematics are treated as fully
independent theories dealing with different problems. However, in physics this notion
is well known. Probably the most known example is that nonrelativistic theory (NT)
can be obtained from relativistic theory (RT) in the formal limit c → ∞ where c is
the speed of light. RT can reproduce any result of NT with any desired accuracy if
c is chosen to be sufficiently large. On the contrary, when the limit is already taken
then one cannot return back from NT to RT, and NT can reproduce results of RT
only in relatively small amount of cases when speeds are much less than c. Therefore
RT is more fundamental than NT, and NT is a special degenerated case of RT. Other
known examples are that classical theory is a special degenerated case of quantum
one in the formal limit ~→ 0 where ~ is the Planck constant, and Poincare invariant
theory is a special degenerated case of de Sitter invariant theories in the formal limit
R→∞ where R is the parameter defining contraction from the de Sitter Lie algebras
to the Poincare Lie algebra. In view of these examples, we propose the following

Definition: Let theory A contain a finite parameter and theory B be ob-
tained from theory A in the formal limit when the parameter goes to zero or infinity.
Suppose that with any desired accuracy theory A can reproduce any result of theory B
by choosing a value of the parameter. On the contrary, when the limit is already taken
then one cannot return back to theory A and theory B cannot reproduce all results of
theory A. Then theory A is more fundamental than theory B and theory B is a special
degenerated case of theory A.

A question arises whether Definition can be used for proving that finite
mathematics is more fundamental than classical one. As noted above, in abstract
mathematics there is no notion that one theory is more fundamental than the other.
However, if in applications finite mathematics is more pertinent than classical one
then, as a consequence

Main Statement: Even classical mathematics itself is a special
degenerated case of finite mathematics in the formal limit when the char-
acteristic of the field or ring in the latter goes to infinity.

In our publications (see e.g. Refs. [4, 5]) we discussed an approach called
Finite Quantum Theory (FQT) where quantum theory is based not on classical but
on finite mathematics. Physical states in FQT are elements of a linear space over a
finite field or ring, and operators of physical quantities are linear operators in this
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space. It has been proved in Refs. [6, 7] that FQT is more fundamental than standard
quantum theory and the latter is a special degenerated case of the former in the formal
limit when the characteristic of the field or ring in FQT goes to infinity.

In other words, the problem what mathematics is the most fundamental is
the problem of physics, not mathematics. However, the first stage in proving Main
Statement is pure mathematical: one has to prove

Statement 1: The ring Z is the limit of the ring Rp when p → ∞ since
the result of any finite combination of additions, subtractions and multiplications in
Z can be reproduced in Rp if p is chosen to be sufficiently large. On the contrary,
when the limit is already taken then one cannot return back from Z to Rp, and in Z
it is not possible to reproduce all results in Rp because in Z there are no operations
modulo a number.

Then, according to Definition, the ring Rp is more fundamental than Z,
and Z is a special degenerated case of Rp.

4 Remarks on Statement 1

As noted above, Statement 1 is the first stage in proving that finite mathematics is
more fundamental than classical one. Therefore this statent should not be based on
results of classical mathematics. In particular, it should not be based on properties
of the ring Z derived in classical mathematics. The statement should be proved by
analogy with standard proof that a sequence of natural numbers (an) goes to infinity
if ∀M > 0 ∃n0 such that an ≥ M ∀n ≥ n0. In particular, the proof should involve
only potential infinity but not actual one.

The meaning of the statement is that for any p0 > 0 there exists a set
S and a natural number n such that for any m ≤ n the result of any m operations
of multiplication, summation or subtraction of elements from S is the same for any
p ≥ p0 and that cardinality of S and the number n formally go to infinity when
p0 → ∞. This means that for the set S and number n there is no manifestation of
operations modulo p, i.e. the results of any m ≤ n operations of elements from S are
formally the same in Rp and Z.

In practice this means that if experiments involve only such sets S and
numbers n then it is not possible to conclude whether the experiments are described
by a theory involving Rp with a large p or by a theory involving Z.

As noted above, classical mathematics starts from the ring Z, and, even in
standard textbooks on classical mathematics, it is not even posed a problem whether
Z can be treated as a limit of finite sets. We did not succeed in finding a direct proof
of Statement 1 in the literature. However, the fact that Z can be treated as a limit of
Rp when p → ∞ follows from a sophisticated construction called ultraproducts. As
shown e.g. in Ref. [8], infinite fields of zero characteristic (and Z) can be embedded
in ultraproducts of finite fields. This fact can also be proved by using only rings
(see e.g. Theorem 3.1 in Ref. [9]). This is in the spirit of mentality of majority of
mathematicians that sets with characteristic 0 are fundamental, and for investigating
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those sets it is convenient to use properties of simpler sets of positive characteristics.
The theory of ultraproducts (described in a wide literature — see e.g.

monographs [10] and references therein) is essentially based on classical results on
infinite sets involving actual infinity. In particular, the theory is based on  Loŝ’ theorem
involving the axiom of choice. Therefore theory of ultraproducts cannot be used in
proving that finite mathematics is more fundamental than classical one.

Probably the fact that Z can be treated as a limit of Rp when p → ∞,
can also be proved in approaches not involving ultraproducts. For example, Theorem
1.1 in Ref. [11] states:

Let S be a finite subset of a characteristic zero integral domain D, and
let L be a finite set of non-zero elements in the subring Z[S] of D. There exists an
infinite sequence of primes with positive relative density such that for each prime p
in the sequence, there is a ring homomorphism ϕp : Z[S]→ Z/pZ such that 0 is not
in ϕp(L).

The theorem involves only primes, and the existence of homomorphism
does not guarantee that operations modulo p are not manifested for a sufficient num-
ber of operations. However, even if those problems can be resolved, the proof of
the theorem is based on the results of classical mathematics for characteristic zero
integral domains, and the proof involves real and complex numbers, i.e. the results
involve actual infinity.

We conclude that the existing proofs that Z can be treated as a limit
of Rp when p → ∞ cannot be used in the proof that finite mathematics is more
fundamental than classical one.

5 Proof of Statement 1

Since operations in Rp are modulo p, one can represent Rp as a set {0,±1,±2, ...,±(p−
1)/2)} if p is odd and as a set {0,±1,±2, ...,±(p/2 − 1), p/2} if p is even. Let f be
a function from Rp to Z such that f(a) has the same notation in Z as a in Rp. If
elements of Z are depicted as integer points on the x axis of the xy plane then, if p
is odd, the elements of Rp can be depicted as points of the circumference in Fig. 1.
and analogously if p is even. This picture is natural since Rp has a property that if
we take any element a ∈ Rp and sequentially add 1 then after p steps we will exhaust
the whole set Rp by analogy with the property that if we move along a circumference
in the same direction then sooner or later we will arrive at the initial point.

We define the function h(p) such that h(p) = (p − 1)/2 if p is odd and
h(p) = p/2− 1 if p is even. Let n be a natural number and U(n) be a set of elements
a ∈ Rp such that |f(a)|n ≤ h(p). Then ∀m ≤ n the result of any m operations
of addition, subtraction or multiplication of elements a ∈ U(n) is the same as for
the corresponding elements f(a) in Z, i.e. in this case operations modulo p are not
explicitly manifested.

Let n = g(p) be a function of p and G(p) be a function such that the set
U(g(p)) contains the elements {0,±1,±2, ...,±G(p)}. In what follows M > 0 and
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Figure 1: Relation between Rp and Z

n0 > 0 are natural numbers. If there is a sequence of natural numbers (an) then
standard definition that (an) → ∞ is that ∀M ∃n0 such that an ≥ M ∀n ≥ n0. By
analogy with this definition we will now prove

Proposition: There exist functions g(p) and G(p) such that ∀M ∃p0 > 0
such that g(p) ≥M and G(p) ≥ 2M ∀p ≥ p0.

Proof. ∀p > 0 there exists a unique natural n such that 2n2 ≤ h(p) < 2(n+1)2 . Define
g(p) = n and G(p) = 2n. Then ∀M ∃p0 such that h(p0) ≥ 2M2

. Then ∀p ≥ p0 the
conditions of Statement 1 are satisfied. �

As a consequence of Proposition and Definition, Statement 1 is valid, i.e.
the ring Z is the limit of the ring Rp when p → ∞ and Z is a special degenerated
case of Rp.

When p is very large then U(g(p)) is a relatively small part of Rp, and
in general the results in Z and Rp are the same only in U(g(p)). This is analogous
to the fact mentioned in Sec. 3 that the results of NT and RT are the same only in
relatively small cases when velocities are much less than c. However, when the radius
of the circumference in Fig. 1 becomes infinitely large then a relatively small vicinity
of zero in Rp becomes the infinite set Z when p → ∞. This example demonstrates
that once we involve actual infinity and replace Rp by Z then we automatically obtain
a degenerated theory because in Z there are no operations modulo a number.
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6 Why finite mathematics is more fundamental

than classical one

As noted in Sec. 3, finite mathematics is more fundamental than classical one if finite
mathematics is more pertinent for applications than classical one. Since quantum
theory is the most fundamental physical theory (i.e. all other physical theories are
special cases of quantum one), the answer to this question depends on whether stan-
dard quantum theory based on classical mathematics is the most fundamental or is
a special degenerated case of a more general quantum theory.

In classical mathematics, the ring Z is the starting point for introducing
the notions of rational, real, complex numbers etc. Therefore those notions arise from
a degenerated set. Then a question arises whether the fact that Rp is more fundamen-
tal than Z implies that finite mathematics is more fundamental than classical one,
i.e. whether finite mathematics can reproduce all results obtained by applications of
classical mathematics. For example, if p is prime then Rp becomes the Galois field Fp,
and the results in Fp considerably differ from those in the set Q of rational numbers
even when p is very large. In particular, 1/2 in Fp is a very large number (p + 1)/2.

As noted in Sec. 3, de Sitter invariant quantum theory is more funda-
mental than Poincare invariant quantum theory. In the former, quantum states are
described by representations of the de Sitter algebras. According to principles of
quantum theory, from the ten linearly independent operators defining such repre-
sentations one should construct a maximal set S of mutually commuting operators
defining independent physical quantities and construct a basis in the representation
space such that the basis elements are eigenvectors of the operators from S. In Secs.
4.1 and 8.2 of Ref. [7] we have proved that

Statement 2: For the de Sitter algebras there exist sets S and representa-
tions such that basis vectors in the representation spaces are eigenvectors of the opera-
tors from S with eigenvalues belonging to Z. Such representations reproduce standard
representations of the Poincare algebra in the formal limit R → ∞. Therefore the
remaining problem is whether or not quantum theory based on finite mathematics
can be a generalization of standard quantum theory where states are described by
elements of a separable complex Hilbert spaces H.

Let (e1, e2, ...) be a basis of H normalized such that the norm of each ej
(j = 1, 2 · · · ) is an integer. The known fact in the theory of Hilbert spaces is that
with any desired accuracy each element of H can be approximated by a finite linear
combination of the basis elements with rational coefficients cj because the set of such
linear combinations is dense in H.

The next observation is that spaces in quantum theory are projective,
i.e. for any complex number c 6= 0 and any element x ∈ H, x and cx describe the
same state. This follows from the physical fact that not the probability itself but
only ratios of probabilities have a physical meaning. In view of this property, the
linear combination approximating the element x ∈ H can be multiplied by a common
denominator of all the rational coefficients in this combination. As a result, we have
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Statement 3: Each element of H can be approximated by a finite linear
combination with the coefficients cj = aj + ibj where all the numbers aj and bj belong
to Z.

In the literature it is also considered a version of quantum theory based
not on real but on p-adic numbers (see e.g. the review paper [12] and references
therein). Both, the sets of real and p-adic numbers are the completions of the set of
rational numbers but with respect to different metrics. Therefore the set of rational
numbers is dense in both, in the set of real numbers and in the set of p-adic numbers
Qp. In the p-adic case, the Hilbert space analog of H is the space of complex-valued
functions L2(Qp) and therefore there is an analog of Statement 3.

We conclude that Hilbert spaces in standard quantum theory contain a
big redundancy of elements. Indeed, although formally the description of states in
standard quantum theory involves rational and real numbers, such numbers play only
an auxiliary role because with any desired accuracy each state can be described by
using only integers. Therefore, as follows from Definition and Statements 1-3,

• Standard quantum theory based on classical mathematics is a special degener-
ated case of quantum theory based on finite mathematics.

• Main Statement is valid.

7 Discussion

As noted above, the problem what mathematics is more fundamental, finite math-
ematics or classical one, is the problem of physics, not mathematics. However, the
first step in proving that finite mathematics is more fundamental is the proof that Z
is the limit of Rp when p→∞, and the proof should not involve actual infinity. Clas-
sical mathematics starts from the infinite ring Z and, as a rule, legitimacy of every
limit is thoroughly investigated. However, even in standard textbooks on classical
mathematics, it is not even posed a problem whether Z can be treated as a limit of
finite sets.

As noted in Sec. 5, introducing actual infinity automatically implies tran-
sition to a degenerated theory because in this case operations modulo a number are
lost. Therefore even from the pure mathematical point of view the notion of actual
infinity cannot be fundamental, and theories involving actual infinities can be only
approximations of more fundamental theories.

Although Statement 1 seems rather simple, we did not succeed in finding
it in the literature. As noted in Secs. 4 and 5, the proof of the statement involves
only potential infinity while the results of classical mathematics that Z can be treated
as a limit of Rp when p→∞ have been obtained in the framework of ultraproducts
and other approaches involving actual infinity. Therefore, as noted in Sec. 4, those
results cannot be used in proving that finite mathematics is more fundamental than
classical one.
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As noted in Sec. 4, mentality of majority of mathematicians is that sets
with characteristic 0 are fundamental and for investigating those sets it is convenient
to use properties of simpler sets of positive characteristics. Note also, that the phrase
that Z is the ring of characteristic 0 also reflects the usual spirit that Z is more funda-
mental than Rp. In our opinion it is natural to say that Z is the ring of characteristic
∞ because it is a limit of rings of characteristics p when p→∞. The characteristic
p of the ring is understood such that all operations in the ring are modulo p but
operations modulo 0 are meaningless. Usually the characteristic of the ring is defined
as the smallest positive number n such that

∑n
i=1 1 = 0 in the ring if such a number

n exists and 0 otherwise. However,
∑n

i=1 1 can be written as 1 · n and the equality
1 · 0 = 0 takes place in any ring.

Legitimacy of the limit of Rp when p → ∞ is problematic because when
Rp is replaced by Z, we get classical mathematics which has foundational problems.
For example, Gödel’s incompleteness theorems state that no system of axioms can
ensure that all facts about natural numbers can be proven and the system of axioms
in classical mathematics cannot demonstrate its own consistency. The efforts of many
great mathematicians to resolve those problems have not been successful yet. The
philosophy of Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell, Zermelo and other
great mathematicians was based on macroscopic experience in which the notions of
infinitely small, infinitely large, continuity and standard division are natural. How-
ever, as noted above, those notions contradict the existence of elementary particles
and are not natural in quantum theory. The illusion of continuity arises when one
neglects discrete structure of matter.

The above construction has a known historical analogy. For many years
people believed that the Earth was flat and infinite, and only after a long period of
time they realized that it was finite and curved. It is difficult to notice the curvature
dealing only with distances much less than the radius of the curvature. Analogously
one might think that the set of numbers describing nature in our Universe has a
”curvature” defined by a very large number p but we do not notice it dealing only
with numbers much less than p.

In Sec. 6 we have explained that quantum theory based on finite math-
ematics is more fundamental than standard quantum theory and therefore classical
mathematics is a special degenerated case of finite one in the formal limit p → ∞.
The fact that at the present stage of the Universe p is a huge number explains why
in many cases classical mathematics describes natural phenomena with a very high
accuracy. At the same time, as shown in Refs. [5, 7], the explanation of several
phenomena can be given only in the theory where p is finite.

One of the examples is that in our approach gravity is a manifestation of
the fact that p is finite. In Ref. [7] we have derived the approximate expression for the
gravitational constant which depends on p as 1/lnp. By comparing this expression
with the experimental value we get that lnp is of the order of 1080 or more, i.e. p
is a huge number of the order of exp(1080) or more. However, since lnp is ”only” of
the order of 1080 or more, the existence of p is observable while in the formal limit
p→∞ gravity disappears.
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